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Unravelling the metabolic impact of 
SBS-associated microbial dysbiosis: 
Insights from the piglet short bowel 
syndrome model
Prue M. Pereira-Fantini1, Sean G. Byars2,3, James Pitt4,5, Susan Lapthorne1, Fiona Fouhy6, 
Paul D. Cotter6,7 & Julie E. Bines1,5,8

Liver disease is a major source of morbidity and mortality in children with short bowel syndrome (SBS). 
SBS-associated microbial dysbiosis has recently been implicated in the development of SBS-associated 
liver disease (SBS-ALD), however the pathological implications of this association have not been 
explored. In this study high-throughput sequencing of colonic content from the well-validated piglet 
SBS-ALD model was examined to determine alterations in microbial communities, and concurrent 
metabolic alterations identified in urine samples via targeted mass spectrometry approaches (GC-MS, 
LC-MS, FIA-MS) further uncovered impacts of microbial disturbance on metabolic outcomes in SBS-
ALD. Multi-variate analyses were performed to elucidate contributing SBS-ALD microbe and metabolite 
panels and to identify microbe-metabolite interactions. A unique SBS-ALD microbe panel was clearest 
at the genus level, with discriminating bacteria predominantly from the Firmicutes and Bacteroidetes 
phyla. The SBS-ALD metabolome included important alterations in the microbial metabolism of amino 
acids and the mitochondrial metabolism of branched chain amino acids. Correlation analysis defined 
microbe-metabolite clustering patterns unique to SBS-ALD and identified a metabolite panel that 
correlates with dysbiosis of the gut microbiome in SBS.

Short bowel syndrome (SBS) occurs as a consequence of massive small bowel resection and is clinically character-
ised by diarrhoea, malnutrition, metabolic derangements, prolonged hospitalisation and a severely compromised 
quality of life1. Liver disease is a major source of morbidity and mortality in children with SBS. Short bowel syn-
drome associated liver disease (SBS-ALD) occurs in up to 60% of children with SBS with 16.6% progressing to 
end stage liver disease2,3. The mechanisms underlying the development of SBS-ALD are poorly understood, how-
ever a growing body of evidence suggests SBS-associated alterations in the gut microbiome are associated with 
poor clinical outcomes, including parenteral nutrition dependence, bacterial translocation and bacteraemia and 
development of liver disease4–6. Here, we utilised a piglet SBS-ALD model to greatly improve our understanding 
of important bacterial changes at multiple classification levels (phylum, family, genus) due to SBS, and for the first 
time delineate parallel changes in metabolite profiles due to SBS-associated dysbiosis.

The gut microbiome provides a diverse range of biochemical and metabolic activities to complement the host’s 
physiology including the absorption, digestion, metabolism, and excretion of dietary nutrients7,8. Systems biology 
approaches, such as high-throughput sequencing and metabolomics, are increasingly being employed to unravel 
the highly complex microbe-metabolic interactions that underlie specific disease processes. High-throughput 
sequencing provides a culture-independent means of identifying and characterising microbial populations 
whilst metabolomics allows the functional status of the microbiome to be defined in biological fluids and tissues, 
such as urine, blood and faeces9. Using these technologies, specific microbial-metabolite fingerprints have been 
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assigned to various disease states including autism10, infectious disease11,12, irritable bowel syndrome and Crohn’s  
disease13,14, thereby uncovering host-microbiome interactions linked to disease processes and improving diag-
nostic precision.

The piglet model of SBS-ALD exhibits morphological, microbial, metabolic and clinical features that are anal-
ogous to SBS-ALD in humans. In this model there is a decrease in colonic microbial diversity that mirrors that 
observed in children with SBS5,6 and a shift in the bile acid pool to a primary bile acid dominant composition15. 
These studies suggested a significant metabolic impact of SBS-associated microbial dysbiosis, but lacked the 
fine-scale resolution to identify key bacterial drivers of metabolic alterations in SBS-ALD, which may contrib-
ute to the development of SBS-ALD. Therefore, the aim of the current study was to use a broad, targeted mass 
spectrometry-based approach to investigate the impact of microbial disturbances on metabolic outcomes using 
urine samples obtained from SBS-ALD animals.

Results
The piglet model mirrors key clinical and pathological characteristics of SBS-ALD. No adverse 
incidents resulted from either surgical procedures or the post care management of non-operation control (NOC; 
N =  6), sham operation control (SHAM; N =  5) or short bowel syndrome-associated liver disease (SBS-ALD; 
N =  6) animals. Consequently all animals were included in the subsequent study. The piglet SBS-ALD model 
mirrored many of the clinical and pathological features of SBS-ALD including reduced weight gain, persistent 
diarrhoea and steatorrhoea, and a 2.5-fold increase in hepatic Sirius red staining, indicative of fibrosis together 
with a 9-fold increase in hepatic fat droplet accumulation when compared against either control group (Fig. 1).

Multi-variate analyses show clear differentiation between the SBS-ALD associated colonic 
microbial profile and that of the control groups. In our initial high-throughput studies of the colonic 
microbiota we observed reduced microbial diversity and described changes in the relative abundance of bacteria 
at phylum, family and genus levels16. To better reflect alterations in metabolic levels, microbial alterations in the 
current study are reported as absolute abundance. There was no difference in the total 16 S rRNA gene copies (rep-
resentative of total bacteria numbers) between the study groups (Supplementary Table 1). Extending our previous 
studies we performed extensive multi-variate analysis at the phylum, family and genus levels to determine if the 
SBS-ALD group could be distinguished from the control groups on the basis of microbial signature. PLS-DA anal-
yses also demonstrated clear separation between SBS-ALD and both control groups across all classification levels 
considered (Fig. 2A–C), however this was less clear for the other methods, with PCA only showing clear sepa-
ration at family and genus levels (Fig. 2B–C), and HCA only at the genus level (Fig. 2C). This reflects improved 
discrimination at the lowest classification level. Consequently, all further analyses were focussed at the genus 
level with individual animal data at each level provided in Supplementary Table 1 for completeness. Validation 
tests with the PLS-DA genus model showed a high goodness of fit (R2X(cum) =  0.633) and high predictability 
(Q2(cum) =  0.861, P <  0.05) and was considered as significantly valid since the corresponding Q2-intercept value 
was negative and the cross-validation (CV)-ANOVA P-value was lower than 0.05 (P-value =  1.101e-08). Further, 
CV analyses with a random forest classifier (3-fold CV repeated 3 times, mtry parameter optimized to maximize 
the area under the receiver characteristic curve AUCROC) that split the data into 2/3 training and 1/3 test parts 
showed that prediction performance of the genus model was excellent with SBS-ALD and NOC samples being 
100% correctly predicted (i.e. ROC, sensitivity and specificity were all 1.0). The reason for this exceptionally high 
predictive ability was due to the exceptional separation of SBS-ALD from NOC at the genus level (Fig. 2C).

To help define which bacteria contributed to the separation in microbe profile between SBS-ALD and control 
animals, Variables Importance on PLS projections (VIP) estimates were employed. VIP is a commonly used 
variable selection procedure17–19 based on the Canonical Powered PLS regression. and is popular among variable 
selection statistics that aim to tackle the ‘large p variables-small n sample’ problem20,21 given its estimated stability 
and that it often outperforms other variable selection methods22. VIP, first published by Wold and others in 199322 
is calculated as a weighted sum of squares of the PLS loading weights (w) taking into account the explained vari-
ance of each PLS dimension. Given that the average of squared VIP scores is equal to 1, values greater than 1 are 
used as an arbitrary discriminatory cutoff point for variable/predictor selection and ranking18,23,24.

The highest ranked (according to VIP values) and therefore most important discriminatory bacteria that 
contributed to the large SBS-ALD versus control groups separation seen on component 1 (Fig. 2C and Table 1) 
included Proteobacteria (Genus Sutterela, 7.2-fold lower in SBS-ALD vs NOC, VIP =  2.02, Table 1), Firmicutes 
(Acidaminococcus, 15.3-fold higher in SBS-ALD, VIP =  1.67), Bacteriodetes (Parabacteroides, 9.1-fold lower in 
SBS-ALD, VIP =  1.51) then Fusobacteria (Fusobacterium, 3-fold higher in SBS-ALD, VIP =  1.44). Out of the 
30 discriminatory microbes with VIP >  1 for component 1, these were predominated by Firmicutes (N =  14), 
Bacteriodetes (N =  5) and Proteobacteria (N =  5) (Table 1). This suggests that microbial changes in the gut asso-
ciated with SBS-ALD are largely a result of shifts to many microbes within in a few main phylum, with specific 
microbes (within those and other phylum) playing an especially large role.

There was also separation apparent between the sham surgery group and SBS-ALD and NOC groups seen 
on component 2 (Fig. 2C). This may reflect changes in bacterial composition simply as a result of the surgical 
procedure itself. This suggests that inclusion of a surgical control in such studies is important to test and account 
for these effects.

The unique SBS-ALD associated urine metabolome is dominated by alterations in the micro-
bial metabolism of amino acids and the mitochondrial metabolism of branched chain amino 
acids. Microbes are a major source of metabolite production8. Therefore we next examined if the microbial dys-
biosis observed in SBS-ALD animals was similarly mirrored by altered metabolite production. To ensure a broad 
detection of urinary metabolites, metabolites were detected across three platforms; gas chromatography-mass 
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spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS) and flow injection analysis mass 
spectrometry (FIA-MS). A total of 105 metabolites from 25 classes were targeted (Supplementary Table 2). Prior 
to application of a Bonferroni multiple-testing threshold, 16/49 metabolites measured by GC-MS, 4/10 metabo-
lites measured by LC-MS and 18/83 metabolites measured by FIA-MS were significantly increased (i.e. P <  0.05) 
in SBS-ALD animals when compared with both control groups. Removing duplications between the platforms, 
SBS-ALD was associated with significant increases in 30 of the 105 metabolites detected and included increases 
in metabolites from the following classes; benzene and substituted derivatives, fatty acyls, carboxylic acids and 
derivatives, diazenes, indoles and derivatives, carbohydrates and carbohydrate conjugates, and phenylpropanoic 
acids. This shows that there are substantial modifications to urinary metabolites in SBS-ALD animals.

As indicated by multi-variate analyses, the metabolite profile of SBS-ALD animals consistently separated from 
both control groups for both PCA and PLS-DA across all three platforms (Fig. 3A–C), however HCA analyses 
only showed clear separation for FIA-MS. Enhanced ability for metabolites from FIA-MS to discriminate between 
treatments may been due to higher final number of metabolites available for FIA-MS (N =  83) compared to 
GC-MS (N =  49) and LC-MS (N =  10). We therefore focused our remaining multi-variate and correlation analysis 
on the FIA-MS metabolite profile. The FIA-MS PLS-DA model showed a high goodness of fit (R2X(cum) =  0.640) 
and high predictability (Q2(cum) =  0.938, P <  0.05) and was considered as significantly valid since the corre-
sponding Q2-intercept value was negative and the CV-ANOVA p-value is lower than 0.05 (p-value =  3.263e-12). 

Figure 1. The clinical and pathological features of the piglet SBS-ALD model. (A) At six weeks post-surgery 
animals with short bowel syndrome-associated liver disease (SBS-ALD) exhibited decreased weight gain and 
increased stool consistency and stool fat scores indicative of persistent diarrhoea and steatorrhoea, when 
compared with either non-operation (NOC) or sham-operation (SHAM) control animals. Histological evidence 
of liver disease development in SBS-ALD animals included (B) increased Sirius red staining identifying 
increased fibrosis and (C) increased Oil Red O staining identifying hepatic fat droplet accumulation. Values are 
expressed as mean ±  standard error of mean; N =  5–6/group. *P <  0.05, **P <  0.01, ***P <  0.001.
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CV analyses with a random forest classification also showed that prediction performance was excellent with 100% 
of test samples being correctly predicted (i.e. ROC, sensitivity and specificity all 1.0), which was again due to the 
very clear separation of these groups with the FIA-MS data (Fig. 3C).

We found that 45% (38/83) of FIA-MS metabolites were important for discriminating between SBS-ALD 
and control group separation on component 1 for PLS-DA (Supplementary Table 3). 7% (6/83) metabolites 
remained significantly differentially expressed between SBS-ALD and either the NOC or Sham-control group 
following application of a Bonferroni-based multiple testing threshold. Of these 6 metabolites, only indoxyl sul-
phate remained both differentially expressed against both control groups and with VIP >  1. Concurring with 
our observation of SBS-ALD associated microbial dysbiosis, as demonstrated in Fig. 4, 35% of the differentially 
expressed metabolites were either directly associated with the bacterial metabolism of protein (tyrosine and phe-
nylacetylglycine) or were the hepatic generated downstream metabolites of the same pathway (phenol sulphate, 
4-cresol sulphate, indoxyl sulphate, glycine, hippuric acid).

As detailed in Fig. 5, the remaining metabolites, excluding octanoylglucuronide and FIGLU, were associated 
with the mitochondrial metabolism of branched chain amino acids.

Figure 2. Multi-variate analysis was performed on high-throughput sequencing results obtained at the phylum 
(A), family (B), and genus (C) level using colonic content from non-operation controls (NOC), sham-operation 
controls (sham) or short bowel syndrome (SBS-ALD) animals.
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Phylum Family Genus

Bacteria abundance (OTUs) VIP

NOC SHAM SBS-ALD Comp 1 Comp 2

Actinobacteria
Coriobacteriaceae Members of the coriobacteriaceae family 45.7 ±  13.70 16.4 ±  6.0 13.2 ±  5.6 1.15 1.04

Bifidobacteriaceae Bifidobacterium 5.30 ±  2.90 8.80 ±  7.61 5.67 ±  5.67 0.01 0.27

Bacteroidetes

Prophyromonadaceae

Parabacteroides 469.8 ±  147.9 264.4 ±  85.6 22.0 ±  4.99* 1.51 1.10

Alistipes 64.7 ± 20.1 61.0 ± 16.3 7.33 ± 2.53*^ 1.41 1.10

Butyricimonas 108.8 ±  29.3 33.0 ±  8.6# 18.8 ±  7.1* 1.43 1.25

Odoribacter 172.2 ±  66.1 37.0 ±  27.7 1.67 ±  1.67* 1.32 1.11

Paludibacter 0.00 ±  0.00 5.40 ±  4.07 0.00 ±  0.00 0.14 1.03

Bacteroidaceae Bacteroides 533.7 ±  122.8 293.2 ±  48.0 160.5 ±  54.0* 1.44 1.12

Prevotellaceae Prevotella 95.3 ±  54.4 543.2 ±  173.3# 362.7 ±  65.6 0.75 1.27

Defferibacteres Deferribacteraceae Mucispirillium 1.00 ±  1.00 2.60 ±  1.60 0.00 ±  0.00 0.52 0.87

Firmicutes

Erysipelotrichales

Turicibacter 20.8 ±  5.3 5.00 ±  3.87# 0.00 ±  0.00** 1.58 1.31

Ersipelotrichales i.s. 825.8 ±  616.7 246.4 ±  110.0 8.67 ±  4.88 0.85 0.68

Solobacterium 20.0 ±  13.8 15.4 ±  4.4 1.17 ±  1.17 0.91 0.66

Catenibacterium 14.3 ±  6.6 61.4 ±  29.0 21.2 ±  5.0 0.18 1.03

Acidamicocccaceae
Acidaminococcus 75.5 ± 48.9 339.6 ± 248.4 1152 ± 257**^ 1.67 1.23

Phascolarctobacterium 105.5 ±  40.6 442.6 ±  147.9# 190.7 ±  42.9 0.19 1.27

Veillonellaceae

Mitsuokella 0.83 ± 0.83 41.8 ± 41.8 744.2 ± 264.4*^ 1.54 1.20

Allisonella 0.00 ±  0.00 1.00 ±  1.00 2.50 ±  1.78 0.90 0.65

Anaerovibrio 10.5 ±  10.5 89.8 ±  89.8 14.3 ±  2.45 0.07 0.69

Megasphaera 148.0 ±  69.4 666.2 ±  290.9 727.8 ±  177.5 1.09 0.98

Eubacteriaceae Eubacterium (Eubacteriaceae) 1.50 ± 1.50 1.20 ± 1.20 44.67 ± 15.67*^ 1.52 1.21

Peptococcaceae Peptococcus 323.2 ±  105.4 161.0 ±  58.7 1.33 ±  1.33* 1.52 1.11

Unknown

Mogibacterium 21.2 ±  6.5 17.8 ±  5.3 5.83 ±  1.38 1.23 0.91

Blautia 22.5 ±  10.1 125.2 ±  54.4# 14.3 ±  6.66^ 0.29 1.28

Catabacter 4.33 ±  2.01 1.60 ±  1.60 0.00 ±  0.00 1.12 0.85

Peptostreptococcaceae i.s. 35.5 ±  11.6 67.0 ±  32.7 0.83 ±  0.83 0.86 1.10

Ruminococcaceae

Anaerotruncus 117.8 ± 28.3 127.2 ± 35.5 11.0 ± 5.00*^ 1.47 1.23

Hydrogenoanaerobacterium 4.50 ±  2.03 0.00 ±  0.00 0.00 ±  0.00 1.17 1.14

Ruminococcaceae i.s. 191.0 ±  47.5 185.0 ±  23.7 104.2 ±  19.4 1.06 0.83

Subdoligranulum 158.2 ±  85.0 208.8 ±  104.1 1.67 ±  1.05 0.92 0.88

Oscillospira 2.50 ±  1.59 15.8 ±  13.9 0.00 ±  0.00 0.27 0.85

Faecalibacterium 0.83 ±  0.83 8.80 ±  5.96 0.00 ±  0.00 0.26 1.03

Lachnospiraceae

Roseburia 9.67 ±  9.67 0.00 ±  0.00 50.2 ±  23.7 1.07 0.96

Lachnospiraceae i.s. 168.2 ±  56.4 90.4 ±  23.8 262.2 ±  141.3 0.50 0.61

Oribacterium 20.8 ±  15.7 33.0 ±  16.0 35.5 ±  5.58 0.47 0.40

Clostridiaceae
Sarcina 0.00 ±  0.00 0.00 ±  0.00 2.33 ±  1.50 1.06 0.84

Clostridium (Clostridaceae) 42.2 ±  12.9 116.8 ±  62.6 1.17 ±  1.17* 0.63 1.12

Lactobacillaceae Lactobacillus 142.2 ±  40.1 11.4 ±  7.8# 45.2 ±  10.0* 1.01 1.32

Streptococcaceae Streptococcus 1.00 ±  1.00 6.00 ±  6.00 0.00 ±  0.00 0.24 0.74

Fusobacteria Fusobacteriaceae Fusobacterium 352.0 ± 180.4 194.8 ± 119.0 1075 ± 188*^^ 1.44 1.28

Lentisphaerae Victovallaceae Victivallis 13.5 ±  5.5 10.8 ±  8.9 17.0 ±  6.9 0.26 0.29

Proteobac teria

Sutterellaceae Sutterella 116.8 ± 11.1 43.3 ± 5.0### 16.3 ± 2.0***^ 2.02 1.64

Rhodospirillaceae Thalassospira 70.3 ±  20.2 8.80 ±  4.33## 0.00 ±  0.00** 1.53 1.37

Succinivibrionaceae Anaerobiospirillium 3.67 ±  2.79 10.0 ±  8.6 36.8 ±  13.7 1.31 0.98

Desulfovibrionaceae
Bilophila 20.0 ±  5.3 17.2 ±  2.3 40.2 ±  10.9 1.09 0.98

Desulfovibrio 160.2 ±  19.2 243.4 ±  48.5 79.3 ±  8.6^^ 1.07 1.42

Campylobacteriaceae Campylobacter 2.83 ±  2.83 2.80 ±  2.80 16.33 ±  10.53 0.86 0.69

Helicobacteriaceae Pasteurellales 6.33 ±  6.33 0.00 ±  0.00 90.2 ±  89.0 0.70 0.58

Enterobacteriaceae Members of the enterobacteriaceae family 309.8 ±  90.4 62.2 ±  23.7 125.2 ±  65.4 0.86 1.12

Unknown Helicobacter 12.0 ±  4.3 9.60 ±  8.41 7.17 ±  4.34 0.38 0.28

Spirochaetes Spirochaetaceae Treponema 6.83 ±  6.83 37.2 ±  19.2 0.00 ±  0.00 0.41 1.15

Synergistetes Synergistaceae
Dethiosulfovibrio 171.0 ±  64.3 44.4 ±  19.1 133.3 ±  64.2 0.16 0.81

Cloacibacillus 39.0 ±  13.5 2.20 ±  1.36 23.5 ±  12.8 0.38 1.04

Uncultured bacterium AM277966 15.3 ±  6.0 0.00 ±  0.00# 0.00 ±  0.00* 1.27 1.24

AF371579 3.33 ±  1.59 1.00 ±  1.00 0.00 ±  0.00 1.13 0.89

RFP12 6.67 ±  2.22 8.40 ±  4.57 0.00 ±  0.00 1.05 0.96

Continued
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Correlations between microbiota and metabolome in SBS-ALD. Overall correlations of > 0.5 or 
< − 0.5 (r value) were observed between 55 metabolites and 30 microbes (Fig. 6). Amongst the metabolites, sig-
nificant correlations (based on permuted p-values) were dominated by members of the carboxylic acids and 
derivatives and fatty acyls classes. Within the microbe panel, significant correlations were most commonly found 
within the Firmicutes, Proteobacteria and Bacteroidetes phyla, which were also the most important microbes for 
discriminating between SBS-ALD and controls in the analyses above. To delineate diagnostically relevant results 
we considered those microbes or metabolites which were differentially expressed in SBS-ALD animals against 
both control groups and which exhibited significant correlation, resulting in a 16 member metabolite panel and 7 
member microbe panel. Amongst the correlations of this panel we observed a distinct clustering of positive and 
negative correlations such that those bacterial panel members in whom differentially expression was decreased in 
SBS-ALD were always negatively correlated against the metabolite panel and conversely bacteria in whom abun-
dance was increased in SBS-ALD always exhibited a positive correlation with metabolites. These results suggest 
close association between microbial dysbiosis in SBS-ALD resulting in subsequent changes to metabolite profiles.

Discussion
The gut microbiota participates in multiple host metabolic pathways and coproduces a large array of metabo-
lites during nutrient metabolism25. Hence, alterations in microbial profile may have significant metabolic con-
sequences for the host. In infants with short bowel syndrome, the development of microbial composition is 
interrupted, resulting in reduced microbial diversity6. This has been linked to the development of SBS-associated 
liver disease (SBS-ALD)5. The juvenile piglet model of SBS-ALD exhibits a high level of pathological similarity 
with the human condition15, including a reduction in microbial diversity of the microbiome16. By employing a 
multivariate analysis approach to high-throughput sequencing data obtained from the piglet SBS-ALD model, we 
have shown that a unique SBS-ALD microbial profile is most identifiable at the genus level, and to a lesser extent, 
phylum and family levels. Variable importance projection (VIP) values derived from PLS-DA analysis indicated 
that 46% of bacteria identified at the genus level contributed to significant discrimination between SBS-ALD and 
control groups, dominated by contributing members of the Firmicutes, Bacteriodetes and Proteobacteria phyla. 
Interestingly, separation between sham surgery and non-operation controls was consistently observed on the sec-
ond component of PLS-DA analyses which supports our previous finding that minor abdominal surgery, includ-
ing simple intestinal transection and re-anastmosis, can influence the microbial community26 and highlights the 
value of including both a non-operation control group and an operation control group in complex studies that 
may be impacted by alterations in the microbiome.

High-throughput sequencing studies have facilitated the detection of SBS-associated microbial alterations, 
although the potential metabolic ramifications of these compositional changes are not known. Metabolomics has 
emerged as a powerful exploratory tool in the identification and quantification of metabolites in a living system or 
biological sample. Approaches can be non-targeted such as nuclear magnetic resonance (NMR) spectroscopy or 
targeted via mass spectroscopy (MS) with results typically combined with multivariate data analysis. In the cur-
rent study we employed a multi-platform, targeted, MS-based approach to analyse urine samples from SBS-ALD 
and control animals. A limitation of this approach when compared with an untargeted approach is the potential 
to introduce bias. However by employing three MS-based platforms (gas chromatography, liquid chromatogra-
phy and flow injection analysis) we were able to detect a large panel of metabolites (105 total) from a broad range 
of classes (sixteen in all). Furthermore, by using metabolite analytical platforms already in routine diagnostic 
use, we created an opportunity to fast-track the translation of our pre-clinical results into clinical application. 
Differentially expressed metabolites were detected with each of the MS-platforms, with multi-variate PCA and 

Phylum Family Genus

Bacteria abundance (OTUs) VIP

NOC SHAM SBS-ALD Comp 1 Comp 2

AB487690 1.83 ±  1.17 0.00 ±  0.00 0.00 ±  0.00 0.92 0.90

AF371920 5.83 ±  2.12 23.0 ±  16.4 45.0 ±  28.7 0.84 0.61

AF371921 88.7 ±  20.7 203.6 ±  113.5 1.17 ±  1.17 0.71 1.07

EU774397 2.83 ±  2.93 2.20 ±  1.36 9.00 ±  6.53 0.64 0.54

EU464199 1.33 ±  1.33 1.60 ±  1.60 0.00 ±  0.00 0.55 0.49

EU472125 1.33 ±  1.33 2.40 ±  2.40 0.00 ±  0.00 0.46 0.58

DQ777921 2.00 ±  2.00 36.0 ±  26.7 0.00 ±  0.00 0.25 1.18

Uncultured Ruminococcaceae 101.7 ±  62.8 53.8 ±  26.1 0.00 ±  0.00 1.00 0.73

Uncultured Planctomycetaceae 5.67 ±  3.48 31.8 ±  18.2 0.00 ±  0.00 0.39 1.14

Table 1.  Complete list of genus level microbial abundance (operational taxonomic units; OTUs) and 
PLS-DA derived variable importance in projection (VIP) estimates obtained from high throughput 
sequencing of colonic content samples from non-operation control (NOC), sham-operation control 
(SHAM) and short bowel syndrome (SBS-ALD) animals. Mean ± SEM. *p <  0.05 NOC versus SBS-ALD, 
**p <  0.01 NOC versus SBS-ALD, ***p <  0.001 NOC versus SBS-ALD. ^p <  0.05 SHAM versus SBS-ALD, 
^^p <  0.01 SHAM versus SBS-ALD, ^^^p <  0.001 SHAM versus SBS-ALD. #P <  0.05 NOC versus SHAM, 
##P <  0.05 NOC versus SHAM, ###P <  0.05 NOC versus SHAM where black text represents significant 
uncorrected P values. No P values were significant when adjusted for multiple testing (Bonferroni correction 
threshold, P <  0.007).
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PLS-DA analyses consistently differentiated SBS-ALD animals from both non-operation and sham-operation 
control groups on the first component of variation. HCA was only able to replicate this consistent separation 
with FIA-MS data, which is likely due to a much larger number of metabolites available for that platform and 
thus more variation that clustering approaches could use for discrimination. Further analysis therefore focussed 
on the 83 metabolites detected via FIA-MS. Variable importance in projection (VIP) estimates from PLS-DA 
analysis identified thirty-eight metabolites (or 45%) that contributed to the separation between SBS-ALD and 
control animals.

By combining the results from our multi-variate and analysis of variance statistical testing we were able to 
describe a SBS-ALD metabolite panel comprising of 16 metabolites that were increased in SBS-ALD when com-
pared to both control groups and could discriminate SBS-ALD samples from those of controls. The composition 
of our panel suggests that SBS-ALD associated changes were restricted to alterations in metabolites resultant from 
(1) the metabolism of protein by bacteria or (2) the mitochondrial metabolism of branched chain amino acids 
and fatty acids.

Amongst the bacterially modified metabolites, SBS-ALD was associated with increased excretion of the 
protein-bound uraemic toxins phenol sulphate, indoxyl sulphate, 4-cresol sulphate and hippuric acid whose 

Figure 3. Multivariate analysis of metabolites identified in urine from non-operation control (NOC), sham-
operation control (SHAM) or short bowel syndrome (SBS-ALD) via GC-MS (A), LC-MS (B) or FIA-MS (C).
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metabolism includes both an initial bacterial fermentation within the large intestine27, followed by further metab-
olism within the liver. In chronic liver disease patients, increased levels of these ureamic toxins are associated with 
liver disease prognosis in patients with cirrhosis28 and chronic active hepatitis29 suggesting that our observation 
of increased levels of the ureamic toxin metabolite panel may reflect liver disease progression in the SBS-ALD 
model.

A major observation of this study was that 13 of the differentially expressed metabolites identified were asso-
ciated with mitochondrial metabolism. This is particularly relevant in the context of SBS-ALD as hepatic mito-
chondrial dysfunction is the result of a wide range of liver pathologies including liver cirrhosis and fatty liver and 
is considered a useful marker of liver disease30,31. Mirroring our own results, increased plasma levels of free car-
nitine and butyryl carnitine (C4 carnitine) are reported in steatosis and non-alcoholic steatohepatitis (NASH)32. 
Increased acetyl carnitine levels are reported to differentiate steatosis from NASH33 and correlate with the clinical 
stage of hepatocellular carcinoma34. Phenylacetylglycine is a reported biomarker of abnormal phospholipid accu-
mulation (phopholipidosis)35,36 suggesting the current results may reflect the extensive hepatic fat accumulation 
observed in the piglet SBS-ALD model15.

The SBS-ALD metabolite panel contains both host-produced metabolites and microbe-produced metabo-
lites that may assist in the identification of metabolic impact of SBS-ALD associated microbial disturbance. This 
panel included metabolites from six classes and bacteria from the Firmicutes, Fusobacteria, Proteobacteria and 
Bacteroidetes phyla. Very clear correlation-based clustering patterns between these bacteria and the abundance 
of the metabolite panel were found, for example, Mitusokella, Fusobacterium, Acidaminococcus and Eubacterium 
were all relatively higher in the SBS-ALD group and significantly positively correlated with the metabolite panel, 
whilst conversely a decreased abundance of Suterella, Anaerotruncus and Alistipes negatively correlated with the 
metabolite panel. Although our studies were not aimed at determining causality, these large, significant correla-
tions suggest that the SBS-ALD associated microbial community is not only contributing to the development of 
the SBS-ALD metabolome but is also in turn being shaped by that same metabolome.

At present the diagnosis of SBS-ALD relies on clinical, endoscopic and histologic examination with diagnostic 
acuity occurring at a relative advanced stage of the disease. This study suggests that the metabolic profile in SBS 
is influenced by gut microbial dysbiosis and is associated with the development of SBS-ALD. We have identified 
a non-invasive specific SBS-ALD metabolite panel that can be measured in urine and correlates with the compo-
sition of the gut microbiome in SBS. Improved understanding of the specific characteristics of the changes in the 

Figure 4. Pathway schematic detailing urine metabolite changes in SBS-ALD animals occurring as a direct 
or down-stream result of microbial modification. Metabolite names in black were detected in urine samples 
via FIA-MS. Metabolite names shown in bold represent differentially expressed metabolites and their associated 
abundance plot (25th to 75th percentile, relative to creatinine) in NOC (blue), sham (red) and SBS-ALD 
(green) animals, pre-multiple testing correction. *P <  0.05 NOC vs. SBS-ALD, **P <  0.01 NOC vs. SBS-ALD, 
***P <  0.001 NOC vs. SBS-ALD, ^P <  0.05 sham vs. SBS-ALD, ^^P <  0.01 vs. SBS-ALD, ^^^P <  0.001 vs. SBS-
ALD; black symbols representative uncorrected P value testing, red symbols represent significant metabolites 
following Bonferroni testing. N =  5–6/group.
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gut microbiome and the metabolic impact of these changes may also provide specific metabolic and microbial 
therapeutic targets aimed at improving the clinical outcome of patients with SBS and help ameliorate the progres-
sion of SBS-ALD disease.

Methods
Animals and experimental design. This study was approved by the Animal Ethics Committee of the 
Murdoch Childrens Research Institute and performed in accordance with the guidelines of the National Health 
and Medical Research Committee (Australia). Weaned female 3-week-old piglets (Landrace/Large White cross; 
Aussie Pride Pork, Australia) were transported to The University of Melbourne Centre for Animal Biotechnology 
and acclimatised prior to surgery. Piglets were housed at a temperature of 22 °C with a 12 h light/dark cycle and 
fed a supplemented polymeric infant formula diet (Karicare De-Lact, Nutricia, Australia). The surgical proce-
dures and peri-operative and post-operative care used in this experiment have been described previously37–39. 
Briefly, 4-week-old experimental piglets underwent a 75% proximal small bowel resection (SBS-ALD group; 
N =  6/group). Control piglets included those who underwent transection surgery (SHAM control group; N =  5/
group), controlling for the effects of surgical procedures and an additional group did not undergo surgery 
(non-operation control group, NOC; N =  6/group). The 75% small bowel resection included the removal of the 
small bowel from 90 cm distal to the ligament of Treitz to 225 cm proximal to the ileocaecal valve. During the 
sham procedure, the intestine was transected and re-anastomosed at a site 225 cm proximal to the ileoceacal 
valve. Piglets received intramuscular amoxicillin (70 mg/kg; CSL Limited) 24 hours pre-surgery and on the day of 
surgery. Piglets received amoxicillin and oral rehydration salts (Sanofi-Aventis, Australia) for three days post-sur-
gery in line with current clinical practice. Water and the polymeric infant formula diet were re-introduced from 
the third day post-operation.

Sample collection. Animals were euthanised six weeks post-surgery. Colonic content and urine samples 
were obtained on the day of sacrifice and frozen at − 80 °C until required. Liver samples were collected from 
the right medial lobe and samples were placed in 4% paraformaldehyde (Australian Biostain Pty Ltd, Traralgon, 
Australia) or O.C.T. compound and snap frozen in liquid nitrogen.

Figure 5. Pathway schematic detailing the mitochondrial metabolism of branched chain amino acids 
and the associated SBS-ALD associated urine metabolite changes. Metabolite names in black were detected 
in urine samples via FIA-MS. Metabolite names shown in bold represent differentially expressed metabolites 
and their associated abundance plot (25th to 75th percentile, relative to creatinine) in NOC (blue), sham (red) 
and SBS-ALD (green) animals, pre-multiple testing correction. *P <  0.05 NOC vs. SBS-ALD, **P <  0.01 
NOC vs. SBS-ALD, ***P <  0.001 NOC vs. SBS-ALD, ^P <  0.05 sham vs. SBS-ALD, ^^P <  0.01 vs. SBS-ALD, 
^^^P <  0.001 vs. SBS-ALD; black symbols representative uncorrected P value testing, red symbols represent 
significant metabolites following Bonferroni testing. N =  5–6/group.
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Clinical assessment. Weight was recorded weekly. Stool consistency and presence of fat globules were 
assessed by the Royal Children’s Hospital laboratory service (Melbourne, Australia). In brief, stool was given a 
consistency score based on 0 =  formed, 1 =  semi-formed, 2 =  unformed and 3 =  fluid. The presence of fat globules 
within the stool was semi-quantitatively assessed and given a score between 0 and 3.

Hepatic histology. Histological examination was performed on trichrome stained 4 μ m formalin fixed liver 
sections. To measure fibrosis, Sirius Red staining was performed on 4 μ m formalin-fixed liver sections and the 
percentage of Sirius Red staining in each liver section quantified15. Oil Red O staining was performed on frozen 
O.C.T-embedded 10 μ m liver sections to visualize hepatic fat accumulation. Post staining, a minimum of 10 
individual hepatic lobules were photographed per pig (Leica Microsystems, Germany) and optical density meas-
urements were performed using the Image J software40.

Figure 6. Correlation analysis of bacteria at the genus level against MSMS-derived metabolite analysis. 
Red squares represent positive correlations and blue squares represent negative correlations (P <  0.05). 
Non-significant results are shown in grey. Surrounding coloured squares act as an overview summary of the 
significant P values for the correlation analysis, VIP values >  1 and differential microbe/metabolite expression 
(uncorrected P value; P <  0.05).
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High-throughput sequencing. High-throughput sequencing was performed on end-point colonic sam-
ples to identify and quantify alterations in gut microbial composition. The 16 S rRNA amplicons from the colonic 
content were generated using a previously described approach41. To minimise the impact of variable starting 
material amounts identical amounts of the colonic samples (250 mg) was used in the DNA extraction, followed by 
quantifying the DNA and using identical amounts of DNA in the PCR amplification. PCR duplicates were quan-
tified and equimolar concentrations pooled and cleaned using Agencourt AMPure kit (Beckman Coulter, USA). 
The V4 region of the 16 S rRNA was sequenced using a genome sequencer FLX platform (Roche Diagnostics Ltd., 
Switzerland). Raw sequencing reads were then quality trimmed using the RDP Pyrosequencing Pipeline applying 
the following criteria (i) exact matches to primer sequences and barcode tags, (ii) no ambiguous bases (Ns), and 
(iii) read-lengths no shorter than 150 base pairs. Trimmed FASTA sequences were then BLASTED42 against the 
SILVA (v199) database for 16 S reads43. Phylum, family and genus counts were extracted from MEGAN44 using 
a bit score cut-off of 86. The Qiime suite of tools45 was used to cluster data into operational taxonomical units 
(OTUs).

Metabolomic quantification. Three different analytical platforms were used to perform targeted metabo-
lomics analyses of urine metabolites: gas-chromatography mass spectrometry (GC-MS), liquid-chromatography 
mass spectrometry (LC-MS) and flow injection analysis tandem mass spectrometry (FIA-MS). Targeted metab-
olites were those used for diagnostic investigations of inborn errors of metabolism or metabolites previously 
associated with abnormal intestinal bacterial metabolism. The metabolites were identified by mass spectral and 
retention time matching against standards. FIA-MS analysis is unable to distinguish between some isomers and 
this is indicated with generic nomenclature for some metabolites e.g. C4 carnitine represents both butyryl carni-
tine and isobutyryl carnitine. Samples for GC-MS analysis were prepared by treatment with urease and converted 
to trimethylsilyl derivatives using N,O-bis(trimethylsilyl)trifluoroacetamide. An Agilent 5973 GC-MS system 
equipped with a 30 m HP-5MS column was used for the analysis. LC-MS analysis was performed on a Waters 
TQD system equipped with an Atlantis dC18, 2.1 ×  100 mm, 3 μ m column with an acetonitrile/0.1% acetic acid 
gradient. Electrospray ionisation was used with alternating positive and negative scans. FIA-MSMS was per-
formed on a Waters TQD system in multiple reaction monitoring mode in positive and negative electrospray 
ionisation modes as previously described46. Urine concentration effects were corrected by diluting urines to a 
fixed creatinine concentration of 1 mmol/L (LC-MS) or analysing a urine volume containing a fixed amount of 
creatinine (200 nmoles for GC-MS and 20 nmoles for FIA-MS). Urine creatinine concentration was measured 
using a kinetic Jaffe reaction. Samples were mixed with an internal standard mixture and metabolite levels were 
expressed as a ratio of the mass spectral response (peak area of the extracted ion chromatogram of the targeted 
metabolite) of the metabolite relative to an internal standard using the manufacturers’ data analysis software.

Bioinformatic and statistical analysis. Clinical assessment of the SBS-ALD model. Data are presented 
as mean values with their standard error (SEM). Within interval data sets (weight gain, Sirius red and Oil red I 
staining results) Shapiro-Wilk normality testing confirmed the normality of data distribution and was followed by 
further statistical analysis using one-way ANOVA, followed by Tukey’s post-hoc test (GraphPad Prism Software 
6.0). Mann-Whitney testing was used for ordinal data sets (stool consistency and stool fat).

Assessing bacteria and metabolites that differed between the control and experimental groups. To assess whether 
control (NOC, SHAM) and experimental (SBS-ALD) groups exhibited compositional and quantitative differ-
ences in bacteria density and metabolites, we firstly used unsupervised clustering approaches including principal 
component analysis (PCA) and hierarchical cluster analysis (HCA; Bray-Curtis method for dissimilarity index; 
McQuitty method for hierarchical clustering) in R version 3.1. To further investigate which bacteria and metabo-
lites contributed most to control and experimental group differences, we utilised partial least square discriminant 
analysis (PLS-DA) in the R packages ropls and MixOmics. PLS-DA models the influence of every x term (bacteria 
or metabolite variables) on the y variable (NOC, SHAM, SBS-ALD) and can be employed for the selection of 
potential biomarkers by calculating the corresponding Variables Importance on PLS projection (VIP) values. As 
detailed above, arbitrary VIP values of > = 1 can be used to define and rank which predictor variables contribute 
the most to component separation found between experimental groups. The largest VIP values indicate those 
variables with the greatest influence of x terms on the y variable. This was assessed independently for each bac-
terial level (phylum, family, genus) and metabolite system (GC-MS, LC-MS, FIA-MS). Data was scaled (mean 
zero-centered, unit variance) prior to statistical analysis.

Model Validation. Final PLS-DA (i.e. genus, FIA-MS) models were validated using internal cross-validation and 
model quality was described with the goodness-of-fit parameters R2X and R2Y that represent the total explained 
variation for the X matrix and the predictive ability parameter Q2. High quality predictive models are indicated 
when the value of these parameters are greater than or equal to 0.5. Permutation tests in the PLS-DA models were 
performed to test for model overfitting and CV-ANOVA (analysis of variance testing of cross-validated predic-
tive residuals) tests were performed to determine significant differences between groups in the PLS- DA models. 
Additionally, cross validation with a random forest classifier (R packages randomForest, pROC, caret and dplyr 
used) was used where the dataset with SBS-ALD and NOC samples (N =  12) was split into 2/3 training and 1/3 
test parts, while keeping the proportion with and without surgery equivalent in each. The model was trained using 
3-fold cross validation repeated 3 times and the mtry parameter was optimized to maximize the area under the 
receiver operator characteristic curve (AUCROC).

Determination of differential metabolite expression. To identify significant alterations in metabolite abundance 
normality testing was performed and upon confirmation of normal distribution of the data, parametric tests of 
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significance were performed (one-way ANOVA followed by Tukey’s post-hoc test). P values of < 0.05 were con-
sidered significant (GraphPad Prism Software 6.0).

Correlation between bacteria and metabolites. To test how bacterial density and metabolite levels co-vary 
between experimental and control, distance matrices using Manhattan distances were calculated for bacteria and 
metabolites separately and then Pearson correlation coefficients between both distance matrices were calculated. 
This was done for each mass spec system at each bacterial classification level, resulting in 3 ×  3 comparisons. 
Significance of correlations were calculated using a Mantel test with 1000 permutations.
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