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Interface States and Interface-
Bulk Correspondence of 
One-dimensional Hyperbolic 
Metamaterials
Ieng-Wai Un1 & Ta-Jen Yen1,2

We investigate the interface state on one-dimensional hyperbolic metamaterial (1DHMM). Initially, we 
analyze the plasmonic band structure of binary 1DHMM and analytically determine its band crossing 
condition. Then, we scrutinize the existence of an interface state in the plasmonic band gap of 1DHMM 
on three types of interfaces: dielectric/1DHMM, metal/1DHMM, and 1DHMM/1DHMM. We find that 
the band crossing dramatically influences the existence of an interface state. We also show a rigorous 
relation between the existence of the interface state of 1DHMM in the plasmonic band gap and the 
wave admittance in the plasmonic band region. More importantly, this relation not only holds for binary 
1DHMM but also can be generalized to any 1DHMM with inversion symmetry. We also characterize the 
interface state by the transverse spin angular momentum and reveal the transverse spin flipping of the 
interface state.

Hyperbolic metamaterials (HMMs), a set of artificially tailored materials whose dispersion appears exotically 
hyperbolic instead of conventional elliptical contour1–3, have been attracting attention because these materials 
provide a variety of fascinating optical properties, such as negative refraction4,5, enhanced Purcell effect6,7, non-
local effect8,9, far-field optical hyperlens10–12 and anomalous scaling13. To date, many reported works regarding 
HMMs have focused on their opical bulk properties4–13, interface state of HMMs have also been reported based 
on the topological transition of HMMs2,14,15; yet, the exceptional electromagnetic response of HMMs actually 
depends on their interface properties. Usually, the surface states can be described by the complex wave admit-
tance Y (inverse of wave impedance), i.e., the ratio of the transverse magnetic field to the transverse electric field. 
For example, an electromagnetic (EM) wave can perfectly transmit through an interface between two media with 
the same wave admittance (Y1 =  Y2). In addition, for the radiated wave, perfect transmission of the TM polarized 
EM waves at the Brewster angle can also be considered wave admittance matching in two media. Another exam-
ple is the evanescent wave, the super-oscillating spatial frequency results in the exponential decay of the field 
intensity from the interface. In this case, the vanishing of the total wave admittance (Y1 +  Y2 =  0) in two media 
inferred the existence of propagating interface state on the interface. For example, the condition Yd +  Ym =  0 
essentially determines the dispersion relation of the surface plasmon polariton (SPP) on the interface between 
dielectric and metal16. Thus, the wave admittance establishes the type of wave that propagates in a material and 
the material that attaches to form the interface state.

In addition, the interface property of 1DHMMs is expected to correspond to their bulk property. The 
“interface-bulk correspondence” refers to the existence of a protected surface state on an insulator due to the 
nontrivial topology of the band structure known as a topological insulator in electronic system17–19. The pro-
tected surface state appears unless the symmetry is broken or the band gap is closed. The existence of zero-energy 
edge state is topologically related to the bulk properties and the chiral symmetry20. Recently, topological insula-
tors in photonic systems in analogy to the electronic system have been theoretically predicted and experimen-
tally realized15,21–29. For example, unidirectional photonic edge states have been demonstrated by introducing 
magneto-optical effects22–24 and chirality15. By harmonically modulating the coupling constant within a resonator 
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lattice, the effective magnetic field for a photon emerges and leads to a one-way photonic edge state without 
magneto-optical effects29. Magnetic topological transition between elliptic and hyperbolic iso-frequency contour 
has also been demonstrated in 2D transmission line metamaterials30 by changing the sign of admittance which is 
proportional to the effective premeability. For a periodic photonic system, the existence of an interface state may 
be related to the band structure in terms of the Zak phase25. For the photonic system studied by M. Xiao et al.25, 
the set of the photonic band gaps and the interface state are fixed by the thickness and dielectric constant of the 
composite layer up to some frequency shift.

In this article, we develop a rigorous interface-bulk correspondence that directly relates the existence of the 
interface state on 1DHMM in the plasmonic band gap with the wave admittance in the band region. Instead of 
effective medium theory, we adopt the transfer matrix method31 to calculate the plasmonic band structure of 
1DHMM. In the plasmonic band gap, we investigate the formation of dielectric/1DHMM, metal/1DHMM and 
1DHMM/1DHMM and their dispersion relations. By closing and reopening the band gap of a 1DHMM, we 
demonstrate that the required attaching material for interface state formation changes from a metallic to dielec-
tric material (or vice versa). In other words, the band crossing significantly changes the existence of the interface 
state. More significantly, one can close and reopen the plasmonic band gap by altering the transverse wave vector 
and then modify the existence of the interface state in a single 1DHMM. We further show that this interface-bulk 
correspondence remains valid for any 1DHMM with inversion symmetry. We also analyze the optical spin angu-
lar momentum of the interface states to verify the interface-bulk correspondence.

Results
First, we restrict our attention to a binary 1DHMM comprised of alternative layers of metal and dielectric of 
thickness am and ad, as shown in Fig. 1. Moreover, the dielectric constant of the metal and dielectric are 
ε ω ω= −1 /m p

2 2 and εd, respectively, where ωp denotes the plasma frequency. By solving the eigen-problem of the 
unit cell transfer matrix, we obtain two types of eigenvalues λ:
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if |Tr(Tuc)| >  2, which corresponds to the gap region, where a =  am +  ad is the lattice constant. As a result, the band 
dispersion of binary 1DHMM is determined by
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2, χm,d =  εm,dω/βm,d, kx is the transverse wave vector and q is the Bloch wave vector. The 

resulting band structure is shown in Fig. 2. One can verify that the band crossing occurs when

β ε β ε+ = 0 (4)m d d m

β β=a a (5)m m d d

From the band crossing conditions Eq. (4) and Eq. (5), we can conclude that there is no band crossing for 
ad <  am, see Fig. 2(a), and the band crossing (denoted as ωk( , )x

XC XC ) occurs at band center only when ad >  am (see 

Figure 1. Schematics of a binary hyperbolic metamaterial. Hyperbolic metamaterial comprises alternating 
metal and dielectric layer of thickness am and ad, dielectric constants εm and εd, respectively. We can choose the 
unit cell of binary system centered with inversion center which results in two kinds of unit cell A and B.
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Fig. 2(d)) regardless of the dielectric constants εm and εd. One also requires that εm <  0, εd >  0 and ε ω>k c/x d
2 2 2 

to fully satisfy these conditions.
To study the interface state, we attach a neighboring material of dielectric constant εK to semi-infinite 

1DHMM terminated with a unit cell A or B. Similar to the interface states in other system (e.g., SPP), one expects 
an exponential decay in field intensity on both sides of the material. Thus, the eigenvalue of corresponding inter-
face state of 1DHMM should satisfy |λ| <  1 and λ ∈  which is allowed in the gap region. According to our 
definition of the transfer matrix, the ratio of the two components in the eigenvector is exactly the admittance on 
the boundary of the unit cell, i.e., YHMM =  Tuc,12/(λ −  Tuc,11) or YHMM =  (λ −  Tuc,22)/Tuc,21, in both band and gap 
regions. Alternatively, the wave admittance in material K is found to be YK =  − εKω/βK. By applying the interface 
existence condition YHMM +  YK =  0, one can clearly see that the sign of YHMM determines the material type of K 
required to form an interface state. The next step requires the determination of sgn(YHMM). For the unit cell with 
inversion symmetry, the unit cell transfer matrix has the property Tuc,11 =  Tuc,22 =  (1/2)Tr(Tuc). Together with the 
requirement of |λgap| <  1, one can prove that (λ −  Tuc,11) <  0(> 0) for the gap between two band centers (edges). 
For a binary 1DHMM, we are interested in the gap between the band centers where band crossing occurs. For the 
case of ad <  am, i.e., without band crossing, Tuc,12 <  0 within the entire gap. Therefore, on one hand, interface state 
formation requires εK >  0, i.e., a dielectric, and the 1DHMM is said to be metallic-like (see Fig. 2(b) and (c)). On 
the other hand, for the case of ad >  am, i.e., with band crossing, Tuc,12 <  0 for <k kx x

XC and the 1DHMM is 
metallic-like; when >k kx x

XC, Tuc,12 >  0 then the interface exists for the material K with negative permittivity and 
the 1DHMM is said to be dielectric-like (see Fig. 2(e) and (f)). The interface state can occur on the interface 
between dielectric-like and metallic-like 1DHMM. Remarkably, a single binary 1DHMM with ad >  am exhibits 
phase transition like behavior in the plasmonic band gap when the external transverse wave momentum is fine 
tuned around the band crossing point. We attribute its phase transition-like behavior to the dispersion of the 
metallic layer. In fact, the band crossing condition Eq. (4) is merely the dispersion relation of SPP on the interface 
between εd and εm

16. Therefore, the interface state and phase transition-like behavior can be experimentally real-
ized without changing material or structural configuration.

Figure 2. Plasmonic band structure of the binary 1DHMM. Plasmonic band structure of the binary 1DHMM 
with dielectric εd =  4 and metal ε ω ω= −1 /m p

2 2 but different thickness: (a–c) for ad =  0.4 and am =  0.6 which 
leads to band structure without crossing; (d–f) for ad =  0.6 and am =  0.4 which leads to band crossing. The bulk 
and gap properties shown in (b,c,e,f) correspond to the choice of unit cells A and B, respectively. In fact, the 
bulk band dispersion does not depend on the choice of unit cell but the interface property does (see the 
description in the text). The color in the gap depicts the required material type for interface state formation: red 
for dielectric and blue for metallic. Red circles show the dispersion of the interface state between the dielectric 
material (εK =  3) and the 1DHMM. Blue circles show the dispersion of the interface state between the metallic 
material ε ω ω= . −( 1 2(1 / ))K p

2 2  and the 1DHMM.
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Next, we devote the remainder of this Letter to the so called “interface-bulk correspondence” of 1DHMM with 
inversion symmetry. Recently, interface-bulk correspondence has been found in a 1D photonic crystal25 in terms 
of the Zak phase32 of the photonic band structure. The existence of interface state is determined by the formation 
condition THMM +  YK =  0 and the wave admittance is position dependent in the periodic structure. It is interesting 
to search for interface-bulk correspondence in terms of wave admittance directly. In analogy to the Zak phase, 
we formally define
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in our dispersive system. Recall that the wave admittance is equal to the ratio of the two components in eigen-
vector. In some sense, the integration in Eq. (6) involves counting the number of discontinuity of YHMM which is 
equivalent (mod2) to the number of singularity of the eigenvector within a specific band. Here, singularity refers to 
simultaneous zeros of two components of the eigenvector. For a unit cell with inversion symmetry, Y(q) =  − Y(− q),  
the integration in Eq. (6) vanishes if Y(q) is continuous. However, if there are discontinuities at, say, qj’s and Y is 
(mathematically) discontinuous and Eq. (6) becomes

∑θ = | − |
δ δ δ→ + −Y YIm[ lim(ln ln )]
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with inversion symmetry, λband −  Tuc,11 =  λband −  Tuc,22 =  i sin(qa), the singularity of the eigenvector may hence occur 
at the band center (q =  0) and/or band edge (q =  ± π/a) only, depending on the zeros of Tuc,12 and Tuc,21. One can 
move the singularity from q =  0 to q =  ± π (or vice versa) or annihilate them with each other if there are two, by 
gauge transformation on the eigenvector. If we take a closer look at the band edge or band center where Y(q) →  ± 
i∞ , the transverse magnetic field is finite while the transverse electric field is zero. So Y(q) →  i∞  and Y(q) →  − i∞  
are different from each other in a irrelevant global phase, they should be regarded as the same state of the EM field. 
The same argument can be applied for the point where Y(q) →  0 likewise. Note that the global phase is irrelevant 
only when one of the traverse field is zeros. So the mathematical discontinuity of Y(q) stems from the usage of single 
function to represent Y(q) over the Brillouin zone. To illustrate the above concept, stereographic projection is intro-
duced to map the wave admittance on the complex plane onto the Riemann sphere. Under the stereographic pro-
jection, we compactify the wave admittance on the complex plane () together with {∞ }. By doing so, the lattice 
wave vector q in the 1D Brillouin zone (S1) is mapped to a unit circle (S1) on the Riemann sphere. Accordingly, on 
the other hand, if there is one singularity in the band, θY =  ± π and Y takes the form of a closed loop on the Riemann 
sphere, see Fig. 3(a). On the other hand, if there are two singularities (or none of them), θY =  0 and Y takes a 
retracted path, see Fig. 3(b). Now we consider the connection between θY and interface state existence. If we con-
sider a specific band with θY sandwich between two gaps. Tuc,11 of these two gaps should have different sign because 
one of them is lying between band centers and the other is lying between band edges. And the zeros of Tuc,12 or Tuc,21 
at the singularity imply sign flipping in these quantities. We can conclude that if θY =  ± π (θY =  0), Tuc,12 and Tuc,21 of 
these gaps will have the different (same) sign, but the wave admittance will have the same (different) sign; hence, the 
interface states of 1DHMM in these gaps form with the same (different) material type. We emphasize that the 
“interface-bulk correspondence” in terms of wave admittance relies on the inversion symmetry only, i.e., it is not 
only limited to binary 1DHMM but also true for any 1DHMM with inversion symmetry.

Figure 4 shows the plasmonic band structure of a 1DHMM with a unit cell composed of four layers. In order 
to preserve, we choose the the unit cells as shown on the right hand side of the band structures. One can verify 
the “interface-bulk correspondence” by counting the number of singularities (highlighted by the red lines) of a 
specific band. Notice that these two unit cells generate the same bulk properties but different interface proper-
ties of 1DHMM. Semi-infinite HMM ended with these unit cells demand different types of materials for inter-
face state formation in two gaps. A similar phenomenon occurs in the case of a binary 1DHMM as shown in 
Fig. 2 (although these gaps may not be interesting to researchers in practical application). Consequently, the wave 
admittance does play a significant role in connecting the interface and bulk properties.

Figure 3. Complex wave admittance on the Riemann sphere. Stereographic projection of the complex wave 
admittance (red dot) on the Riemann sphere for q going a round trip on the Brillouin zone (for example, from 
− π/a to π/a). (a) If the number of singularities in the eigenvector of the unit cell transfer matrix is one, the wave 
admittance goes from − i∞  to i∞ ; when projected on the Riemann sphere, the path corresponds to a closed 
loop. (b) If the number of singularities is 0 or 2, the wave admittance projected on the Riemann sphere follow a 
retracted path.
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Discussion
We consider the detail of the binary 1DHMM based on the band crossing condition Eq. 5, i.e. βmam =  βdad. The 
plasmonic band structure of 1DHMM in fact results from the coupling of the surface plasmon on each interface 
between the dielectric and the metal. Therefore, we can regard the binary 1DHMM as the nearest neighbor tight 
binding model because of the exponentially decaying nature of the surface plasmons. The coupling constant can 
be characterized by the dimensionless quantity βiai, i =  m or d, where βi is the field decay rate in material i. In this 
regard the binary 1DHMM shows a close analogy to the Su-Schrieffer-Heeger (SSH) model of polyacetylene33. 
The SSH model describes the behavior of a spinless Fermion in a conjugated polymer with staggered hopping 
amplitude t1 and t2. Near t1 =  t2, the occurrence of topological phase transition accompanies the closing and 
reopening of the energy gap. Similar to the SSH model, the closing and reopening of plasmonic band gap in 
binary 1DHMM arises from the changing of θY near βmam =  βdad. By altering the transverse momentum kx, we 
are substantially varying the coupling strength between surface plasmons on neighbor interfaces, revealing phase 
transition and interface state formation with different types of material.

We further analyze the interface state around the band crossing point by the transverse spin angular momen-
tum. Transverse optical spin angular momentum (SAM) have been recently discovered in the evanescent wave34, 
two interference waves35 and the surface waves36. Particularly, the evanescent wave and surface waves exhibit uni-
versal transverse spin-momentum locking feature37 which leads to interface states of photonic topological insula-
tor38. On the other hand, the electromagnetic waves propagating in the 1DHMM are essentially coupled plasmon 
on each interface between metal and dielectric layer. We show that the interface states of 1DHMM exhibit strong 
spin-momentum locking and the transverse spin flipping during the phase transition which demanding differ-
ent material for interface state formation. Applying Noether theorem to the electromagnetic field Langrangian 
respect to the spatial translational symmetry and rotational symmetry, one can obtain the total optical momen-
tum and angular momentum density of canonical form, respectively36,39. Rewrite the optical momentum and 
angular momentum density into dual symmetric form according to the discrete dual symmetry, then the optical 
spin angular momentum density can be identified as the difference between the total angular momentum density 
and the orbital part. In the monochromatic limit, the spin angular momentum density reads39

ω
= × + ×⁎ ⁎s D E B H1

4
Im[ ] (8)

Figure 4. Band structure of the 1DHMM comprised of four layers in a unit cell. The unit cells are chosen 
as shown to preserve the inversion symmetry. The number on each layer denotes its thickness. Blue lines 
show the plasmonic band of 1DHMM. The red lines highlight the singularity of the eigenvector. Red and blue 
colors covering on the gaps denotes the required material for interface state formation as dielectric and metal, 
respectively. These two unit cells shown in (a,c) (also (b,d)) corresponding to the same 1DHMM but two gaps 
require different type of material for interface state formation.
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For the TM polarization, only the electric part contributes to the spin angular momentum. The eigenvectors 
of the transfer matrix allow us to calculate the transverse SAM density explicitly. We follow the procedure in the 
preceding section to calculate the dispersion relation and eigenvectors of the interface state forming with dielec-
tric (and metal) before (and after) the band crossing respectively. Figure 5 shows the transverse SAM density of 
the interface state in the heterostructure along the dispersion relation. We can compare the SAM density of inter-
face state on the HMM with the SAM density of SPP as shown in Fig. S7 in the Supplementary Information. 
Consider the interface state and SPP propagating in the + x direction, for the case of Fig. 5(c) kx <  kxXC, the trans-
verse SAM is locked to the + y direction, similar to the case of Fig. S7(b) and (d) in the Supplementary Information 
where the metal locates at the right hand side. On the other hand, for the case of Fig. 5(b) >kx x

XC, the transverse 
SAM is locked to the + y direction, similar to the case of Fig. S7(a) and (c) in the Supplementary Information. One 
can clearly see that the SAM flips its direction when the interface state passes the band crossing point. The trans-
verse SAM flipping in the HMM indicates the phase transition like behaviour and requirement of different mate-
rial for interface state formation simultaneously. The spin-momentum locking feature also provides the potential 
opportunity to demonstrate unidirectional interface state excitation.

The robustness of the interface state suffers from any disorder which breaks the inversion symmetry or uni-
formity. Disorders locally alternate the interface state formation condition and result in scattering of the interface 
state. Common disorders in HMM are roughness and non-uniformity, which can be regarded as additional scat-
tering loss and do not eliminate the existence of the interface state but increase the spectral linewidth when the 
interface state is excited.

Conclusion
We investigated the interface state of 1DHMM, and demonstrated that near the band crossing, the interface 
changes significantly from metallic-like to dielectric-like property. We also demonstrated the “interface-bulk 
correspondence” directly in terms of wave admittance and that such a result is valid for any type of 1DHMM with 
inversion symmetry. In addition, we analytically showed the band crossing condition for binary 1DHMM and its 
close analogy to the topological phase transition in the SSH model. We also analysis the transverse spin angular 
momentum of the interface states and show that the transverse SAM flips around the band crossing point. With 
these findings aforementioned, one can close and reopen the plasmonic band gap of 1DHMM by tuning the 
transverse momentum and manifest the phase transition-like property in a single 1DHMM without changing the 
material or structural properties.

Methods
The transfer matrix T(Δ z) is defined by transforming the transverse EM field by a distance Δ z
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and detT =  1. One can choose the center of the unit cell coinciding with the inversion center, which leads to two 
t y p e s  o f  u n i t  c e l l s  w i t h  u n i t  c e l l  t r a n s f e r  m at r i c e s  =T T a T a T a( /2) ( ) ( /2)A

m m d d m muc  a n d 
=T T a T a T a( /2) ( ) ( /2)B

d d m m d duc . Due to the periodic nature of the 1DHMM, the propagating EM fields should 
satisfy the Bloch solution.

Figure 5. Optical spin angular momentum of the interface state. We attach a dielectric εd =  4 (and metallic 
ε ω ω= −1 /m p

2 2) material to the 1DHMM with εd =  4, ε ω ω= −1 /m p
2 2, ad =  0.6 and am =  0.4 to form interface 

state before (and after) the band crossing. We calculate the transverse spin angular momentum of the interface 
state along the dispersion relation. The transverse SAM flips when the interface passes the band crossing point 
at ω/ωp =  0.387.
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