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Edge magnetism of Heisenberg 
model on honeycomb lattice
Wen-Min Huang1, Toshiya Hikihara2, Yen-Chen Lee3 & Hsiu-Hau Lin3

Edge magnetism in graphene sparks intense theoretical and experimental interests. In the previous 
study, we demonstrated the existence of collective excitations at the zigzag edge of the honeycomb 
lattice with long-ranged Néel order. By employing the Schwinger-boson approach, we show that the 
edge magnons remain robust even when the long-ranged order is destroyed by spin fluctuations. 
Furthermore, in the effective field-theory limit, the dynamics of the edge magnon is captured by the 
one-dimensional relativistic Klein-Gordon equation. It is intriguing that the boundary field theory for 
the edge magnon is tied up with its bulk counterpart. By performing density-matrix renormalization 
group calculations, we show that the robustness may be attributed to the closeness between the 
ground state and the Néel state. The existence of edge magnon is not limited to the honeycomb 
structure, as demonstrated in the rotated-square lattice with zigzag edges as well. The universal 
behavior indicates that the edge magnons may attribute to the uncompensated edges and can be 
detected in many two-dimensional materials.

Exchange interactions between local magnetic moments, often described by the Heisenberg model and its deriv-
atives, lead to rich and sometimes exotic phases in quantum magnetism1. For instance, the excitation gap in the 
integer-spin chain proposed by Haldane2 stimulated theoretical investigations and was later verified in experi-
ments3,4. Antiferromagnetism in two-dimensional square lattice has been studied extensively because of its adja-
cency to unconventional superconductivity in cuprates5 and iron-based materials6. Recent breakthrough shows 
that the S =  1/2 Heisenberg model on Kagome lattice exhibits exotic spin-liquid ground state7–15 due to strong 
frustrations. Moreover, it has been demonstrated that superexchange interactions between ultracold atoms can be 
realized in optical lattices16. It may provide a different route to understand various ground states of the Heisenberg 
model on different lattice structures.

It is known that boundary effects give rise to fractionalized excitations in integer-spin chains17,18 but are 
less studied for spin systems in higher dimensions. The importance to understand the boundary effects in 
the Heisenberg model is echoed by plausible edge magnetism in graphene nanoribbons19–30. By bottom-up 
approaches, graphene materials with atomic-sharp zigzag edges have been fabricated successfully. Experimental 
observations verify the existence of the edge-localized states31–33 with strong electronic correlations34. On the 
zigzag edges of narrow graphene nanoribbons, magnetic order has been spotted at room temperature35. Skipping 
the technical details, the emergence of edge magnetism can be understood by Lieb’s ferrimagnetism, i.e. the local 
mismatch of sublattice sites. Monte Carlo simulations36 demonstrated mean-field like ferromagnetic moment 
near the zigzag edges of graphene nanoribbons. Unlike the usual ferromagnetic magnons with quadratic disper-
sion, these collective excitations near the zigzag edges exhibit linear dispersion. Ignoring the quantum fluctua-
tions momentarily, recent spin-wave calculations37 for the Heisenberg model on honeycomb lattice show that the 
dispersion of the ferromagnetic edge magnon is indeed linear.

Despite of fruitful theoretical progress in the past few years, it remains puzzling how the ferromagnetic edge 
magnon acquires robust linear dispersion in the presence of charge and spin fluctuations. The absence of quad-
ratic dispersion hints that the boundary field theory for the edge magnon must tie up with its bulk counter-
part. In this report, we study edge magnetism of the Heisenberg model on honeycomb nanoribbon with zigzag 
edges as shown in Fig. 1. We employ the Schwinger-boson approach to compute the dispersion of the edge mag-
nons. It is quite interesting that the linear dispersion remains robust even when the long-ranged Néel order is 
destroyed by the spin fluctuations. In the field-theory limit, the dynamics of the edge magnons is captured by 
the one-dimensional Klein-Gordon (K-G) equation. The boundary conditions give rise to evanescent modes 
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propagating along the edge with imaginary momentum in the transverse direction. It is quite fascinating that the 
parameters characterizing the edge magnons are directly related to those in the bulk. The existence of the edge 
magnons is not limited to the honeycomb structure, as demonstrated in the rotated-square lattice with zigzag 
edges as well. The universal behavior indicates that the emergence of edge magnons is directly related to the 
uncompensated edges and can be detected in many two-dimensional materials.

Our derivations provide natural explanation for the linear dispersion and reveal the connection between the 
boundary field theory for edge magnons and its bulk counterpart. To further clear up the role of the long-ranged 
Néel order, we also perform density-matrix renormalization group (DMRG) calculations in graphene nanorib-
bons. Our previous DMRG studies22 has demonstrated the presence of edge magnetism in graphene nanoribbons 
even though quantum fluctuations destroy the long-ranged order. Why can the collective excitations survive on 
the edge even though the long-ranged order is already destroyed? The question remains open at this point. But, 
our DMRG calculations demonstrate that the Néel state is very close to the ground state and provide an indirect 
hint why the collective excitations can survive even though the long-ranged order is gone.

Results
Heinsenberg model. To explore the boundary effects for nanoribbons with honeycomb structure, we first 
write down the Heisenberg Hamiltonian for the exchange interactions,

∑ ∑= ′ ′
′ =

r r r rH J S S( , ) ( ) ( ),
(1)r r i x y z

i i i
, , ,

where 〈 r, r′ 〉  denotes all nearest-neighbor pairs with r =  (x, y) on the honeycomb lattice. The exchange couplings 
are Jx =  Jy =  J and Jz =  γJ with anisotropy γ ≥  1. Given the on-site interaction U and the nearest-neighbor hopping 
amplitude t in graphene, they lead to the exchange coupling J =  4t2/U >  0 in the strong-interaction limit.

In deriving the effective field theory for the edge magnons, to simplify the algebra, we start with the 
Holstein-Primakov (HP) bosons in the presence of the Néel order as shown in Fig. 1. Neglecting the interactions 
between the HP bosons, the effective Hamiltonian within the spin-wave approximation is

∑ γ= + ′ ′

+ ′ + ′

′

† †

† †

r r r

r r r r

H JS a a a a

a a a a
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where S is the magnitude of the spin and aA/B are annihilation operators for the HP bosons on sublattices A/B. 
Since the spin-wave Hamiltonian is bilinear, it is straightforward to write down its equivalent equations of motion 
in first-quantization language. Following the same steps developed in ref. 37, the dynamics is described by the 
coupled Harper equations,

∑ δλϕ ϕ ϕ+ + = ∂
δ

⁎r r rQ i( ) ( ) ( ),
(3)

A B i t A
i

∑ δϕ λϕ ϕ+ + = − ∂
δ

⁎ ⁎r r rQ i( ) ( ) ( ),
(4)

A i B t B
i

where r denotes the lattice sites for honeycomb lattice and δi are the vectors pointing to the nearest neighbors. The 
wave functions on different sublattices are ϕ ϕ ⁎,A B , where the conjugation arises from the opposite spin orienta-
tion. The key parameters are the hopping amplitude Q =  JS and the chemical potential λ =  zγQ, where z is the 
number of nearest neighbors. It is important to emphasize that the magnon carries quantum number ∆ = S 1z  
and sets the normalization condition,

B
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Figure 1. Néel state in a honeycomb nanoribbon with zigzag edges. Spin orientations (purple arrows) 
on sublattice A (green dots) and sublattice B (red dots) are opposite to each other. The choice of unit cell is 
highlighted by the shaded blue circle.
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∑ ϕ ϕ∆ = − − = .r rS ( ( ) ( ) ) 1
(5)r

z A B
2 2

The above Harper equations can be solved exactly, delivering a single-branch ferromagnetic magnon near the 
zigzag edge with linear dispersion. In the following, we would like to develop general field-theory descriptions to 
explicitly reveal the connection between magnons in the bulk and those at the edge.

Field theory in the bulk. In the field-theory limit, we introduce the smooth-varying fields, 
φ ϕ= ∑Λ <Λ Λ

⋅r kt t e( , ) ( , )k
k r

V
i1

c
, where the momentum summation is restricted to the vicinity of k =  0 with a 

cutoff Λ c. For these smooth-varying fields, spatial variable r can be treated as continuous and no longer restricted 
to the lattice sites. In consequence, spatial derivatives are well-defined. Making use of the displacement operator, 

φ φ= +⋅∇


 r r ae ( ) ( )a , the Harper equations can be represented in the matrix form,
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where ∂ ∂ = ∂ +− ∂ ∂


 h e a e( , ) 2 cosh( /2)x y
a

x
a3 /6 3 /3y y  for the honeycomb lattice, and a being the lattice con-

stant. Keeping the lowest order in the gradient expansions and eliminating the field φ ⁎
B , the dynamical equation 

solely for the field φA can be derived. It is not surprising that the effective field theory turns out to be the 
well-known Klein-Gordon equation in two dimensions,
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The spin-wave velocity in the bulk is = c Qa3/2b  and the effective mass is γ= − m Qa2 1 /( )b
2 2 . One can 

also eliminate the field φA and show that φ ⁎
B  also satisfies the same K-G equation. These results are not surprising 

because antiferromagnet in the low-energy limit is relativistic. Without the annoying spin kinematics, spin oper-
ators can be viewed as canonical bosons and K-G equation becomes a natural description.

It is important to keep in mind that φA and φ ⁎
B  are antiparticles to each other. As required by relativity, they 

always appear in pairs and explain the double degeneracy for magnons in an antiferromagnet. Furthermore, when 
the anisotropy disappears, γ =  1, the excitation gap for the magnon m cb b

2 also disappears as expected from the 
Goldstone’s theorem.

Field theory at the edge. One can also introduce the smooth-varying fields on the edge and applies the 
same techniques to derive the boundary field theory. Since our goal is to demonstrate the connection between the 
field theories in the bulk and at the edge, it is wise to write down the field-theory presentation for the boundary 
conditions. For the honeycomb nanoribbon considered here, at the upper edge (y =  Ly) where the outmost sites 
belong to sublattice A, the boundary condition gives the constraint γϕ ϕ+ + =⁎x L x L a( , ) ( , ) 0A y B y y . On the 
other hand, for the lower edge (y =  − Ly), the outmost sites belong to sublattice B and the boundary condition 
leads to γϕ ϕ− + − − =⁎x L x L a( , ) ( , ) 0B y A y y . As long as the transverse width Ly is finite, edge magnons on 
opposite edges entangle together and complicate the problem. For simplicity, let us temporarily assume that the 
transverse width Ly is sufficiently large so that the coherent overlap between opposite edges can be ignored.

Eliminating the field ϕ ⁎
B  with the help of Eq. (6), the boundary conditions on the upper edge is simplified to 

the constraint on the field ϕA solely,
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Note that the above relation impose constraint on how the (imaginary) momentum in the transverse direction 
renormalizes the propagation of magnons on the upper edge. It can be shown that edge magnons on the upper 
boundary carry quantum number Δ Sz =  − 1 with evanescent wave function φ φ= αx y t x t e( , , ) ( , )A Ae

yy , where 
αy >  0 is the imaginary momentum along the transverse direction. Substituting the boundary constraint into the 
bulk K-G equation, the dimensionality is effectively reduced to one. The resultant equation for the edge magnon 
is the one-dimensional K-G equation,
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The spin-wave velocity and the effective mass for the edge magnon are related to its bulk values,
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The above results are plotted in Fig. 2. Since the excitation gap m ce e
2 and the spin-wave velocity ce are smaller, 

the dispersion for the edge magnon lies below the continuum and remains sharp even when the interactions 
between magnons are included perturbatively.

Symmetry argument between two edges. On the lower boundary, the edge magnons carry quantum 
number Δ Sz =  1 with wave function φ φ= α−⁎ ⁎x y t x t e( , , ) ( , )B Be

yy . Following similar calculations, one can show 
that the edge magnon also satisfies the one-dimensional K-G equation with identical parameters. The similarity 
between the edge magnons on opposite edges calls for a Z2 symmetry argument. It turns out the discrete symme-
try relating these evanescent modes is the parity symmetry Py in the transverse direction.

Because the Néel state consists of the staggered spin configurations, the operation of parity symmetry needs 
extra caution. When reversing the y-axis, it is clear that the lattice coordinates transform as (y, A) →  (− y, B) and 
(y, B) →  (− y, A). However, due to the staggered spin configuration in the Néel state, the parity transformation 
also reverses the spin orientations and causes “charge conjugation” effectively. That is to say, the parity transfor-
mation turns particle-like excitations into the hole-like and vice versa. Therefore, the solution under Py transfor-
mation takes the form,
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φ

φ
φ
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The above symmetry is exactly what happens in the boundary field theory for edge magnons. The boundary 
field theory supplemented with the symmetry argument fully answers our puzzle. The ferromagnetic magnons 
satisfies the one-dimensional K-G equation originated from its bulk counterpart with explicit relations. The edge 
magnons running on upper and lower boundaries carry opposite quantum numbers and are antiparticles to each 
other related by the Py parity symmetry. In fact, the whole field theory (including the bulk and the two edges) is 
fully relativistic and excitations always appear in pairs as required. The confusion mainly arises from the asymme-
try of the spatial wave functions for the edge magnons because their antiparticles locate on the opposite edges. In 
short, the single-branch ferromagnetic edge magnon on one zigzag boundary is indeed an antiferromagnetic one 
with its antiparticle running on the distant opposite boundary. The linear dispersion of the edge magnon (with 
specific relation to the bulk dispersion) now looks more than natural.

Schwinger-boson approach. The above derivation can be generalized to the Schwinger bosons where the 
long-ranged order is absent. Here we introduce the Schwinger-boson operators,

σ
= =

















Λ Λ Λ Λ
Λ↑

Λ↓

†r r r r
r
r

B B B
b
b

S ( ) ( )
2

( ), with ( )
( )
( )

,
(12)

where σ =  (σx, σy, σz) are the Pauli matrices, Λ  =  A, B are the sublattice indices and b↑/↓ are the annihilation 
operators of Schwinger bosons with different spin orientations. By rotating the spins on the sublattice B along the 
y-axis by the angle π (i.e. Sx →  − Sx, Sz →  − Sz and Sy unchanged), the Heisenberg model in Eq. (1) now takes the 
following form,

∑ ∑= − −
=

† r rH J D D S
2

[ ( ) ( ) 2 ],
(13)ri

i iSB
1,2,3

2

Figure 2. Dispersions for edge and bulk magnons. (a) In isotropic limit γ =  1 and (b) with slight anisotropy 
γ =  1.01. The dispersion of edge magnon (red line) in the isotropic case shows linear dependence. The shaded 
light blue regime represents the continuum of magnons in the bulk.
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where = ± − d a a( /2, /2 3 )1/2 , = d a(0, / 3 )3  and the pairing operators are defined as Di(r) =  ∑ αbAα(r)bBα 

(r +  di) with α =  ↑ , ↓ . Note that the number of the Schwinger bosons, ∑ =α α αΛ Λ
† r rb b S( ) ( ) 2 , is constrained as 

usual. Making use of the translational invariance along the x-direction, the partial Fourier transformation, 
= ∑α αΛ Λb x y e b k y( , ) ( , )

L k
ik x

x
1

x x
x  with quantized momenta = πk mx L

2

x
, m =  1, 2, … , Nx, is rather helpful. 

Within the mean-field approximation, we further decouple the quartic terms and obtain the self-consistent 
equations,

∑ ζ= − −
α

α αy J
L

b k y b k y( )
2

( , ) ( , ) ,
(14)x k

k A x B x
, x

x
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(15)x k

A x B x y
, x

∑=
α

α αΛ ΛS b k y b k y( , ) ( , ) ,
(16)x x

where ζ = k acos( /2)k xx
 and 


 means the ensemble average. It is interesting to compare the Schwinger bosons 

with the HP bosons at this point: the fluctuations destroy the long-ranged order but only renormalize the effective 
hopping  ⊥,  for the spin bosons. This is the underlying reason why the collective excitations at the edge sur-
vive even though the long-ranged order is destroyed by quantum fluctuations.

After mean-field decomposition, the effective Hamiltonian for the Schwinger bosons is quadratic,
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where ψ ψΨ =Λ Λ↑ Λ↓
† k n k n k n( , ) [ ( , ), ( , )]x x x  with n =  y/ay, and the matrix elements in the 2 ×  2 Hamiltonian 

matrix are semi-infinite matrices,
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with 1 representing the 2 ×  2 identity matrix. Let us consider the semi-infinite graphene along the y-direction. 
The Lagrangian multiplier λΛ(n) is introduced to enforce the occupancy constraint in Eq. (16), which can be 
regarded as a local chemical potential of the Schwinger bosons. The mean-field Hamiltonian leads to the Harper 
equations,

λ ω ψ ψ ζ ψ− + + + = =α α α⊥ n n n n n n n[ ( ) ] ( ) ( 1) ( ) 2 ( ) ( ) 0, for 0, 1, 2, , (20)A A B k Bx
 

 ζ φ φ λ ω φ+ − + + = = .α α α⊥ n n n n n n n2 ( ) ( ) ( 1) ( ) [ ( ) ] ( ) 0, for 1, 2, (21)k A A B B

Away from the edge, the homogeneity restores eventually so that we set =n( ) ,  =⊥ ⊥n( )  and 
λΛ(n) =  λ to simplify the calculations. Applying generalized Bloch theorem37, the solution takes the form of 
ψαΛ(n) =  ψαΛ(0)zn. The plane-wave solution corresponds to =z eik y and the dispersion of the Schwinger bosons 
in the bulk is

 ω λ= − + .⊥ k e2 cos( /2) (22)B x
i k2 3 /2 2

y

For notation simplicity, we have set =a 1 in above. Plugging the dispersion relation into the self-consistent 
equations, Eqs (14), (15) and (16), the effective hopping and the chemical potential are obtained, =⊥ J/ 1 , 

= .J/ 0 8025  and  λ = +⊥J/ ( 2 ) with kBT/J =  0.01 and S =  1/2. The presence of the edge causes non-trivial 
mixing between counter propagating modes =±

±z e ik y, but the spectral continuum of the Schwinger bosons in 
the bulk remains the same, as shown as the blue regime in Fig. 3.

The emergent ferromagnetic order near the zigzag edge renders the spatial dependence of the parameter λ. 
In principle, it shall be determined self-consistently. However, as long as the ferromagnetic moment at the edge 
is localized, it is reasonable to assume that only the edge value deviates from its bulk value. That is to say, we can 
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decompose λE(0) =  λ +  Δ  into the bulk value λ and the boundary enhancement Δ . Within this approximation, 
Δ  should be treated as a fitting parameter to reproduce the desired ferromagnetic moment at the edge. After some 
algebra, the boundary conditions read,

ψ ψ∆ + =↑ ⊥ ↑(0) (0) 0, (23)B A

ψ ψ−∆ + = .↓ ⊥ ↓(0) (0) 0 (24)B A

The structure of the effective field theory and the boundary conditions for the Schwinger bosons (without the 
long-ranged order) take the same form as those for the HP bosons (with Néel order). It is then expected that the 
edge magnons remain robust except the relevant parameters are renormalized by quantum fluctuations. Together 
with the Harper equations, the dispersions of the evanescent modes (|z| <  1 solutions) for the Schwinger bosons 
are

ω =
± ∆ − + Γ ∆

∆±
⊥( ) ( , )
2

, (25)

2 2 

where λ ζΓ ∆ = + ∆ ∆ ± − ∆⊥( , ) [ ( 2 )] (4 )k
2 2 2

x
   . As shown in Fig. 3, the edge magnon gradually devel-

ops from the large momenta when the ferromagnetic enhancement is weak Δ /J =  0.5 and eventually becomes 
gapless when the enhancement is large enough Δ /J =  1. The discrepancy between the HP-boson approach and the 
Schwinger-boson approach can be spotted by the extra evanescent mode (green line above the bulk continuum) 
in Fig. 3. It may arise from the well-known artifact of the Schwinger-boson approach where mode counting often 
doubles due to the mean-field constraint.

Discussions
By the Schwinger-boson approach which preserves the SU(2) symmetry in the isotropy limit γ =  1 explicitly (no 
long-ranged order), we have shown that the edge magnons survive except the parameters Q and λ are renor-
malized due to quantum fluctuations. The robustness of the relativistic boundary field theory is then not a big 
surprise because the field-theory description for the Schwinger bosons is still relativistic.

To further clear up the role of the long-ranged Néel order, we also perform DMRG calculations in graphene 
nanoribbons. It is known that the ground state for the Heisenberg model on a finite bipartite lattice is a spin 
singlet. According to the DMRG calculations, we find that the ground state30 is very close to the Néel state. 
Figure 4 shows the magnetization profiles 〈 Sz(r)〉  in the lowest-energy state of ∑ rSz(r) =  0 for the Heisenberg 
model with a local Zeeman field − hSz(r0) applied to the center site r0 at the upper edge. We show that even a small 
local field h =  0.01 J induces a robust Néel order despite of the singlet ground state. The closeness between the 
spin-singlet ground state and the Néel order may contribute to the robustness of edge magnons in the absence of 
the long-ranged order.

Note that the edge magnon is not a privilege of the honeycomb nanoribbon with zigzag edges. For the 
rotated-square nanoribbon as shown in Fig. 4, we repeat the same calculations and find the presence of edge 
magnons as described in Eq. (9), with different parameters,

Figure 3. Dispersions of the bulk and the edge Schwinger bosons in a semi-infinite graphene for (a) Δ /J =  0.5 
and (b) Δ /J =  1 respectively. The blue regime denotes the bulk continuum of the Schwinger bosons, and the red 
and green lines represent the dispersions of the two edge Schwinger bosons.
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= =
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γ

c
c

m
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1
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(26)

e

b

b

e 1
2

where = c Qa4b  and γ= − m Qa1 /(4 )b
2 2 . Meanwhile, we also compute the edge magnon on a honeycomb 

nanoribbon with armchair edges and a square nanoribbon with flat edges. However, in these cases, the fully com-
pensated edges exclude the existence of edge magnons. The results indicate that the emergence of the edge mag-
non may tie up with the uncompensated edges in the bipartite lattices. However, the proof for general lattice 
structures and without Néel order is still an open question at the point of writing.

The linear dispersion of the edge magnon in graphene has been speculated in many numerical studies20,27,36, 
where the Néel order is absent. By extracting the parameters of real materials from these literatures, the spin-wave 
velocity at the zigzag edge of graphene can be estimated. For reasonable U =  2 eV and t =  2.6 eV27,36, the order of 
the magnitude is estimated as ~106(m/s). Most studies neglect the disorder effects so far. In realistic materials, dis-
order will hybridize the right-moving and left-moving sectors of the magnons and a small gap will be inevitable. 
However, as long as the disorder is weak, the collective excitations below the continuum can still be found due to 
the finite energy gap. That is to say, the long-wave length (near k =  0) excitations are more sensitive to disorder 
while the edge magnons with large momenta shall be robust in experimental probes.

Although the Néel order may not play an essential role for the existence of the edge magnons, one shall be 
cautious to draw similar conclusions for models of graphene nanoribbons with the same geometry. Because edge 
magnetism in graphene nanoribbons is itinerant in nature, it is not yet clear whether the edge magnon can still 
be described by the one-dimensional K-G equation derived here. However, recent Monte Carlo simulations36 
demonstrate the presence of sharp spin-wave excitation with sharp spectral weight, in qualitative agreement with 
our boundary field-theory description. It would be of vital importance to explore and reveal the true nature of 
these edge excitations in the future.

Methods
Holstein-Primakov bosons. If the Néel order is present, it is convenient to represent the antiferromagnetic 
Heisenberg model in terms of the Holstein-Primakov bosons,

= + ≈+S S iS S a2 , (27)x y

= − ≈− †S S iS a S2 , (28)x y

= − .†S S a a (29)z

Even though the HP-boson approach is exact, it breaks the SU(2) invariance explicitly and becomes rather 
awkward when the Néel order is destroyed by quantum fluctuations. Within the spin-wave approximation, we 
further ignore the interactions between these bosons to reach the quadratic Hamiltonian in Eq. (2).

DMRG calculation. The magnetization profiles 〈 Sz(r)〉  shown in Fig. 4 are obtained by the finite-system 
DMRG method38,39. The number of states kept is up to χ =  500. The numerical results of the DMRG method 
inherently include a systematic error due to the finite cutoff χ. To estimate the error, we perform the calculation 

Figure 4. Magnetization profiles by the DMRG calculation. 〈 Sz(r)〉  in (a) the honeycomb nanoribbon with 
zigzag edges and (b) the rotated-square nanoribbon. Light (green) and dark (red) circles represent positive and 
negative values of the spin polarization respectively, while the areas are proportional to the absolute values. 
Crosses represent the edge site r0 for which the local Zeeman field − hSz(r0) with h =  0.01J is applied.
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of 〈 Sz(r)〉  with various χ and monitor how the data change with increasing χ. For the honeycomb nanoribbon 
with zigzag edges, we extract the data as a function of the truncation error, which is the sum of the density-matrix 
weights of discarded states, and then, extrapolate the data to the limit of zero truncation error: Fig. 4 shows the 
extrapolated values in the DMRG calculations. We note that the truncation error averaged on the final sweep at 
χ =  500 is 8 ×  10−7 and the differences between the values of 〈 Sz(r)〉  at χ =  500 and the extrapolated ones are at 
most 2.7%, suggesting that the results are accurate enough for our argument. For the rotated-square nanoribbon, 
the averaged truncation error at χ =  500 is 1 ×  10−8 and the differences between the values of 〈 Sz(r)〉  at χ =  500 
and 400 are less than 0.074%. It suggests that the convergence of the data with respect to χ is achieved sufficiently. 
We therefore plot the data with χ =  500 in Fig. 4.
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