SCIENTIFIC REPORTS

Received: 23 June 2016 Accepted: 20 January 2017 Published: 27 February 2017

OPEN Development of a pipeline for automated, high-throughput analysis of paraspeckle proteins reveals specific roles for importin lphaproteins

Andrew T. Major^{1,2}, Yoichi Miyamoto^{3,4}, Camden Y. Lo^{5,6}, David A. Jans^{2,4} & Kate L. Loveland^{1,2,4,6,7}

We developed a large-scale, unbiased analysis method to measure how functional variations in importin (IMP) $\alpha 2$, IMP $\alpha 4$ and IMP $\alpha 6$ each influence PSPC1 and SFPQ nuclear accumulation and their localization to paraspeckles. This addresses the hypothesis that individual IMP protein activities determine cargo nuclear access to influence cell fate outcomes. We previously demonstrated that modulating IMP $\alpha 2$ levels alters paraspeckle protein 1 (PSPC1) nuclear accumulation and affects its localization into a subnuclear domain that affects RNA metabolism and cell survival, the paraspeckle. An automated, high throughput, image analysis pipeline with customisable outputs was created using Imaris software coupled with Python and R scripts; this allowed non-subjective identification of nuclear foci, nuclei and cells. HeLa cells transfected to express exogenous full-length and transport-deficient IMPs were examined using SFPQ and PSPC1 as paraspeckle markers. Thousands of cells and >100,000 nuclear foci were analysed in samples with modulated IMPlpha functionality. This analysis scale enabled discrimination of significant differences between samples where paraspeckles inherently display broad biological variability. The relative abundance of paraspeckle cargo protein(s) and individual IMPs each influenced nuclear foci numbers and size. This method provides a generalizable high throughput analysis platform for investigating how regulated nuclear protein transport controls cellular activities.

DNA compartmentalization into the nucleus allows tight regulation of gene expression in eukaryotes. Transport between the nucleus and cytoplasm occurs solely through nuclear pore complexes (NPCs), which span the nuclear envelope. The NPC, constructed from about 30 different nucleoporin protein subunits, permits free bi-directional flow of ions and small macromolecules (<45 kDa) by passive diffusion, while larger protein cargos are transported by karyopherin family members, termed importins and exportins. For tight control of gene expression in the nucleus, the chromatin is arranged in specific chromosomal territories¹, and several discrete and distinct sub-nuclear domains form to serve distinct functions^{2,3}. Examples of such domains include the nuclear lamina⁴, the nucleolus⁵, Cajal bodies⁶, PML bodies⁷ and nuclear speckles^{8,9}. Many protein components of sub-nuclear domains have been identified through co-localization studies and whole genome screening for GFP-fusion proteins which form intra-nuclear foci¹⁰. While not separated by membranes, the constituents of these domains differ and can be dynamically associated through exchange of components. In this study, we focus on understanding how regulated access to the nucleus affects formation of paraspeckles¹¹.

¹Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia. ²The ARC Centre of Excellence in Biotechnology and Development, Australia. ³National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan. ⁴Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia. ⁵Monash Micro Imaging Facility, Monash University, Melbourne, Australia. ⁶Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, Australia. ⁷Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Melbourne, Australia. Correspondence and requests for materials should be addressed to K.L.L. (email: Kate.Loveland@monash.edu) or A.T.M. (email: Andrew.Major@monash.edu)

Paraspeckles are a distinct nuclear domain built around the long non-coding RNA, nuclear paraspeckle assembly transcript 1 (NEAT1), formerly known as <u>n</u>uclear <u>e</u>nriched <u>a</u>bundant <u>t</u>ranscript 1. The NEAT1 transcript acts as a scaffold for recruitment and assembly of other paraspeckle components¹²⁻¹⁶. Three core *Drosophila* behaviour, human splicing (DBHS) paraspeckle proteins were initially identified¹¹: paraspeckle protein 1 (PSPC1), splicing factor proline/glutamine rich (SFPQ, also named PSF and REP1) and the non-POU-domain-containing, octamer binding protein (NONO, also named NRB54 and P54NRB). The expanding number of proteins identified to localize to paraspeckles^{10,17} reflects data from a recent study mapping interactions between paraspeckle components¹⁸. Such evidence highlights the complex nature of this domain and may be used to understand how paraspeckles are assembled.

The cellular functions of paraspeckles are still being discerned. Thus far they have been shown to influence translation, through nuclear retention of A-to-I edited RNA transcripts¹⁹ and by the sequestration of proteins²⁰. The finding that NEAT1^{-/-} mouse embryonic fibroblasts are more sensitive to proteasome inhibitor-induced apoptosis than their wildtype counterparts²⁰ was interpreted as indicative of an influence of paraspeckles on cellular survival. This was supported by further evidence from various types of cancer, including breast²¹, colorec-tal^{22,23}, glioma²⁴, leukemia^{25,26}, liver²⁷, lung²⁸⁻³¹ and prostate³² that correlate NEAT1 levels with either patient prognosis or cell behaviour. NEAT1^{-/-} mice lack paraspeckles³³ but exhibit limited phenotypic defects restricted to mammary gland development³⁴ and corpus luteum formation, resulting in female subfertility³⁵. These contributions to normal and pathological cell activities highlight the value of learning how paraspeckle formation is governed.

Nucleocytoplasmic trafficking is of central importance to nuclear functions. Active nuclear import and export is facilitated by the karyopherin family proteins, comprised of importins and exportins which bind and transport proteins containing nuclear localization signals (NLSs) or nuclear export signals (NESs), respectively. Both importin α s (IMP α s) and importin β s (IMP β s) facilitate nuclear import. The mouse genome encodes six IMP α s and ~twenty karyopherin β family members, each with individual cargo-binding specificities^{36–39}. In this study, we use the mouse nomenclature, in which each IMP α is a product of its corresponding KPNA gene (e.g. IMP $\alpha 2$ encoded by KPNA2), as previously⁴⁰. IMP β s can form functional transport complexes in the cytoplasm by binding directly to an NLS-containing cargo protein, while IMP α s typically bind to both the cytoplasmic NLS-containing cargo and to IMP31, though an importin beta binding (IBB) domain. These complexes move through the NPC via transient interactions between IMPBs and the nucleoporins that line the NPC inner channel. Within the nucleus, high RAN-GTP levels effect cargo release by binding IMP β to cause complex dissociation. Conversely, exportins require RAN-GTP to bind and transport NES-containing nuclear-localized cargoes; the export complex dissociates in the cytoplasm following RAN-GTP hydrolysis into RAN-GDP. In addition, some instances of cargo binding to the C-terminal acidic region of IMP α , rather than to its NLS binding groove, can mediate cargo retention in the nucleus⁴¹⁻⁴³. Such retained cargoes are imported into the nucleus by different IMPs when there is a shift in the intracellular stoichiometry of IMPs^{41,42}. These findings, from analysis of differentiating embryonic stem cells, demonstrate that regulated nucleocytoplasmic transport is a developmental gatekeeper. Spatiotemporal expression of individual importins and exportins appears to be tightly regulated during development and differentiation of embryonic stem cells^{41,44,45}, muscle^{46,47} and germline cells^{40,43,44,48-51}, although the mechanistic basis for this is largely unknown. Thus, an emerging concept in importin biology is that regulated synthesis of nucleocytoplasmic machinery mediates cellular differentiation, with individual IMPs controlling nuclear access of proteins to determine each cell's transcriptional activity.

PSPC1 (a core DBHS paraspeckle protein) was identified as an IMP α 2-interacting cargo protein in the mouse testis at the time of germline sex determination⁴⁹. This binding relationship is highly likely to be of functional relevance for spermatocytes (meiotic germ cells) and spermatids (haploid germ cells) in the adult testis, as each contains abundant PSPC1⁵² but different amounts of each IMP α 2, IMP α 3 and IMP α 4⁴³. We hypothesized that changes in the stoichiometry of individual IMP α proteins are important for cellular differentiation, including during spermatogenesis, and set out to devise a strategy to address this. Our previous work employed HeLa cells, which have been widely used to study the functional outcomes of manipulating importin levels and functionality. By detecting endogenous PSPC1 using immunofluorescence, we observed that IMP α 2 levels directly relate to the number of nuclear foci⁴⁹. This analysis, performed using manual cell cropping from confocal z-series images, demonstrated that per cell paraspeckle numbers vary within an apparently homogenous culture, with typically between 5 and 20 foci present per nucleus⁵³. This variation in endogenous paraspeckle numbers limited our capacity to discern significantly different outcomes against the background of normal biological variation. The present study provides a significant advance in which we develop and apply an automated, high throughput image analysis pipeline to quantify paraspeckles in cells with altered IMP α protein levels and functionality. This pipeline was used to rigorously analyse large numbers of cells, allowing us to measure variability in nuclear foci numbers, nuclear foci parameters (size, intensity of staining, etc.) and nuclear accumulation (nuclear/cytoplasmic ratios) of two core paraspeckle markers (PSPC1 [endogenous and exogenous] and SFPQ [endogenous only]). These parameters were investigated in response to modulating IMP α 2, IMP α 4 and IMP α 6, corresponding to one representative from each of the three $IMP\alpha$ structural clades^{39,48,54}. The results of this analysis demonstrate how the regulation of individual IMP α s alters core paraspeckle protein delivery to paraspeckles, providing the first high-throughput functional analysis of differences in importin protein levels within a single cell population.

Results

A high-throughput semi-automated image analysis pipeline developed to identify cells, nuclei and foci. To investigate how different IMP α s could modulate PSPC1 delivery into the nucleus and into paraspeckles, expression levels and transporter functionality of individual IMP α within HeLa cells were modulated by two independent approaches. In one, transient transfection was used to introduce expression constructs encoding green fluorescent protein (GFP)-tagged isoforms of IMP α 2, IMP α 4 and IMP α 6, corresponding to

GFP-tagged IMPa constructs and their binding/transport functions

	Binds to NLS	Binds to $IMP\beta$	Nuclear Transport	Cargo in Nucleus
GFP-IMPα-FL	✓ (++)	✓ (+++)	+ve	increase
GFP-IMPα∆IBB	✓ (+++)	× (-)	-ve	decrease
GFP-IMPα-ED	× (+)	✓ (++)	neutral	neutral

Overview of Image Analysis Pipeline to Identify Cells, Nuclei and Foci



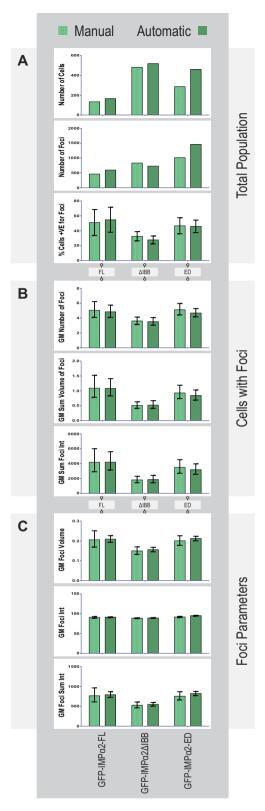
Figure 1. Overview of experimental and analytical approaches used to identify changes to subnuclear foci in response to modulating the cells nuclear transport capacity. Using either transient transfection with plasmids encoding GFP-tagged IMP $\alpha 2/\alpha 4/\alpha 6$ variants or siRNA knockdown of IMP $\alpha 2/\alpha 4$ the capacity of IMP α s to modulate delivery of PSPC1/SFPQ into the nucleus/paraspeckles was investigated. All images are Z-series captured via confocal laser scanning microscopy, scale bars represent $20 \,\mu m$. (A) GFP-tagged IMP α isoforms and their functional properties. Binding is indicated as true (\checkmark) or false (\times), with an indication of

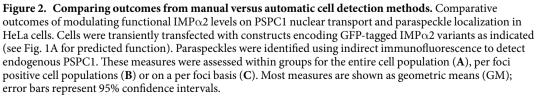
Α

binding strength (+/-). (**B**) Overview of image analysis pipeline. From this example merged z-series confocal image (**Bi**), the immunofluorescent signal for endogenous PSPC1 (**Bii**) was used to identify foci (**Bvii**), the nuclear marker DAPI (**Biii**) was used to identify the nuclei (**Bvi**) and the immunofluorescent signal for endogenous IMP α 2 (**Biv**) was used to identify the cell body (**Bv**). The other options for paraspeckle marker, nuclear stain and cell or transfection marker for the GFP-tagged IMP α experiments (GFP-Trans) or siRNA knock down experiments (siRNA KDs) are listed. The full 3D reconstruction of cells, their nuclei and foci (**Bviii**) is shown for this example image but it should be noted that each sample in an experiment has 49 + of these images. Data about these cells, their nuclei and foci were exported from Imaris in CSV file formats and reorganised ready for statistical analysis using custom python programming language scripts (**Bix**). Additional data manipulations were performed on a per experiment basis (as detailed for each) using custom R scripts (**Bx**), before final statistical analysis and outputs were generated using the R software environment for Statistical Computing (**Bxi**). The Python logo is a trademark of the Python Software Foundation (https://www.python.org; v2.7). The R logo (https://www.r-project.org/logo/) is licensed under CC BY-SA 4.0; the license terms can be found on the following link: (https://creativecommons.org/licenses/by-sa/4.0/).

either full length or truncated Δ IBB variants (summarized in Fig. 1A). Transient over-expression of a GFP-tagged full-length IMP α protein will increase nuclear accumulation of its cargoes. In contrast, IMP $\alpha\Delta$ IBB isoforms, which lack the importin beta binding (IBB) domain, exhibit a dominant negative effect on cargo accumulation because these still bind cargo proteins but cannot bind IMP β 1 to form a functional transport complex⁵⁵; the resulting competitive binding will diminish cargo availability for binding endogenous IMP α and thereby reduce cargo nuclear accumulation. For IMP α 2, an additional control construct containing two point mutations in the NLS binding groove (lysine replacement at aa192 and arginine at aa396) was used (GFP-IMP α 2-ED). These mutations significantly reduce cargo binding^{55,56}, but have little or no effect on endogenous IMP α 2 cargo nuclear transport; this isoform serves as a control for non-nuclear transport-related effects arising from GFP-IMP α 2 over-expression. The binding capacity and predicted nuclear transport outcomes from transfection with each of IMP α isoform construct are summarized in Fig. 1A. Other control samples included GFP alone, mock-transfected and not-transfected cells. The second approach used to modulate IMP α levels in HeLa cells was siRNA knockdown, targeting IMP α 2 and IMP α 4.

In all experiments, tiled confocal z-series images were collected for 3D visualisation and analysis, allowing the full volume of numerous (between 143 and 813) individual cells to be analysed in each sample (Pipeline outlined in Fig. 1B). Briefly, using Imaris software, cells, nuclei and PSPC1/SFPQ nuclear foci were identified. Results were exported from Imaris in CSV formats, processed and compiled into a compatible format using a series of custom Python scripts and then imported into the 'R environment for statistical computing' for analysis. This approach facilitated analysis of thousands of cells and quantification of hundreds of thousands of nuclear foci in a consistent and non-subjective manner. All raw data, exported from Imaris along with the custom python, R and shell scripts which compile and analyse these data, are provided in Supplementary Dataset SD1.


Cell gating was initially set to capture a very low GFP signal level, corresponding to the auto-fluorescence signal level. In this way, the cytoplasm and nucleus of every cell was identified, regardless of whether it was transfected or not. This approach removed the need to use an additional cell body marker, maximizing available fluorescence channels and minimising photo-damage by reducing laser exposure. To ensure that only transfected cells were analysed, a final mean GFP intensity threshold per cell (higher expression level of GFP) was later applied to the data using the R environment for statistical computing (Fig. 1Bx). This allowed the GFP thresholding to be applied to all test and control samples simultaneously, with adjustments made to identify a threshold where the detected cell number approached zero in the control samples. GFP thresholding was also selectively withheld from the control samples to extend analyses to non-transfected and mock-transfected cells using the same base parameters for cell, nuclei and foci detection. Overall, this analysis approach enabled accurate cytoplasmic identification of cells that had relatively low GFP-IMP α expression levels to achieve comprehensive measurements for all cells within each sample.


The nuclear detection threshold was set to ensure the nucleus was identified even in cells with a low level nuclear marker signal. Although this could slightly inflate the detected volume of each nucleus, this approach was chosen to avoid missing parts of some nuclei which could underestimate nuclear foci numbers. Using the R environment for statistical computing, nuclei on the edge of an image in the X, Y or Z image planes, and therefore likely to be incomplete nuclei, were excluded from the data sets. Subsequently, all cells without nuclei were also removed from the data sets (see Fig. 1Bx).

In the GFP-IMP α transient transfection study, the non-transfected (Not-Trans-C), mock-transfected (Mock-C) and GFP-transfected (GFP) control sample parameters for nuclear foci varied (Supplementary Tabl es S5, S6 and S7). We hypothesize that these differences reflect the physiological state of individual cells from each group in regard to cell cycle or local microenvironment differences at the time of sampling. This would be consistent with reported paraspeckle roles, but spotlights the paucity of knowledge about the inherent variability of paraspeckles within a population, and whether these are dynamically modulated within a cell in response to particular conditions. These results lead us to conclude that comparing outcomes within a single IMP α subtype, in which either cargo or IMP β 1 binding has been manipulated, is appropriate, while comparing between different IMP α subtypes should be undertaken cautiously, and with this information in mind.

Functional IMP α protein levels determine endogenous PSPC1 localization to paraspeckles.

To assess the accuracy of the automated analysis pipeline, we initially compared its outcomes with those from our previous analysis using manual selection of individual cells⁴⁹. HeLa cells were transiently transfected to

SCIENTIFIC REPORTS | 7:43323 | DOI: 10.1038/srep43323

		GFP	GFP- IMPa2-FL	GFP- IMPα2∆IBB	GFP- IMPa2-ED	GFP- IMPα6-FL	GFP- IMPα6ΔIBB
A)	Number of Cells Analysed-Total: 2602	813	166	519	459	431	214
B)	Number of PSPC1 Nuclear foci-Total: 10865	5079	595	728	1461	2597	405
C)	Number of Cells +VE for Nuclear foci	598	91	144	211	285	66
	% Cells +VE for foci	73.6%	54.8%	27.7%	46%	66.1%	30.8%
	95% CI	$(62.1 \mathop{\leftrightarrow} 85.0)\%$	$(38.1 \leftrightarrow 71.6)\%$	$(22.4\!\leftrightarrow\!33.1)\%$	$(37.5 \leftrightarrow 54.4)\%$	$(52.9 \leftrightarrow 79.3)\%$	$(21.9 \mathop{\leftrightarrow} 39.8)\%$
D)	Odds Ratio (IMP α Normalised)		1.000	0.316	0.701	1.000	0.228
	95% CI		(Control)	$(0.221 \mathop{\leftrightarrow} 0.454)$	$(0.491 \leftrightarrow 1.002)$	(Control)	$(0.161 \mathop{\leftrightarrow} 0.325)$
	Significance Value (Lg Reg)			$p = 0.0000^*$	p=0.0505		p = 0.0000*
Mear	n per cell values (All cells)	GFP	GFP- IMPa2-FL	GFP- IMPα2∆IBB	GFP- IMPα2-ED	GFP- IMPα6-FL	GFP- IMPα6ΔIBB
	GM F _{n/c} per cell-PSPC1-A546	3.09	2.45	1.83	1.92	2.85	1.95
	95% CI	$(3.01 \leftrightarrow 3.17)$	$(2.28 \leftrightarrow 2.62)$	$(1.76 \leftrightarrow 1.90)$	$(1.85 \leftrightarrow 1.99)$	$(2.74 \leftrightarrow 2.97)$	$(1.82 \leftrightarrow 2.09)$
E)	Ratio of GM (IMPa Normalised)		1.000	0.746	0.785	1.000	0.682
	95% CI		(Control)	$(0.693 \leftrightarrow 0.804)$	$(0.728 \leftrightarrow 0.846)$	(Control)	$(0.636 \leftrightarrow 0.731)$
	Significance Value (Ln Reg)			$p = 0.0000^*$	p=0.0000*		p = 0.0000*
	GM intensity per cell - PSPC1-A546	8.77	7.66	7.16	9.09	8.79	6.82
	95% CI	$(8.58 \leftrightarrow 8.96)$	(7.38↔7.95)	$(7.00 \leftrightarrow 7.33)$	$(8.81 \leftrightarrow 9.38)$	$(8.53 \leftrightarrow 9.05)$	$(6.6 \leftrightarrow 7.05)$
F)	Ratio of GM (IMPa Normalised)		1.000	0.935	1.186	1.000	0.776
	95% CI		(Control)	$(0.887 \leftrightarrow 0.985)$	$(1.124 \leftrightarrow 1.251)$	(Control)	$(0.738 \leftrightarrow 0.815)$
	Significance Value (Ln Reg)			p=0.0117	p=0.0000*		p=0.0000*
	GM intensity per cell - GFP	18.35	11.40	17.25	11.12	17.18	12.73
	95% CI	$(17.35 \leftrightarrow 19.41)$	$(10.28 \leftrightarrow 12.64)$	$(16.18 \leftrightarrow 18.39)$	$(10.5 \leftrightarrow 11.78)$	$(15.84 \leftrightarrow 18.65)$	$(11.75 \leftrightarrow 13.8)$
G)	Ratio of GM (IMP α Normalised)		1.000	1.513	0.976	1.000	0.741
	95% CI		(Control)	$(1.326 \leftrightarrow 1.726)$	$(0.853 \leftrightarrow 1.116)$	(Control)	$(0.655 \leftrightarrow 0.839)$
	Significance Value (Ln Reg)			p=0.0000*	p=0.719		p=0.0000*
	n per cell values (PSPC1-A56 nuclear foci ive cells only)	GFP	GFP- IMPa2-FL	GFP- IMPα2∆IBB	GFP- IMPa2-ED	GFP- IMPα6-FL	GFP- IMPα6ΔIBB
	GM number of foci (per cell)	6.20	4.84	3.52	4.68	6.00	4.41
	95% CI	$(5.79 \leftrightarrow 6.63)$	$(4.08 \leftrightarrow 5.75)$	$(3.05 \leftrightarrow 4.07)$	$(4.16 \leftrightarrow 5.28)$	$(5.36 \leftrightarrow 6.72)$	$(3.59 \leftrightarrow 5.42)$
H)	Ratio of GM (IMPa Normalised)		1.000	0.727	0.967	1.000	0.735
	95% CI		(Control)	$(0.576 \leftrightarrow 0.916)$	$(0.778 \leftrightarrow 1.201)$	(Control)	$(0.580 \leftrightarrow 0.931)$
	Significance Value (Ln Reg)			p=0.0071*	p=0.7621		p=0.0107
	GM∑foci volume (per cell)	1.32	1.08	0.52	0.84	1.34	0.75
	95% CI	$(1.18 \leftrightarrow 1.47)$	$(0.83 \leftrightarrow 1.41)$	$(0.41 \leftrightarrow 0.67)$	$(0.69 \leftrightarrow 1.03)$	$(1.12 \leftrightarrow 1.61)$	$(0.54 \leftrightarrow 1.06)$
I)	Ratio of GM (IMPa Normalised)		1.000	0.482	0.779	1.000	0.562
	95% CI		(Control)	$(0.331 \leftrightarrow 0.702)$	$(0.548 \leftrightarrow 1.107)$	(Control)	$(0.383 \leftrightarrow 0.824)$
	Significance Value (Ln Reg)			p=0.0001*	p=0.1640		p=0.0033*
	GM∑ foci PSPC1-A546 intensity (per cell)	5070	4190	1848	3183	5173	2812
	95% CI	$(4521 \leftrightarrow 5686)$	(3136↔5597)	$(1416 \leftrightarrow 2412)$	(2558 ↔ 3960)	$(4244 \leftrightarrow 6305)$	$(1926 \leftrightarrow 4104)$
J)	Ratio of GM (IMPa Normalised)		1.000	0.441	0.760	1.000	0.544
	95% CI		(Control)	$(0.294 \leftrightarrow 0.662)$	$(0.520 \leftrightarrow 1.11)$	(Control)	$(0.359 \leftrightarrow 0.822)$
	Significance Value (Ln Reg)			p=0.0001*	p=0.1560		p=0.0039*
Mear	values per PSPC1-A546 nuclear foci	GFP	GFP- IMPa2-FL	GFP- ΙΜΡα2ΔΙΒΒ	GFP- IMPa2-ED	GFP- IMPq6-FL	GFP- IMPα6∆IBB
	GM foci volume (per foci)	0.190	0.209	0.156	0.212	0.215	0.173
	95% CI	$(0.185 \leftrightarrow 0.196)$	$(0.193 \leftrightarrow 0.227)$	$(0.145 \leftrightarrow 0.168)$	$(0.201 \leftrightarrow 0.224)$	$(0.207 \leftrightarrow 0.224)$	$(0.157 \leftrightarrow 0.191)$
K)	Ratio of GM (IMP α Normalised)		1.000	0.744	1.013	1.000	0.804
	95% CI		(Control)	$(0.613 \leftrightarrow 0.903)$	$(0.785 \leftrightarrow 1.307)$	(Control)	$(0.652 \leftrightarrow 0.991)$
	Significance Value (GEE)			p=0.0028*	p=0.9225		p=0.041
	GM foci PSPC1-A546 voxel intensity (per foci)	90.70	91.12	89.32	94.90	92.33	90.31
	95% CI	$(90.35 \leftrightarrow 91.06)$	$(90.07 \leftrightarrow 92.12)$	(88.44 ↔ 90.20)	$(93.90 \leftrightarrow 95.91)$	$(91.71 \leftrightarrow 92.95)$	(89.00 ↔ 91.64)
	Ratio of GM (IMP α Normalised)	(,	1.000	0.980	1.041	1.000	0.989
L)	Give (inter a realingible)						
L)	95% CI		(Control)	$(0.954 \leftrightarrow 1.01)$	$(0.976 \leftrightarrow 1.11)$	(Control)	$(0.958 \leftrightarrow 1.022)$
L)	95% CI Significance Value (GEE)		(Control)	$(0.954 \leftrightarrow 1.01)$ $p = 0.15$	$(0.976 \leftrightarrow 1.11)$ $p = 0.22$	(Control)	$(0.958 \leftrightarrow 1.022)$ $p = 0.5086$

		GFP	GFP- IMPa2-FL	GFP- IMPα2∆IBB	GFP- IMPa2-ED	GFP- IMPα6-FL	GFP- IMPα6ΔIBB
	$GM \sum foci PSPC1-A546$ intensity (per foci)	701	792	549	822	815	639
	95% CI	$(678 \leftrightarrow 723)$	$(722 \leftrightarrow 869)$	$(505 \leftrightarrow 597)$	$(770 \leftrightarrow 877)$	$(778 \leftrightarrow 854)$	$(571 \leftrightarrow 716)$
M)	Ratio of GM (IMP α Normalised)		1.000	0.693	1.037	1.000	0.797
	95% CI		(Control)	$(0.554 \leftrightarrow 0.867)$	$(0.752 \leftrightarrow 1.431)$	(Control)	$(0.628 \leftrightarrow 1.010)$
	Significance Value (GEE)			p=0.0013*	p=0.8225		p=0.061

Table 1. Outcomes of modulating IMP α expression and transport function on endogenous PSPC1positive nuclear foci. The analysed cell numbers for each GFP-tagged IMP α transfection group, the number of detected PSPC1-positive nuclear foci and proportion of cells determined to contain PSPC1 nuclear foci (detected by indirect PSPC1 immunofluorescence with an Alexa Fluor 546 [A546] secondary antibody) are presented. Samples were assessed on a per cell or per PSPC1 nuclear foci basis, with geometric means (GM) and 95% confidence intervals (95% CI) calculated. To determine significant differences between groups, a logistic regression (Lg Reg) model was used for PSPC1 foci positive/negative cells, linear regression (Ln Reg) models were used for per cell data and generalised estimating equations (GEE) were used for per PSPC1 nuclear foci data. Comparative significance values using IMP α -FL as the reference groups (set at 1.000) are shown. Using Bonferroni correction, the significance threshold was reassigned from ≤ 0.05 to ≤ 0.008 (0.05 \div 6 experimental groups), with those outcomes below the threshold indicated (*). Further details are provided in Fig. 2A with additional samples and analysis parameters included in Supplementary Tables S2 and S5.

express GFP-tagged IMP $\alpha 2$ or IMP $\alpha 6$, as each binds PSPC1 in a yeast two hybrid system and in an ELISA-based importin binding assay⁴⁹. During cell/nucleus/foci detection in Imaris, nuclear PSPC1 foci were identified using the immunofluorescent signal for endogenous PSPC1 with parameters matching our previous study⁴⁹ to allow a direct comparison. All IMP $\alpha 2$ samples produced results similar to those previously reported⁴⁹, with GFP-IMP $\alpha 2$ -ED control values intermediate to those obtained with the other two IMP $\alpha 2$ isoforms (summary comparison in Fig. 2; detailed comparison in Supplementary Table S1). This congruency demonstrates that automated detection of cells and nuclei is of comparable accuracy to the laborious manual cell image cropping. For all paraspeckle-related endpoints, all but one of the GFP-IMP $\alpha 2\Delta$ IBB sample values were significantly reduced relative to the GFP-IMP $\alpha 2$ -FL values (Table 1 and Fig. 3A). The one exception was the geometric mean (GM) PSPC1 voxel intensity (per foci), which was not significantly reduced (Table 1 L).

To interrogate nuclear accumulation, the mean of the fluorescent signal in the nucleus (F_n) and cytoplasm (F_c) was converted to a ratio ($F_{n/c}$) for each cell^{44,57}. Mean PSPC1 $F_{n/c}$ values for all IMP α 2 samples increased with increasing IMP α 2 functionality as expected (Table 1E and Fig. 3Aii; Δ IBB [lowest function]: 2.04; ED: 2.08; FL [highest function]: 2.69). The other GFP-IMP α 2-FL sample parameters were unchanged or slightly increased compared with those from the GFP-IMP α 2-ED control. The only significantly different result was the PSPC1 $F_{n/c}$ value, indicating that the FL isoform significantly enhances PSPC1 nuclear accumulation.

Our previous demonstration of IMP α 6 binding to PSPC1 in yeast two hybrid and ELISA assays was extended here by measuring paraspeckle numbers and size in HeLa cells relative to IMP α 6 functionality. Significant differences in several parameters were recorded when comparing the FL and Δ IBB variants of IMP α 6. The Δ IBB variant exhibited a lower proportion of foci-positive cells, reduced nuclear accumulation of PSPC1 (PSPC1 F_{n/c}), a lower total volume of foci per cell and a reduction in the total signal from PSPCI-foci per cell when compared to the FL isoform (Table 1 and Fig. 3A). Although the number of foci measured per cell was reduced in the Δ IBB sample (FL:6.00; Δ IBB:4.41), this outcome did not reach significance, which most likely reflects the low proportion of cells containing nuclear foci in these samples (54.8% in FL [n=91]; 30.8% in Δ IBB [n=66]). This finding indicates that changing levels of IMP α 6 will also influence PSPC1 nuclear accumulation and the characteristics of PSPC1-positive nuclear foci, as recorded for IMP α 2.

These data demonstrate IMP α 2 and IMP α 6 can each modulate endogenous PSPC1 nuclear accumulation and localization to paraspeckles. In addition, the direct comparison to our previous work with IMP α 2 validates the automated analysis pipeline as an effective tool for detecting these outcomes.

Functional IMP α **protein levels modulates endogenous SFPQ localization to paraspeckles.** To determine if changes in IMP α expression levels that altered PSPC1 nuclear accumulation and localization into paraspeckles also affected another core DBHS paraspeckle marker, we examined endogenous SFPQ in HeLa cells transiently transfected to express GFP-tagged IMP α constructs. IMP α 2 variants influence SFPQ localization to nuclear foci in a manner similar to that recorded for PSPC1 localization (Table 2 and Fig. 3B). The percentage of cells containing SFPQ nuclear foci is greatly increased in the IMP α 2-FL group (83.9%), and slightly decreased in the IMP α 2 Δ IBB group (57.8%), compared to the IMP α 2-ED control sample (58.7%); ED and Δ IBB values are each significantly different (p = 0.0000) from the FL outcome (Table 2D and Fig. 3B). The F_{n/c} for SFPQ was significantly reduced (p = 0.0000) in the Δ IBB (3.21) and ED (2.80) groups in comparison to IMP α 2-FL (4.75); the odds ratios when compared to the FL set to 1.0 are 0.675 for Δ IBB and 0.590 for ED (Table 2E and Fig. 3Bii). No other paraspeckle parameters displayed statistically significant differences. These outcomes suggest that SFPQ transport is affected by IMP α 2 functionality, but its relationship to paraspeckles is not.

Transfection with IMP α 4 isoforms resulted in remarkable and significant differences measured between IMP α 4-FL and IMP α 4 Δ IBB samples, across the population, cell and individual foci parameters (Table 2 and

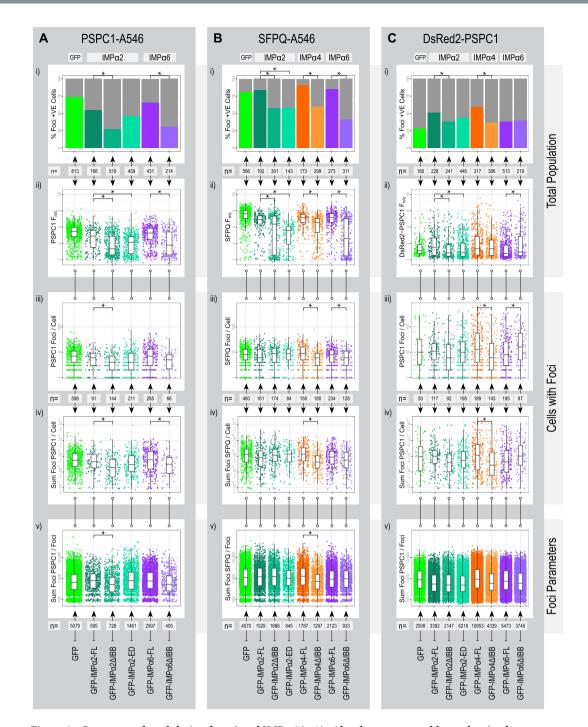


Figure 3. Outcomes of modulating functional IMP $\alpha 2/\alpha 4/\alpha 6$ levels on paraspeckle marker (endogenous PSPC1/SFPQ or exogenous DsRed2-PSPC1) nuclear transport and paraspeckle localization in HeLa cells. HeLa cells were transiently transfected with constructs encoding GFP-tagged IMP $\alpha 2/\alpha 4/\alpha 6$ variants (see Fig. 1A for predicted function) as indicated, with labels at the bottom of each panel and consistent colors used throughout. Paraspeckles were assessed within experimental groups using indirect immunofluorescence with an Alexa Fluor 546 (A546) secondary antibody to detect endogenous PSPC1 (A), using indirect immunofluorescence with an Alexa Fluor 546 (A546) secondary antibody to detect endogenous SFPO (B) or through exogenous PSPC1 by co-transfecting with a plasmid encoding DsRed2-PSPC1 (C). After analysis pipeline as outlined in Fig. 1B, the primary measures are presented as bar graphs and scatter plots with overlaid box plots indicating the mean and interquartile ranges for each experimental group. Samples with statistically significant differences within IMP α groups are indicated (*). The primary measures include the percentage of foci positive cells (i), the ratio fluorescent signal within the nucleus and cytoplasm $(F_{n/c})$ for the paraspeckle marker used (ii), the number of foci detected per cell (iii), the sum foci associated fluorescent signal per cell for the paraspeckle marker used (iv) and the sum foci associated fluorescent signal per foci for the paraspeckle marker used (v). These measures were assessed within groups per entire cell population (i, ii), per foci positive cell populations (iii, iv) or on a per foci basis (v).

SCIENTIFIC REPORTS | 7:43323 | DOI: 10.1038/srep43323

		GFP	GFP- IMPα2-FL	GFP- ΙΜΡα2ΔΙΒΒ	GFP- IMPα2-ED	GFP- IMPα4-FL	GFP- IMPα4ΔIBB	GFP- IMPα6-FL	GFP- IMPα6ΔIBB
A)	Number of cells analysed - Total: 2258	566	192	301	143	173	299	273	311
B)	SFPQ nuclear foci - Total: 14750	4570	1529	1666	845	1787	1297	2123	933
C)	Number of cells + VE for nuclear foci	460	161	174	84	158	180	234	128
	% Cells +VE for foci	81.3%	83.9%	57.8%	58.7%	91.3%	60.2%	85.7%	41.2%
	95% CI	$(64.1 \leftrightarrow 98.4)\%$	$(51.6 \leftrightarrow 116.1)\%$	$(44.6 \leftrightarrow 71.0)\%$	$(39.2 \leftrightarrow 78.3)\%$	$(43.0 \leftrightarrow 139.7)\%$	$(46.3 \leftrightarrow 74.1)\%$	(56.7↔114.8)%	$(31.9 \leftrightarrow 50.5)\%$
D)	Odds Ratio (IMP α Normalised)		1.000	0.264	0.274	1.000	0.144	1.000	0.117
	95% CI		(Control)	$(0.169 \mathop{\leftrightarrow} 0.413)$	$(0.165 \mathop{\leftrightarrow} 0.456)$	(Control)	$(0.081 \leftrightarrow 0.256)$	(Control)	$(0.078 \leftrightarrow 0.175)$
	Significance Value (Lg Reg)			p=0.0000*	p=0.0000*		p=0.0000*		p=0.0000*
Mean	per cell values (All cells)	GFP	GFP- IMPa2-FL	GFP- IMPα2ΔIBB	GFP- IMPa2-ED	GFP- IMPα4-FL	GFP- IMPα4∆IBB	GFP- IMPa6-FL	$\begin{array}{c} \text{GFP-} \\ \text{IMP} \alpha 6 \Delta \text{IBB} \end{array}$
	GM F _{n/c} per cell - SFPQ-A546	6.24	4.75	3.21	2.80	5.49	3.93	5.32	2.66
	95% CI	$(6.01 \leftrightarrow 6.47)$	$(4.43 \leftrightarrow 5.09)$	$(2.93 \leftrightarrow 3.50)$	$(2.57 \leftrightarrow 3.06)$	$(5.21 \leftrightarrow 5.79)$	$(3.70 \leftrightarrow 4.19)$	$(5.05 \leftrightarrow 5.62)$	$(2.44 \leftrightarrow 2.90)$
E)	Odds Ratio (IMP α Normalised)		1.000	0.675	0.590	1.000	0.716	1.000	0.500
	95% CI		(Control)	$(0.609 \leftrightarrow 0.749)$	$(0.521 \leftrightarrow 0.668)$	(Control)	$(0.643 \leftrightarrow 0.797)$	(Control)	$(0.456 \leftrightarrow 0.549)$
	Significance Value (Ln Reg)			p=0.0000*	p=0.0000*		p=0.0000*		p=0.0000*
	GM intensity per cell - SFPQ-A546	7.13	9.22	6.70	11.04	9.68	7.59	8.55	5.34
	95% CI	$(6.95 \leftrightarrow 7.33)$	$(8.70 \leftrightarrow 9.77)$	$(6.29 \leftrightarrow 7.14)$	$(9.90 \leftrightarrow 12.32)$	$(9.22 \leftrightarrow 10.16)$	$(7.24 \leftrightarrow 9.95)$	$(8.21 \leftrightarrow 8.90)$	$(5.07 \leftrightarrow 5.63)$
F)	Odds Ratio (IMP α Normalised)		1.000	0.727	1.198	1.000	0.784	1.000	0.625
	95% CI		(Control)	$(0.672 \leftrightarrow 0.786)$	$(1.091 \leftrightarrow 1.315)$	(Control)	$(0.723 \leftrightarrow 0.849)$	(Control)	$(0.583 \leftrightarrow 0.670)$
	Significance Value (Ln Reg)			p=0.0000*	p=0.0002*		p=0.0000*		p=0.0000*
	GM intensity per cell – GFP	13.38	9.34	11.91	8.40	9.42	12.50	12.91	11.00
	95% CI	$(12.76 \leftrightarrow 14.04)$	$(8.63 \leftrightarrow 10.11)$	$(11.20 \leftrightarrow 12.67)$	$(7.76 \leftrightarrow 9.10)$	$(8.67 \leftrightarrow 10.24)$	$(11.62 \leftrightarrow 13.38)$	$(11.66 \leftrightarrow 14.28)$	$(10.17 \leftrightarrow 11.90)$
G)	Odds Ratio (IMP α Normalised)		1.000	1.276	0.900	1.000	1.326	1.000	0.852
	95% CI		(Control)	$(1.138 \leftrightarrow 1.429)$	$(0.785 \leftrightarrow 1.031)$	(Control)	$(1.179 \leftrightarrow 1.492)$	(Control)	$(0.769 \leftrightarrow 0.944)$
	Significance Value (Ln Reg)			p=0.0000*	p=0.1286		p=0.0000*		p=0.0022*
Mean	per cell values (SFPQ-A546	GFP	GFP-	GFP-	GFP-	GFP-	GFP-	GFP-	GFP-
nucle	ar foci positive cells only)		IMP _{a2-FL}	ΙΜΡα2ΔΙΒΒ	IMPa2-ED	IMPa4-FL	ΙΜΡα4ΔΙΒΒ	IMPα6-FL	ΙΜΡα6ΔΙΒΒ
	GM number of foci (per cell)	7.61	6.25	7.10	7.50	8.13	5.14	6.85	5.25
	95% CI	$(7.07 \leftrightarrow 8.20)$	$(5.39 \leftrightarrow 7.26)$	(6.24.007)	$(6.23 \leftrightarrow 9.01)$	$(7.08 \leftrightarrow 9.34)$	$(4.54 \leftrightarrow 5.82)$	$(6.17 \leftrightarrow 7.60)$	(A = 1 (11))
		(7.07 ↔ 8.20)		$(6.24 \leftrightarrow 8.07)$					$(4.51 \leftrightarrow 6.11)$
H)	Odds Ratio (IMP α Normalised)	(7.07 \(\integrap) 8.20)	1.000	1.135	1.199	1.000	0.632	1.000	0.766
H)	Odds Ratio (IMPα Normalised) 95% CI	(7.07 \(\lambda\) 3.20)		$\begin{array}{c} 1.135\\ (0.945 \mathop{\leftrightarrow} 1.363)\end{array}$	$\begin{array}{c} 1.199 \\ (0.957 \leftrightarrow 1.501) \end{array}$		0.632 $(0.527 \leftrightarrow 0.759)$		0.766 $(0.637 \leftrightarrow 0.921)$
H)	Odds Ratio (IMP $lpha$ Normalised) 95% CI Significance Value (Ln Reg)		1.000 (Control)	$ \begin{array}{r} 1.135 \\ (0.945 \leftrightarrow 1.363) \\ p = 0.1751 \end{array} $	$ \begin{array}{r} 1.199 \\ (0.957 \leftrightarrow 1.501) \\ p = 0.1152 \end{array} $	1.000 (Control)	$0.632 (0.527 \leftrightarrow 0.759) p = 0.0000*$	1.000 (Control)	$ \begin{array}{r} 0.766 \\ (0.637 \leftrightarrow 0.921) \\ p = 0.0046^* \end{array} $
H)	Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM∑ foci volume (per cell)	2.68	1.000 (Control) 1.96	$\begin{array}{c} 1.135 \\ (0.945 \leftrightarrow 1.363) \\ p \!=\! 0.1751 \\ \hline \textbf{2.44} \end{array}$	$ \begin{array}{r} 1.199\\(0.957\leftrightarrow 1.501)\\p=0.1152\\2.33\end{array} $	1.000 (Control) 3.11	$0.632 (0.527 \leftrightarrow 0.759) p = 0.0000^{*} 1.16$	1.000 (Control) 1.99	$0.766 \\ (0.637 \leftrightarrow 0.921) \\ p = 0.0046^* \\ 1.38 \\ $
	Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM∑ foci volume (per cell) 95% CI		$1.000 (Control)$ $1.96 (1.51 \leftrightarrow 2.54)$	$\begin{array}{c} 1.135 \\ (0.945 \leftrightarrow 1.363) \\ p = 0.1751 \\ \hline \textbf{2.44} \\ (1.94 \leftrightarrow 3.06) \end{array}$	$\begin{array}{c} 1.199\\ (0.957\leftrightarrow 1.501)\\ p=0.1152\\ \hline \textbf{2.33}\\ (1.70\leftrightarrow 3.20) \end{array}$	$ 1.000 (Control) 3.11 (2.48 \leftrightarrow 3.89) $	$0.632 (0.527 \leftrightarrow 0.759) p = 0.0000^{*} 1.16 (0.95 \leftrightarrow 1.41)$	$1.000 (Control)$ $1.99 (1.65 \leftrightarrow 2.41)$	$\begin{array}{c} 0.766 \\ (0.637 \leftrightarrow 0.921) \\ p = 0.0046^* \\ \hline 1.38 \\ (1.05 \leftrightarrow 1.80) \end{array}$
H) I)	Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM∑foci volume (per cell) 95% CI Odds Ratio (IMPα Normalised)	2.68	$\begin{array}{c} 1.000 \\ (Control) \\ \hline \\ 1.96 \\ (1.51 \leftrightarrow 2.54) \\ 1.000 \end{array}$	$\begin{array}{c} 1.135 \\ (0.945 \leftrightarrow 1.363) \\ p = 0.1751 \\ \hline \textbf{2.44} \\ (1.94 \leftrightarrow 3.06) \\ \hline 1.247 \end{array}$	$\begin{array}{c} 1.199 \\ (0.957 \leftrightarrow 1.501) \\ p = 0.1152 \\ \hline 2.33 \\ (1.70 \leftrightarrow 3.20) \\ \hline 1.1931 \end{array}$	1.000 (Control) 3.11	$\begin{array}{c} 0.632 \\ (0.527 \leftrightarrow 0.759) \\ p = 0.0000^{*} \\ \hline 1.16 \\ (0.95 \leftrightarrow 1.41) \\ 0.3731 \end{array}$	$\begin{array}{c} 1.000 \\ (Control) \\ \hline \\ 1.99 \\ (1.65 \leftrightarrow 2.41) \\ 1.000 \end{array}$	$\begin{array}{c} 0.766 \\ (0.637 \leftrightarrow 0.921) \\ p = 0.0046^{\star} \\ \hline 1.38 \\ (1.05 \leftrightarrow 1.80) \\ \hline 0.691 \end{array}$
	Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM∑ foci volume (per cell) 95% CI Odds Ratio (IMPα Normalised) 95% CI	2.68	$1.000 (Control)$ $1.96 (1.51 \leftrightarrow 2.54)$	$\begin{array}{c} 1.135 \\ (0.945 \leftrightarrow 1.363) \\ p = 0.1751 \\ \hline 2.44 \\ (1.94 \leftrightarrow 3.06) \\ \hline 1.247 \\ (0.904 \leftrightarrow 1.722) \end{array}$	$\begin{array}{c} 1.199 \\ (0.957 \leftrightarrow 1.501) \\ p = 0.1152 \\ \hline 2.33 \\ (1.70 \leftrightarrow 3.20) \\ \hline 1.1931 \\ (0.802 \leftrightarrow 1.774) \end{array}$	$ 1.000 (Control) 3.11 (2.48 \leftrightarrow 3.89) $	$\begin{array}{c} 0.632 \\ (0.527 \leftrightarrow 0.759) \\ p = 0.0000^* \\ \hline 1.16 \\ (0.95 \leftrightarrow 1.41) \\ 0.3731 \\ (0.271 \leftrightarrow 0.515) \end{array}$	$1.000 (Control)$ $1.99 (1.65 \leftrightarrow 2.41)$	$\begin{array}{c} 0.766 \\ (0.637 \leftrightarrow 0.921) \\ p = 0.0046^* \\ \hline 1.38 \\ (1.05 \leftrightarrow 1.80) \\ \hline 0.691 \\ (0.499 \leftrightarrow 0.955) \end{array}$
	Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM∑ foci volume (per cell) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg)	2.68	$\begin{array}{c} 1.000 \\ (Control) \\ \hline \\ 1.96 \\ (1.51 \leftrightarrow 2.54) \\ 1.000 \end{array}$	$\begin{array}{c} 1.135 \\ (0.945 \leftrightarrow 1.363) \\ p = 0.1751 \\ \hline \textbf{2.44} \\ (1.94 \leftrightarrow 3.06) \\ \hline 1.247 \end{array}$	$\begin{array}{c} 1.199 \\ (0.957 \leftrightarrow 1.501) \\ p = 0.1152 \\ \hline 2.33 \\ (1.70 \leftrightarrow 3.20) \\ \hline 1.1931 \end{array}$	$ \begin{array}{r} 1.000 \\ (Control) \\ \hline 3.11 \\ (2.48 \leftrightarrow 3.89) \\ 1.000 \\ \end{array} $	$\begin{array}{c} 0.632 \\ (0.527 \leftrightarrow 0.759) \\ p = 0.0000^{*} \\ \hline 1.16 \\ (0.95 \leftrightarrow 1.41) \\ 0.3731 \end{array}$	$\begin{array}{c} 1.000 \\ (Control) \\ \hline \\ 1.99 \\ (1.65 \leftrightarrow 2.41) \\ 1.000 \end{array}$	$\begin{array}{c} 0.766 \\ (0.637 \leftrightarrow 0.921) \\ p = 0.0046^{\star} \\ \hline 1.38 \\ (1.05 \leftrightarrow 1.80) \\ \hline 0.691 \end{array}$
	Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM∑foci volume (per cell) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM∑foci SFPQ-A546 intensity (per cell)	2.68	$\begin{array}{c} 1.000 \\ (Control) \\ \hline \\ 1.96 \\ (1.51 \leftrightarrow 2.54) \\ 1.000 \end{array}$	$\begin{array}{c} 1.135 \\ (0.945 \leftrightarrow 1.363) \\ p = 0.1751 \\ \hline 2.44 \\ (1.94 \leftrightarrow 3.06) \\ \hline 1.247 \\ (0.904 \leftrightarrow 1.722) \end{array}$	$\begin{array}{c} 1.199 \\ (0.957 \leftrightarrow 1.501) \\ p = 0.1152 \\ \hline 2.33 \\ (1.70 \leftrightarrow 3.20) \\ \hline 1.1931 \\ (0.802 \leftrightarrow 1.774) \end{array}$	$ \begin{array}{r} 1.000 \\ (Control) \\ \hline 3.11 \\ (2.48 \leftrightarrow 3.89) \\ 1.000 \\ \end{array} $	$\begin{array}{c} 0.632 \\ (0.527 \leftrightarrow 0.759) \\ p = 0.0000^* \\ \hline 1.16 \\ (0.95 \leftrightarrow 1.41) \\ 0.3731 \\ (0.271 \leftrightarrow 0.515) \end{array}$	$\begin{array}{c} 1.000 \\ (Control) \\ \hline \\ 1.99 \\ (1.65 \leftrightarrow 2.41) \\ 1.000 \end{array}$	$\begin{array}{c} 0.766 \\ (0.637 \leftrightarrow 0.921) \\ p = 0.0046^* \\ \hline 1.38 \\ (1.05 \leftrightarrow 1.80) \\ 0.691 \\ (0.499 \leftrightarrow 0.955) \end{array}$
I)	Odds Ratio (IMPα Normalised) 95% CI GM∑ foci volume (Ln Reg) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM∑ foci SFPQ-A546 intensity (per cell) 95% CI	2.68 (2.33 ↔ 3.07)	1.000 (Control) 1.96 (1.51 ↔ 2.54) 1.000 (Control)	$\begin{array}{c} 1.135 \\ (0.945 \leftrightarrow 1.363) \\ p = 0.1751 \\ \hline 2.44 \\ (1.94 \leftrightarrow 3.06) \\ \hline 1.247 \\ (0.904 \leftrightarrow 1.722) \\ p = 0.1792 \end{array}$	$\begin{array}{c} 1.199 \\ (0.957\leftrightarrow 1.501) \\ p=0.1152 \\ \hline 2.33 \\ (1.70\leftrightarrow 3.20) \\ \hline 1.1931 \\ (0.802\leftrightarrow 1.774) \\ p=0.3835 \end{array}$	1.000 (Control) 3.11 (2.48 ↔ 3.89) 1.000 (Control)	$\begin{array}{c} 0.632 \\ (0.527\leftrightarrow 0.759) \\ p = 0.0000^* \\ \hline 1.16 \\ (0.95\leftrightarrow 1.41) \\ 0.3731 \\ (0.271\leftrightarrow 0.515) \\ p = 0.0000^* \end{array}$	1.000 (Control) 1.99 (1.65 ↔ 2.41) 1.000 (Control)	$\begin{array}{c} 0.766 \\ (0.637 \leftrightarrow 0.921) \\ p = 0.0046^* \\ \hline 1.38 \\ (1.05 \leftrightarrow 1.80) \\ 0.691 \\ (0.499 \leftrightarrow 0.955) \\ p = 0.0254 \end{array}$
	Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM∑foci volume (per cell) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM∑foci SFPQ-A546 intensity (per cell)	2.68 (2.33 ↔ 3.07) 9422	1.000 (Control) 1.96 (1.51 ↔ 2.54) 1.000 (Control) 7276	$\begin{array}{c} 1.135 \\ (0.945 \leftrightarrow 1.363) \\ p = 0.1751 \\ \hline 2.44 \\ (1.94 \leftrightarrow 3.06) \\ \hline 1.247 \\ (0.904 \leftrightarrow 1.722) \\ p = 0.1792 \\ \hline 9306 \end{array}$	$\begin{array}{c} 1.199 \\ (0.957 \leftrightarrow 1.501) \\ p = 0.1152 \\ \hline 2.33 \\ (1.70 \leftrightarrow 3.20) \\ \hline 1.1931 \\ (0.802 \leftrightarrow 1.774) \\ p = 0.3835 \\ \hline 9159 \end{array}$	1.000 (Control) 3.11 (2.48 ↔ 3.89) 1.000 (Control) 12102	$\begin{array}{c} 0.632 \\ (0.527\leftrightarrow 0.759) \\ p=0.0000^* \\ \hline 1.16 \\ (0.95\leftrightarrow 1.41) \\ 0.3731 \\ (0.271\leftrightarrow 0.515) \\ p=0.0000^* \\ \hline 4343 \end{array}$	1.000 (Control) 1.99 (1.65 ↔ 2.41) 1.000 (Control) 7557	$\begin{array}{c} 0.766 \\ (0.637 \leftrightarrow 0.921) \\ p = 0.0046^* \\ \hline 1.38 \\ (1.05 \leftrightarrow 1.80) \\ 0.691 \\ (0.499 \leftrightarrow 0.955) \\ p = 0.0254 \\ \hline 5052 \end{array}$
I)	Odds Ratio (IMPα Normalised) 95% CI GM∑ foci volume (Ln Reg) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM∑ foci SFPQ-A546 intensity (per cell) 95% CI	2.68 (2.33 ↔ 3.07) 9422	1.000 (Control) 1.96 (1.51 \leftrightarrow 2.54) 1.000 (Control) 7276 (5567 \leftrightarrow 9509)	$\begin{array}{c} 1.135 \\ (0.945 \leftrightarrow 1.363) \\ p = 0.1751 \\ \hline 2.44 \\ (1.94 \leftrightarrow 3.06) \\ \hline 1.247 \\ (0.904 \leftrightarrow 1.722) \\ p = 0.1792 \\ \hline 9306 \\ (7313 \leftrightarrow 11843) \end{array}$	$\begin{array}{c} 1.199 \\ (0.957\leftrightarrow 1.501) \\ p=0.1152 \\ \hline 2.33 \\ (1.70\leftrightarrow 3.20) \\ \hline 1.1931 \\ (0.802\leftrightarrow 1.774) \\ p=0.3835 \\ \hline 9159 \\ (6604\leftrightarrow 12703) \end{array}$	1.000 (Control) 3.11 $(2.48 \leftrightarrow 3.89)$ 1.000 (Control) 12102 (9600 ↔ 15255)	$\begin{array}{c} 0.632 \\ (0.527\leftrightarrow 0.759) \\ p=0.0000^* \\ \hline 1.16 \\ (0.95\leftrightarrow 1.41) \\ 0.3731 \\ (0.271\leftrightarrow 0.515) \\ p=0.0000^* \\ \hline 4343 \\ (3543\leftrightarrow 5322) \end{array}$	$\begin{array}{c} 1.000 \\ (Control) \\ \hline \\ 1.99 \\ (1.65 \leftrightarrow 2.41) \\ 1.000 \\ (Control) \\ \hline \\ 7557 \\ (6200 \leftrightarrow 9212) \end{array}$	$\begin{array}{c} 0.766 \\ (0.637 \leftrightarrow 0.921) \\ p = 0.0046^* \\ \hline 1.38 \\ (1.05 \leftrightarrow 1.80) \\ 0.691 \\ (0.499 \leftrightarrow 0.955) \\ p = 0.0254 \\ \hline 5052 \\ (3803 \leftrightarrow 6712) \end{array}$
I)	Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM∑foci volume (per cell) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM∑foci SFPQ-A546 intensity (per cell) 95% CI Odds Ratio (IMPα Normalised)	2.68 (2.33 ↔ 3.07) 9422	$\begin{array}{c} 1.000 \\ (Control) \\ \hline \\ \hline \\ 1.96 \\ (1.51 \leftrightarrow 2.54) \\ 1.000 \\ (Control) \\ \hline \\ \hline \\ 7276 \\ (5567 \leftrightarrow 9509) \\ 1.000 \end{array}$	$\begin{array}{c} 1.135 \\ (0.945 \leftrightarrow 1.363) \\ p = 0.1751 \\ \hline 2.44 \\ (1.94 \leftrightarrow 3.06) \\ \hline 1.247 \\ (0.904 \leftrightarrow 1.722) \\ p = 0.1792 \\ \hline 9306 \\ (7313 \leftrightarrow 11843) \\ \hline 1.279 \end{array}$	$\begin{array}{c} 1.199 \\ (0.957\leftrightarrow 1.501) \\ p=0.1152 \\ \hline 2.33 \\ (1.70\leftrightarrow 3.20) \\ \hline 1.1931 \\ (0.802\leftrightarrow 1.774) \\ p=0.3835 \\ \hline 9159 \\ (6604\leftrightarrow 12703) \\ \hline 1.259 \end{array}$	1.000 (Control) 3.11 $(2.48 \leftrightarrow 3.89)$ 1.000 (Control) 12102 (9600 ↔ 15255) 1.000	$\begin{array}{c} 0.632 \\ (0.527\leftrightarrow 0.759) \\ p=0.0000^* \\ \hline 1.16 \\ (0.95\leftrightarrow 1.41) \\ 0.3731 \\ (0.271\leftrightarrow 0.515) \\ p=0.0000^* \\ \hline 4343 \\ (3543\leftrightarrow 5322) \\ 0.359 \end{array}$	$\begin{array}{c} 1.000 \\ (Control) \\ \hline \\ \hline \\ 1.99 \\ (1.65 \leftrightarrow 2.41) \\ 1.000 \\ (Control) \\ \hline \\ \hline \\ 7557 \\ (6200 \leftrightarrow 9212) \\ 1.000 \end{array}$	$\begin{array}{c} 0.766 \\ (0.637 \leftrightarrow 0.921) \\ p = 0.0046^* \\ \hline 1.38 \\ (1.05 \leftrightarrow 1.80) \\ 0.691 \\ (0.499 \leftrightarrow 0.955) \\ p = 0.0254 \\ \hline 5052 \\ (3803 \leftrightarrow 6712) \\ 0.669 \end{array}$
I) J)	Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM∑foci volume (per cell) 95% CI Odds Ratio (IMPα Normalised) 95% CI GM∑foci SFPQ-A546 intensity (per cell) 95% CI Odds Ratio (IMPα Normalised) 95% CI	2.68 (2.33 ↔ 3.07) 9422	$\begin{array}{c} 1.000 \\ (Control) \\ \hline \\ \hline \\ 1.96 \\ (1.51 \leftrightarrow 2.54) \\ 1.000 \\ (Control) \\ \hline \\ \hline \\ 7276 \\ (5567 \leftrightarrow 9509) \\ 1.000 \end{array}$	1.135 $(0.945 \leftrightarrow 1.363)$ $p=0.1751$ 2.44 $(1.94 \leftrightarrow 3.06)$ 1.247 $(0.904 \leftrightarrow 1.722)$ $p=0.1792$ 9306 $(7313 \leftrightarrow 11843)$ 1.279 $(0.914 \leftrightarrow 1.790)$ $p=0.1511$ GFP- IMP@2ΔIBB	$\begin{array}{c} 1.199 \\ (0.957 \leftrightarrow 1.501) \\ p = 0.1152 \\ \hline 2.33 \\ (1.70 \leftrightarrow 3.20) \\ \hline 1.1931 \\ (0.802 \leftrightarrow 1.774) \\ p = 0.3835 \\ \hline 9159 \\ (6604 \leftrightarrow 12703) \\ \hline 1.259 \\ (0.833 \leftrightarrow 1.903) \end{array}$	1.000 (Control) 3.11 $(2.48 \leftrightarrow 3.89)$ 1.000 (Control) 12102 (9600 ↔ 15255) 1.000	$\begin{array}{c} 0.632 \\ (0.527 \leftrightarrow 0.759) \\ p = 0.000^* \\ \hline 1.16 \\ (0.95 \leftrightarrow 1.41) \\ 0.3731 \\ (0.271 \leftrightarrow 0.515) \\ p = 0.000^* \\ \hline 4343 \\ (3543 \leftrightarrow 5322) \\ 0.359 \\ (0.257 \leftrightarrow 0.502) \\ p = 0.000^* \\ \hline GFP \\ IMP \alpha 4 \Delta IBB \\ \end{array}$	$\begin{array}{c} 1.000 \\ (Control) \\ \hline \\ \hline \\ 1.99 \\ (1.65 \leftrightarrow 2.41) \\ 1.000 \\ (Control) \\ \hline \\ \hline \\ 7557 \\ (6200 \leftrightarrow 9212) \\ 1.000 \end{array}$	0.766 $(0.637 \leftrightarrow 0.921)$ $p = 0.0046^*$ 1.38 $(1.05 \leftrightarrow 1.80)$ 0.691 $(0.499 \leftrightarrow 0.955)$ p = 0.0254 5052 $(3803 \leftrightarrow 6712)$ 0.669 $(0.477 \leftrightarrow 0.973)$ p = 0.0195 GFP- IMPac6AIBB
I) J) Mean	Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM∑ foci volume (per cell) 95% CI Odds Ratio (IMPα Normalised) 95% CI GM∑ foci SFPQ-A546 intensity (per cell) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg)	2.68 (2.33 ↔ 3.07) 9422 (8159 ↔ 10879)	1.000 (Control) 1.96 (1.51 ↔ 2.54) 1.000 (Control) 7276 (5567 ↔ 9509) 1.000 (Control) GFP-	$\begin{array}{c} 1.135 \\ (0.945 \leftrightarrow 1.363) \\ p = 0.1751 \\ \hline 2.44 \\ (1.94 \leftrightarrow 3.06) \\ 1.247 \\ (0.904 \leftrightarrow 1.722) \\ p = 0.1792 \\ \hline 9306 \\ (7313 \leftrightarrow 11843) \\ 1.279 \\ (0.914 \leftrightarrow 1.790) \\ p = 0.1511 \\ \hline GFP- \end{array}$	$\begin{array}{c} 1.199 \\ (0.957\leftrightarrow 1.501) \\ p=0.1152 \\ \hline 2.33 \\ (1.70\leftrightarrow 3.20) \\ 1.1931 \\ (0.802\leftrightarrow 1.774) \\ p=0.3835 \\ \hline 9159 \\ (6604\leftrightarrow 12703) \\ 1.259 \\ (0.833\leftrightarrow 1.903) \\ p=0.2753 \\ \hline GFP- \end{array}$	1.000 (Control) 3.11 (2.48 ↔ 3.89) 1.000 (Control) (Control) (9600 ↔ 15255) 1.000 (Control) GFP-	$\begin{array}{c} 0.632 \\ (0.527 \leftrightarrow 0.759) \\ p = 0.000^* \\ \hline 1.16 \\ (0.95 \leftrightarrow 1.41) \\ 0.3731 \\ (0.271 \leftrightarrow 0.515) \\ p = 0.0000^* \\ \hline 4343 \\ (3543 \leftrightarrow 5322) \\ 0.359 \\ (0.257 \leftrightarrow 0.502) \\ p = 0.0000^* \\ \hline GFP- \end{array}$	1.000 (Control) (Control) (1.65 \leftrightarrow 2.41) 1.000 (Control) (Control) (Control) (Control) (Control) (Control) (Control)	0.766 ($0.637 \leftrightarrow 0.921$) $p = 0.0046^*$ 1.38 ($1.05 \leftrightarrow 1.80$) 0.691 ($0.499 \leftrightarrow 0.955$) p = 0.0254 5052 ($3803 \leftrightarrow 6712$) 0.669 ($0.477 \leftrightarrow 0.973$) p = 0.0195 GFP-
I) J) Mean	Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM∑foci volume (per cell) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM∑foci SFPQ-A546 intensity (per cell) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) values per SFPQ-A546 nuclear	2.68 (2.33 ↔ 3.07) 9422 (8159 ↔ 10879) GFP	1.000 (Control) (Control) (1.51 ↔ 2.54) 1.000 (Control) (Control) (5567 ↔ 9509) 1.000 (Control) (Control) GFP- IMPα2-FL	1.135 $(0.945 \leftrightarrow 1.363)$ $p=0.1751$ 2.44 $(1.94 \leftrightarrow 3.06)$ 1.247 $(0.904 \leftrightarrow 1.722)$ $p=0.1792$ 9306 $(7313 \leftrightarrow 11843)$ 1.279 $(0.914 \leftrightarrow 1.790)$ $p=0.1511$ GFP- IMP@2ΔIBB	$\begin{array}{c} 1.199 \\ (0.957 \leftrightarrow 1.501) \\ p = 0.1152 \\ \hline 2.33 \\ (1.70 \leftrightarrow 3.20) \\ \hline 1.1931 \\ (0.802 \leftrightarrow 1.774) \\ p = 0.3835 \\ \hline 9159 \\ (6604 \leftrightarrow 12703) \\ \hline 1.259 \\ (0.833 \leftrightarrow 1.903) \\ p = 0.2753 \\ \hline GFP \\ IMP \alpha 2-ED \end{array}$	1.000 (Control) (2.48 ↔ 3.89) 1.000 (Control) (Control) (9600 ↔ 15255) 1.000 (Control) (Control)	$\begin{array}{c} 0.632 \\ (0.527 \leftrightarrow 0.759) \\ p = 0.000^* \\ \hline 1.16 \\ (0.95 \leftrightarrow 1.41) \\ 0.3731 \\ (0.271 \leftrightarrow 0.515) \\ p = 0.000^* \\ \hline 4343 \\ (3543 \leftrightarrow 5322) \\ 0.359 \\ (0.257 \leftrightarrow 0.502) \\ p = 0.000^* \\ \hline GFP \\ IMP \alpha 4 \Delta IBB \\ \end{array}$	1.000 (Control) 1.99 (1.65 \leftrightarrow 2.41) 1.000 (Control) 7557 (6200 \leftrightarrow 9212) 1.000 (Control) GFP-IMPα6-FL	0.766 $(0.637 \leftrightarrow 0.921)$ $p = 0.0046^*$ 1.38 $(1.05 \leftrightarrow 1.80)$ 0.691 $(0.499 \leftrightarrow 0.955)$ p = 0.0254 5052 $(3803 \leftrightarrow 6712)$ 0.669 $(0.477 \leftrightarrow 0.973)$ p = 0.0195 GFP- IMPac6AIBB
I) J) Mean	Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM∑foci volume (per cell) 95% CI Odds Ratio (IMPα Normalised) 95% CI GM∑foci SFPQ-A546 intensity (per cell) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) values per SFPQ-A546 nuclear	2.68 (2.33 ↔ 3.07) 9422 (8159 ↔ 10879) GFP 0.318	1.000 (Control) 1.96 (1.51 \leftrightarrow 2.54) 1.000 (Control) 7276 (5567 \leftrightarrow 9509) 1.000 (Control) GFP-IMPCx2-FL 0.329	1.135 $(0.945 \leftrightarrow 1.363)$ $p=0.1751$ 2.44 $(1.94 \leftrightarrow 3.06)$ 1.247 $(0.904 \leftrightarrow 1.722)$ $p=0.1792$ 9306 $(7313 \leftrightarrow 11843)$ 1.279 $(0.914 \leftrightarrow 1.790)$ $p=0.1511$ GFP-IMP@2ΔIBB 0.317	$\begin{array}{c} 1.199 \\ (0.957 \leftrightarrow 1.501) \\ p = 0.1152 \\ \hline 2.33 \\ (1.70 \leftrightarrow 3.20) \\ \hline 1.1931 \\ (0.802 \leftrightarrow 1.774) \\ p = 0.3835 \\ \hline 9159 \\ (6604 \leftrightarrow 12703) \\ \hline 1.259 \\ (0.833 \leftrightarrow 1.903) \\ p = 0.2753 \\ \hline GFP- \\ IMP\alpha2-ED \\ \hline 0.286 \end{array}$	1.000 (Control) (Control) (2.48 ↔ 3.89) 1.000 (Control) (Control) (9600 ↔ 15255) 1.000 (Control) (Control) GFP- IMPC4-FL 0.320	$\begin{array}{c} 0.632 \\ (0.527 \leftrightarrow 0.759) \\ p = 0.000^* \\ \hline 1.16 \\ (0.95 \leftrightarrow 1.41) \\ 0.3731 \\ (0.271 \leftrightarrow 0.515) \\ p = 0.000^* \\ \hline 4343 \\ (3543 \leftrightarrow 5322) \\ 0.359 \\ (0.257 \leftrightarrow 0.502) \\ p = 0.000^* \\ \hline GFP- \\ IMP \alpha 4 \Delta IBB \\ \hline 0.202 \\ \end{array}$	$\begin{array}{c} 1.000 \\ (Control) \\ \hline \\ 1.99 \\ (1.65 \leftrightarrow 2.41) \\ 1.000 \\ (Control) \\ \hline \\ 7557 \\ (6200 \leftrightarrow 9212) \\ 1.000 \\ (Control) \\ \hline \\ \hline \\ GFP- \\ IMPc& FL \\ \hline \\ 0.264 \\ \end{array}$	0.766 ($0.637 \leftrightarrow 0.921$) $p=0.0046^*$ 1.38 ($1.05 \leftrightarrow 1.80$) (0.691 ($0.499 \leftrightarrow 0.955$) p=0.0254 5052 ($3803 \leftrightarrow 6712$) (0.669 ($0.477 \leftrightarrow 0.973$) p=0.0195 GFP- IMPcs6JIBB 0.264
I) J) Mean foci	Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM∑foci volume (per cell) 95% CI Odds Ratio (IMPα Normalised) 95% CI GM∑foci SFPQ-A546 intensity (per cell) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) values per SFPQ-A546 nuclear GM foci volume (per foci) 95% CI	2.68 (2.33 ↔ 3.07) 9422 (8159 ↔ 10879) GFP 0.318	1.000 (Control) (Control) 1.96 (1.51 \leftrightarrow 2.54) 1.000 (Control) (Control) (5567 \leftrightarrow 9509) 1.000 (Control) (Control) GFP- IMP α 2-FL 0.329 (0.309 \leftrightarrow 0.349)	1.135 $(0.945 \leftrightarrow 1.363)$ $p=0.1751$ 2.44 $(1.94 \leftrightarrow 3.06)$ 1.247 $(0.904 \leftrightarrow 1.722)$ $p=0.1792$ 9306 $(7313 \leftrightarrow 11843)$ 1.279 $(0.914 \leftrightarrow 1.790)$ $p=0.1511$ GFP-IMPQ2ΔIBB 0.317 $(0.300 \leftrightarrow 0.308)$	$\begin{array}{c} 1.199 \\ (0.957 \leftrightarrow 1.501) \\ p = 0.1152 \\ \hline 2.33 \\ (1.70 \leftrightarrow 3.20) \\ \hline 1.1931 \\ (0.802 \leftrightarrow 1.774) \\ p = 0.3835 \\ \hline 9159 \\ (6604 \leftrightarrow 12703) \\ \hline 1.259 \\ (0.833 \leftrightarrow 1.903) \\ p = 0.2753 \\ \hline GFP- \\ IMP \alpha 2-ED \\ \hline 0.286 \\ (0.266 \leftrightarrow 0.308) \end{array}$	1.000 (Control) (Control) (2.48 \leftrightarrow 3.89) 1.000 (Control) (Control) (9600 \leftrightarrow 15255) 1.000 (Control) (Control) (Control) (Control) (0.303 \leftrightarrow 0.337)	$\begin{array}{c} 0.632 \\ (0.527 \leftrightarrow 0.759) \\ p = 0.000^* \\ \hline 1.16 \\ (0.95 \leftrightarrow 1.41) \\ 0.3731 \\ (0.271 \leftrightarrow 0.515) \\ p = 0.000^* \\ \hline 4343 \\ (3543 \leftrightarrow 5322) \\ 0.359 \\ (0.257 \leftrightarrow 0.502) \\ p = 0.000^* \\ \hline GFP- \\ IMP \alpha 4 \Delta IBB \\ \hline 0.202 \\ (0.191 \leftrightarrow 0.214) \\ \end{array}$	1.000 (Control) 1.99 (1.65 \leftrightarrow 2.41) 1.000 (Control) 7557 (6200 \leftrightarrow 9212) 1.000 (Control) GFP- IMPcc6-FL 0.264 (0.252 \leftrightarrow 0.277)	0.766 ($0.637 \leftrightarrow 0.921$) $p=0.0046^*$ 1.38 ($1.05 \leftrightarrow 1.80$) (0.691 ($0.499 \leftrightarrow 0.955$) p=0.0254 5052 ($3803 \leftrightarrow 6712$) (0.669 ($0.477 \leftrightarrow 0.973$) p=0.0195 GFP- IMPcsΔ1BB 0.264 ($0.246 \leftrightarrow 0.283$)
I) J) Mean foci	Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM∑foci volume (per cell) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM∑foci SFPQ-A546 intensity (per cell) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) values per SFPQ-A546 nuclear GM foci volume (per foci) 95% CI	2.68 (2.33 ↔ 3.07) 9422 (8159 ↔ 10879) GFP 0.318	1.000 (Control) (Control) (1.51 ↔ 2.54) 1.000 (Control) (Control) (5567 ↔ 9509) 1.000 (Control) (Control) (Control) (Control) (0.309 ↔ 0.349) 1.000	$\begin{array}{c} 1.135 \\ (0.945 \leftrightarrow 1.363) \\ p = 0.1751 \\ \hline 0.145 \\ \hline 0.145 \\ \hline 0.904 \leftrightarrow 1.722) \\ p = 0.1792 \\ \hline 0.904 \leftrightarrow 1.722) \\ \hline 0.904 \leftrightarrow 1.722) \\ \hline 0.9306 \\ \hline (7313 \leftrightarrow 11843) \\ \hline 1.279 \\ \hline (0.914 \leftrightarrow 1.790) \\ p = 0.1511 \\ \hline 0.914 \leftrightarrow 1.790) \\ \hline p = 0.1511 \\ \hline 0.914 \leftrightarrow 0.308 \\ \hline 0.300 \leftrightarrow 0.308) \\ \hline 0.965 \\ \hline \end{array}$	$\begin{array}{c} 1.199 \\ (0.957 \leftrightarrow 1.501) \\ p = 0.1152 \\ \hline 2.33 \\ (1.70 \leftrightarrow 3.20) \\ \hline 1.1931 \\ (0.802 \leftrightarrow 1.774) \\ p = 0.3835 \\ \hline 9159 \\ (6604 \leftrightarrow 12703) \\ \hline 1.259 \\ (0.833 \leftrightarrow 1.903) \\ p = 0.2753 \\ \hline GFP- \\ IMP \alpha 2-ED \\ \hline 0.286 \\ (0.266 \leftrightarrow 0.308) \\ \hline 0.871 \\ \hline \end{array}$	1.000 (Control) (Control) (2.48 ↔ 3.89) 1.000 (Control) (Control) (9600 ↔ 15255) 1.000 (Control) (Control) (Control) (0.303 ↔ 0.337) 1.000	$\begin{array}{c} 0.632 \\ (0.527 \leftrightarrow 0.759) \\ p = 0.0000^* \\ \hline 1.16 \\ (0.95 \leftrightarrow 1.41) \\ 0.3731 \\ (0.271 \leftrightarrow 0.515) \\ p = 0.0000^* \\ \hline 4343 \\ (3543 \leftrightarrow 5322) \\ 0.359 \\ (0.257 \leftrightarrow 0.502) \\ p = 0.0000^* \\ \hline GFP_{IMP\alpha 4\Delta IBB} \\ \hline 0.202 \\ (0.191 \leftrightarrow 0.214) \\ 0.632 \\ \end{array}$	1.000 (Control) (Control) (1.65 ↔ 2.41) 1.000 (Control) (Cont	0.766 $(0.637 \leftrightarrow 0.921)$ $p=0.0046^*$ 1.38 $(1.05 \leftrightarrow 1.80)$ 0.691 $(0.499 \leftrightarrow 0.955)$ p=0.0254 5052 (3803 \leftrightarrow 6712) $(3803 \leftrightarrow 6712)$ 0.669 $(0.477 \leftrightarrow 0.973)$ p=0.0195 GFP- IMP $(0.216 \leftrightarrow 0.283)$ 0.998
I) J) Mean foci	Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM∑foci volume (per cell) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM∑foci SFPQ-A546 intensity (per cell) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) values per SFPQ-A546 nuclear GM foci volume (per foci) 95% CI Odds Ratio (IMPα Normalised) 95% CI	2.68 (2.33 ↔ 3.07) 9422 (8159 ↔ 10879) GFP 0.318	1.000 (Control) (Control) (1.51 ↔ 2.54) 1.000 (Control) (Control) (5567 ↔ 9509) 1.000 (Control) (Control) (Control) (Control) (0.309 ↔ 0.349) 1.000	$\begin{array}{c} 1.135 \\ (0.945 \leftrightarrow 1.363) \\ p = 0.1751 \\ \hline 0.944 \leftrightarrow 3.06) \\ 1.247 \\ (0.904 \leftrightarrow 1.722) \\ p = 0.1792 \\ \hline 0.9306 \\ (7313 \leftrightarrow 11843) \\ 1.279 \\ (0.914 \leftrightarrow 1.790) \\ p = 0.1511 \\ \hline 0.914 \leftrightarrow 1.790) \\ p = 0.1511 \\ \hline 0.914 \leftrightarrow 0.317 \\ (0.300 \leftrightarrow 0.308) \\ \hline 0.965 \\ (0.773 \leftrightarrow 1.204) \\ \end{array}$	$\begin{array}{c} 1.199 \\ (0.957\leftrightarrow 1.501) \\ p=0.1152 \\ \hline 2.33 \\ (1.70\leftrightarrow 3.20) \\ 1.1931 \\ (0.802\leftrightarrow 1.774) \\ p=0.3835 \\ \hline 9159 \\ (6604\leftrightarrow 1.2703) \\ 1.259 \\ (0.833\leftrightarrow 1.903) \\ p=0.2753 \\ \hline GFP- \\ IMP\alpha2-ED \\ \hline 0.286 \\ (0.266\leftrightarrow 0.308) \\ 0.871 \\ (0.693\leftrightarrow 1.094) \\ \end{array}$	1.000 (Control) (Control) (2.48 ↔ 3.89) 1.000 (Control) (Control) (9600 ↔ 15255) 1.000 (Control) (Control) (Control) (0.303 ↔ 0.337) 1.000	$\begin{array}{c} 0.632 \\ (0.527 \leftrightarrow 0.759) \\ p = 0.000^* \\ \hline 1.16 \\ (0.95 \leftrightarrow 1.41) \\ 0.3731 \\ (0.271 \leftrightarrow 0.515) \\ p = 0.000^* \\ \hline 4343 \\ (3543 \leftrightarrow 5322) \\ 0.359 \\ (0.257 \leftrightarrow 0.502) \\ p = 0.000^* \\ \hline GFP \\ IMP \alpha 4 \Delta IBB \\ \hline 0.202 \\ (0.191 \leftrightarrow 0.214) \\ 0.632 \\ (0.538 \leftrightarrow 0.741) \end{array}$	1.000 (Control) (Control) (1.65 ↔ 2.41) 1.000 (Control) (Cont	0.766 $(0.637 \leftrightarrow 0.921)$ $p = 0.0046^*$ 1.38 $(1.05 \leftrightarrow 1.80)$ 0.691 $(0.499 \leftrightarrow 0.955)$ p = 0.0254 5052 $(3803 \leftrightarrow 6712)$ $(0.477 \leftrightarrow 0.973)$ p = 0.0195 GFP- $IMP\alpha 6\Delta IBB$ $0.246 \leftrightarrow 0.283)$ 0.998 $(0.842 \leftrightarrow 1.184)$
I) J) Mean foci K)	Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM ∑ foci SFPQ-A546 intensity (per cell) 95% CI Odds Ratio (IMPα Normalised) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) values per SFPQ-A546 nuclear GM foci volume (per foci) 95% CI Odds Ratio (IMPα Normalised) 95% CI Odds Ratio (IMPα Normalised) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (GEE) GM foci SFPQ-A546 voxel	2.68 (2.33 ↔ 3.07) 9422 (8159 ↔ 10879) GFP 0.318 (0.307 ↔ 0.329)	1.000 (Control) (Control) (1.51 ↔ 2.54) 1.000 (Control) (Control) (Control) (Control) (Control) (Control) (0.309 ↔ 0.349) 1.000 (Control)	1.135 $(0.945 \leftrightarrow 1.363)$ $p=0.1751$ 2.44 $(1.94 \leftrightarrow 3.06)$ 1.247 $(0.904 \leftrightarrow 1.722)$ $p=0.1792$ 9306 $(7313 \leftrightarrow 11843)$ 1.279 $(0.914 \leftrightarrow 1.790)$ $p=0.1511$ GFP-IMPa2△IBBB 0.317 $(0.300 \leftrightarrow 0.308)$ 0.965 $(0.773 \leftrightarrow 1.204)$ $p=0.750$	$\begin{array}{c} 1.199 \\ (0.957\leftrightarrow 1.501) \\ p=0.1152 \\ \hline 2.33 \\ (1.70\leftrightarrow 3.20) \\ 1.1931 \\ (0.802\leftrightarrow 1.774) \\ p=0.3835 \\ \hline 9159 \\ (6604\leftrightarrow 12703) \\ 1.259 \\ (0.833\leftrightarrow 1.903) \\ p=0.2753 \\ \hline GFP \\ IMP\alpha 2-ED \\ \hline 0.286 \\ (0.266\leftrightarrow 0.308) \\ 0.871 \\ (0.693\leftrightarrow 1.094) \\ p=0.234 \\ \hline \end{array}$	1.000 (Control) (2.48 ↔ 3.89) 1.000 (Control) (Control) (000 ↔ 15255) 1.000 (Control) (Control) (0.303 ↔ 0.337) 1.000 (Control)	$\begin{array}{c} 0.632 \\ (0.527\leftrightarrow 0.759) \\ p=0.0004^{*} \\ \hline 1.16 \\ (0.95\leftrightarrow 1.41) \\ 0.3731 \\ (0.271\leftrightarrow 0.515) \\ p=0.0004^{*} \\ \hline 4343 \\ (3543\leftrightarrow 5322) \\ 0.359 \\ (0.257\leftrightarrow 0.502) \\ p=0.0004^{*} \\ \hline GFP_{-} \\ IMP\alpha4\Delta IBB \\ \hline 0.202 \\ (0.191\leftrightarrow 0.214) \\ 0.632 \\ (0.538\leftrightarrow 0.741) \\ p=0.0004^{*} \\ \end{array}$	1.000 (Control) 1.99 (1.65 \leftrightarrow 2.41) 1.000 (Control) 7557 (6200 \leftrightarrow 9212) 1.000 (Control) 9 1.000 (Control) 0.264 (0.252 \leftrightarrow 0.277) 1.000 (Control)	0.766 $(0.637 \leftrightarrow 0.921)$ $p = 0.0046^*$ 1.38 $(1.05 \leftrightarrow 1.80)$ 0.691 $(0.499 \leftrightarrow 0.955)$ p = 0.0254 5052 $(3803 \leftrightarrow 6712)$ 0.669 $(0.477 \leftrightarrow 0.973)$ p = 0.0195 GFP- IMP$\alpha \epsilon \Delta$ IBB 0.264 $(0.246 \leftrightarrow 0.283)$ 0.998 $(0.842 \leftrightarrow 1.184)$ p = 0.9837
I) J) Mean foci	Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM ∑ foci SFPQ-A546 intensity (per cell) 95% CI Odds Ratio (IMPα Normalised) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) values per SFPQ-A546 nuclear GM foci volume (per foci) 95% CI Odds Ratio (IMPα Normalised) 95% CI Odds Ratio (IMPα Normalised) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (GEE) GM foci SFPQ-A546 voxel intensity (per foci)	2.68 (2.33 ↔ 3.07) 9422 (8159 ↔ 10879) GFP 0.318 (0.307 ↔ 0.329) 89.56	1.000 (Control) 1.96 (1.51 \leftrightarrow 2.54) 1.000 (Control) 7276 (5567 \leftrightarrow 9509) 1.000 (Control) GFP- IMP α 2-FL 0.329 (0.309 \leftrightarrow 0.349) 1.000 (Control)	1.135 $(0.945 \leftrightarrow 1.363)$ $p=0.1751$ 2.44 $(1.94 \leftrightarrow 3.06)$ 1.247 $(0.904 \leftrightarrow 1.722)$ $p=0.1792$ 9306 $(7313 \leftrightarrow 11843)$ 1.279 $(0.914 \leftrightarrow 1.790)$ $p=0.1511$ GFP-IMPQ2 \Delta IBB 0.317 $(0.300 \leftrightarrow 0.308)$ 0.965 $(0.773 \leftrightarrow 1.204)$ $p=0.750$ 89.01	$\begin{array}{c} 1.199\\ (0.957\leftrightarrow 1.501)\\ p=0.1152\\ \hline 2.33\\ (1.70\leftrightarrow 3.20)\\ \hline 1.1931\\ (0.802\leftrightarrow 1.774)\\ p=0.3835\\ \hline 9159\\ (6604\leftrightarrow 12703)\\ \hline 1.259\\ (0.833\leftrightarrow 1.903)\\ p=0.2753\\ \hline GFP-\\ IMP\alpha2-ED\\ \hline 0.286\\ (0.266\leftrightarrow 0.308)\\ \hline 0.871\\ (0.693\leftrightarrow 1.094)\\ p=0.234\\ \hline 89.26\\ \end{array}$	1.000 (Control) 3.11 (2.48 ↔ 3.89) 1.000 (Control) (Control) (9600 ↔ 15255) 1.000 (Control) (Control) (Control) (0.303 ↔ 0.337) 1.000 (Control) 1.000 (Control)	$\begin{array}{c} 0.632 \\ (0.527 \leftrightarrow 0.759) \\ p = 0.000^* \\ \hline 1.16 \\ (0.95 \leftrightarrow 1.41) \\ 0.3731 \\ (0.271 \leftrightarrow 0.515) \\ p = 0.000^* \\ \hline 4343 \\ (3543 \leftrightarrow 5322) \\ 0.359 \\ (0.257 \leftrightarrow 0.502) \\ p = 0.000^* \\ \hline GFP- \\ IMPC4\Delta IBB \\ \hline 0.202 \\ (0.191 \leftrightarrow 0.214) \\ 0.632 \\ (0.538 \leftrightarrow 0.741) \\ p = 0.000^* \\ \hline 87.65 \\ \hline \end{array}$	1.000 (Control) 1.99 (1.65 \leftrightarrow 2.41) 1.000 (Control) 7557 (6200 \leftrightarrow 9212) 1.000 (Control) GFP- IMPcx6-FL 0.264 (0.252 \leftrightarrow 0.277) 1.000 (Control)	0.766 $(0.637 \leftrightarrow 0.921)$ $p=0.0046^*$ 1.38 $(1.05 \leftrightarrow 1.80)$ 0.691 $(0.499 \leftrightarrow 0.955)$ p=0.0254 5052 (3803 \leftrightarrow 6712) 0.669 $(0.477 \leftrightarrow 0.973)$ p=0.0195 GFP- IMPcsΔ1BB 0.264 $(0.246 \leftrightarrow 0.283)$ 0.998 $(0.842 \leftrightarrow 1.184)$ p=0.9837 88.31
I) J) Mean foci K)	Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM ∑ foci volume (per cell) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM ∑ foci SFPQ-A546 intensity (per cell) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) values per SFPQ-A546 nuclear GM foci volume (per foci) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) values per SFPQ-A546 nuclear GM foci volume (per foci) 95% CI Significance Value (GEE) GM foci SFPQ-A546 voxel intensity (per foci) 95% CI Significance Value (GEE)	2.68 (2.33 ↔ 3.07) 9422 (8159 ↔ 10879) GFP 0.318 (0.307 ↔ 0.329) 89.56	1.000 (Control) 1.96 (1.51 \leftrightarrow 2.54) 1.000 (Control) 7276 (5567 \leftrightarrow 9509) 1.000 (Control) GFP- IMPα2-FL 0.329 (0.309 \leftrightarrow 0.349) 1.000 (Control) 87.21 (86.57 \leftrightarrow 87.85)	$\begin{array}{c} 1.135 \\ (0.945 \leftrightarrow 1.363) \\ p = 0.1751 \\ \hline 2.44 \\ (1.94 \leftrightarrow 3.06) \\ 1.247 \\ (0.904 \leftrightarrow 1.722) \\ p = 0.1792 \\ \hline 9306 \\ (7313 \leftrightarrow 11843) \\ 1.279 \\ (0.914 \leftrightarrow 1.790) \\ p = 0.1511 \\ \hline 0.914 \leftrightarrow 1.790) \\ p = 0.1511 \\ \hline 0.914 \leftrightarrow 0.308 \\ \hline 0.317 \\ (0.300 \leftrightarrow 0.308) \\ \hline 0.965 \\ (0.773 \leftrightarrow 1.204) \\ p = 0.750 \\ \hline 89.01 \\ (88.32 \leftrightarrow 89.71) \end{array}$	$\begin{array}{c} 1.199\\ (0.957\leftrightarrow 1.501)\\ p=0.1152\\ \hline 2.33\\ (1.70\leftrightarrow 3.20)\\ \hline 1.1931\\ (0.802\leftrightarrow 1.774)\\ p=0.3835\\ \hline 9159\\ (6604\leftrightarrow 12703)\\ \hline 1.259\\ (0.833\leftrightarrow 1.903)\\ p=0.2753\\ \hline GFP-\\ IMP\alpha 2-ED\\ \hline 0.286\\ (0.266\leftrightarrow 0.308)\\ 0.871\\ (0.693\leftrightarrow 1.094)\\ p=0.234\\ \hline 89.26\\ (88.42\leftrightarrow 90.11)\\ \end{array}$	1.000 (Control) (Control) (2.48 ↔ 3.89) 1.000 (Control) (Control) (9600 ↔ 15255) 1.000 (Control) (Control) (Control) (0.303 ↔ 0.337) 1.000 (Control) (Control) (Control) (0.303 ↔ 0.337) 1.000 (Control) (Control) (Control) (Control)	$\begin{array}{c} 0.632 \\ (0.527 \leftrightarrow 0.759) \\ p = 0.000^* \\ \hline 1.16 \\ (0.95 \leftrightarrow 1.41) \\ 0.3731 \\ (0.271 \leftrightarrow 0.515) \\ p = 0.000^* \\ \hline 4343 \\ (3543 \leftrightarrow 5322) \\ 0.359 \\ (0.257 \leftrightarrow 0.502) \\ p = 0.000^* \\ \hline GFP- \\ IMPC4\Delta IBB \\ \hline 0.202 \\ (0.191 \leftrightarrow 0.214) \\ 0.632 \\ (0.538 \leftrightarrow 0.741) \\ p = 0.000^* \\ \hline 87.65 \\ (87.08 \leftrightarrow 88.22) \end{array}$	1.000 (Control) (Control) (1.65 ↔ 2.41) 1.000 (Control) (Control) (Control) (Control) (Control) (Control) (Control) (Control) (0.252 ↔ 0.277) 1.000 (Control) (Control) (Control) 87.48 (86.97 ↔ 87.99)	0.766 $(0.637 \leftrightarrow 0.921)$ $p=0.0046^*$ 1.38 $(1.05 \leftrightarrow 1.80)$ 0.691 $(0.499 \leftrightarrow 0.955)$ p=0.0254 5052 $(3803 \leftrightarrow 6712)$ 0.669 $(0.477 \leftrightarrow 0.973)$ p=0.0195 GFP- $IMPc6\Delta IBB$ 0.264 $(0.246 \leftrightarrow 0.283)$ 0.998 $(0.842 \leftrightarrow 1.184)$ p=0.9837 p=0.9837 88.31 $(87.60 \leftrightarrow 89.03)$
I) J) Mean foci K)	Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM∑ foci SFPQ-A546 intensity (per cell) 95% CI Odds Ratio (IMPα Normalised) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) values per SFPQ-A546 nuclear GM foci volume (per foci) 95% CI Odds Ratio (IMPα Normalised) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (GEE) GM foci SFPQ-A546 voxel intensity (per foci) 95% CI Odds Ratio (IMPα Normalised)	2.68 (2.33 ↔ 3.07) 9422 (8159 ↔ 10879) GFP 0.318 (0.307 ↔ 0.329) 89.56	1.000 (Control) 1.96 (1.51 \leftrightarrow 2.54) 1.000 (Control) 7276 (5567 \leftrightarrow 9509) 1.000 (Control) GFP- IMPα2-FL 0.329 (0.309 \leftrightarrow 0.349) 1.000 (Control) 87.21 (86.57 \leftrightarrow 87.85) 1.000	$\begin{array}{c} 1.135 \\ (0.945 \leftrightarrow 1.363) \\ p = 0.1751 \\ \hline 2.44 \\ (1.94 \leftrightarrow 3.06) \\ 1.247 \\ (0.904 \leftrightarrow 1.722) \\ p = 0.1792 \\ \hline 9306 \\ (7313 \leftrightarrow 11843) \\ 1.279 \\ (0.914 \leftrightarrow 1.790) \\ p = 0.1511 \\ \hline GFP \\ IMP\alpha 2 \Delta IBB \\ \hline 0.317 \\ (0.300 \leftrightarrow 0.308) \\ 0.965 \\ (0.773 \leftrightarrow 1.204) \\ p = 0.750 \\ \hline 89.01 \\ (88.32 \leftrightarrow 89.71) \\ 1.02 \\ \end{array}$	$\begin{array}{c} 1.199\\ (0.957\leftrightarrow 1.501)\\ p=0.1152\\ \textbf{2.33}\\ (1.70\leftrightarrow 3.20)\\ 1.1931\\ (0.802\leftrightarrow 1.774)\\ p=0.3835\\ \textbf{9159}\\ (6604\leftrightarrow 12703)\\ 1.259\\ (0.833\leftrightarrow 1.903)\\ p=0.2753\\ \textbf{GFP-}\\ \textbf{IMP}\alpha \textbf{2-ED}\\ \textbf{0.286}\\ (0.266\leftrightarrow 0.308)\\ 0.871\\ (0.693\leftrightarrow 1.094)\\ p=0.234\\ \textbf{89.26}\\ (88.42\leftrightarrow 90.11)\\ 1.02\\ \end{array}$	1.000 (Control) (Control) (2.48 \leftrightarrow 3.89) 1.000 (Control) (Control) (9600 \leftrightarrow 15255) 1.000 (Control) (Control) (Control) (0.303 \leftrightarrow 0.337) 1.000 (Control) (Control) (Control) (Control) (89.51 \leftrightarrow 90.82) 1.000	$\begin{array}{c} 0.632 \\ (0.527 \leftrightarrow 0.759) \\ p = 0.0000^{*} \\ \hline 1.16 \\ (0.95 \leftrightarrow 1.41) \\ 0.3731 \\ (0.271 \leftrightarrow 0.515) \\ p = 0.0000^{*} \\ \hline 4343 \\ (3543 \leftrightarrow 5322) \\ 0.359 \\ (0.257 \leftrightarrow 0.502) \\ p = 0.0000^{*} \\ \hline GFP \\ IMPC4\Delta IBB \\ \hline 0.202 \\ (0.191 \leftrightarrow 0.214) \\ 0.632 \\ (0.538 \leftrightarrow 0.741) \\ p = 0.0000^{*} \\ \hline 87.65 \\ (87.08 \leftrightarrow 88.22) \\ 0.972 \\ \hline \end{array}$	1.000 (Control) (Control) (1.65 ↔ 2.41) 1.000 (Control) (Cont	0.766 $(0.637 \leftrightarrow 0.921)$ $p = 0.0046^*$ 1.38 $(1.05 \leftrightarrow 1.80)$ 0.691 $(0.499 \leftrightarrow 0.955)$ p = 0.0254 $3003 \leftrightarrow 6712$ $(3803 \leftrightarrow 6712)$ $(3803 \leftrightarrow 6712)$ 0.669 $(0.477 \leftrightarrow 0.973)$ p = 0.0195 GFP- $IMP\alpha 6\Delta IBB$ 0.264 $(0.246 \leftrightarrow 0.283)$ 0.998 $(0.842 \leftrightarrow 1.184)$ p = 0.9837 $(0.842 \leftrightarrow 1.184)$ p = 0.9837 $(0.842 \leftrightarrow 1.184)$ p = 0.9837 $(0.842 \leftrightarrow 1.184)$ $(0.842 \leftrightarrow 1.$

		GFP	GFP- IMPα2-FL	GFP- IMPα2ΔIBB	GFP- IMPa2-ED	GFP- IMPα4-FL	GFP- IMPα4ΔIBB	GFP- IMPα6-FL	GFP- ΙΜΡα6ΔΙΒΒ
	GM∑foci SFPQ-A546 intensity (per foci)	1107	1202	1188	1071	1204	728	964	963
	95% CI	$(1068 \mathop{\leftrightarrow} 1149)$	$(1126 \leftrightarrow 1282)$	$(1117 \leftrightarrow 1263)$	$(988 \leftrightarrow 1160)$	$(1135 \leftrightarrow 1278)$	$(684 \leftrightarrow 775)$	$(914 \mathop{\leftrightarrow} 1017)$	$(891 \leftrightarrow 1041)$
M)	Odds Ratio (IMPα Normalised)		1.000	0.993	0.891	1.000	0.604	1.000	0.999
	95% CI		(Control)	$(0.782 \leftrightarrow 1.260)$	$(0.701 \leftrightarrow 1.132)$	(Control)	$(0.507 \leftrightarrow 0.720)$	(Control)	$(0.835 \leftrightarrow 1.196)$
	Significance Value (GEE)			p=0.952	p=0.344		$p = 0.0000^*$		p=0.9931

Table 2. Outcomes of modulating IMP α expression and transport function on endogenous SFPQpositive nuclear foci. The analysed cell numbers for each GFP-tagged IMP α transfection group, the number of detected SFPQ-positive nuclear foci and proportion of cells determined to contain SFPQ nuclear foci (detected by indirect SFPQ immunofluorescence with an Alexa Fluor 546 [A546] secondary antibody) are presented. Samples were assessed on a per cell or per SFPQ nuclear foci basis, with geometric means (GM) and 95% confidence intervals (95% CI) calculated. To determine significant differences between groups, a logistic regression (Lg Reg) model was used for SFPQ foci positive/negative cells, linear regression (Ln Reg) models were used for per cell data and generalised estimating equations (GEE) were used for per PSPC1 nuclear foci data. Comparative significance values using IMP α -FL as the reference groups (set at 1.000) are shown. Using Bonferroni correction, the significance threshold was reassigned from \leq 0.05 to \leq 0.0063 (0.05 \div 8 experimental groups), with those outcomes below the threshold indicated (*). Further details are provided in Fig. 2C with additional samples and analysis parameters included in Supplementary Tables S3 and S6.

.....

Fig. 3B). Many parameters showed a higher value in the IMP α 4-FL sample, including: the percentage of cells with SFPQ nuclear foci (FL:91.3%; Δ IBB:60.2%), the number of foci per cell (FL:8.13; Δ IBB:5.14), the average volume of foci (FL:0.320 μ m³; Δ IBB:0.202 μ m³) and the sum of the SFPQ staining intensity per foci (FL:1204; Δ IBB:728). This demonstrates that IMP α 4 functionality can determine SFPQ localization to nuclear foci.

The IMP α 6-FL group contained a significantly higher percentage of cells with nuclear foci (85.7%) than did the IMP α 6 Δ IBB group (41.2%; p = 0.0000; Table 2D and Fig. 3Bi). A significantly greater F_{n/c} per cell for SFPQ (FL:5.32; Δ IBB:2.66, p = 0.0000), and number of nuclear foci per cell (FL:6.85; Δ IBB:5.25, p = 0.0046) was measured within the IMP α 6-FL group compared to the IMP α 6 Δ IBB group (Table 2E,H and Fig. 3Bi,Biii). The absence of other statistically significant differences indicates that, while the number of paraspeckles per cell differs depending on IMP α 6 functionality, the parameters of individual foci (volumes and SFPQ) do not.

These results show that changes in the functional levels of individual IMP α influence multiple paraspeckle parameters, including the localization of specific, key components. Thus the relative intracellular abundance of individual importins, and their availability for cargo binding, will affect paraspeckle formation.

Functional IMP α protein levels modulate exogenous dsRed2-PSPC1 localization to paraspeckles.

We predicted that the changing levels of specific cargos would also alter how IMP α s influence paraspeckle parameters. To test the impact of IMP α functionality when cargo is elevated, exogenous PSPC1 (dsRed2-PSPC1) and GFP-tagged IMP α constructs were co-transfected into HeLa cells.

A greater but not significantly different (p = 0.0614) proportion of cells contained PSPC1 foci in the IMP α 2-FL (51.3%) compared to IMP α 2-ED samples (43.7%), while this was significantly lower in the IMP α 2 Δ IBB group (38.2%; p = 0.0042, compared to FL; Table 3D and Fig. 3Ci). Only the DsRed2-PSPC1 F_{n/c} value was statistically significantly higher in the FL sample relative to the IMP α 2-ED (p = 0.0001) and Δ IBB (p = 0.0019) groups (FL:1.86; Δ IBB:1.62; ED:1.60; Table 3E and Fig. 3Cii). We interpret this as indicating that cells have an increased capacity for cargo transport (above endogenous levels) in the presence of increased levels of transport-competent IMP α 2. A direct comparison of exogenous versus endogenous PSPC1 data is shown in Supplementary Table S1. As expected, samples containing exogenous PSPC1 have a more and larger nuclear foci containing more PSPC1, relative to samples containing only endogenous PSPC1.

No significant difference in the percentage of cells with nuclear DsRed2-PSPC1 foci was recorded between samples expressing FL (38%) or Δ IBB (39.7%) IMP α 6 variants. However, the F_{n/c} (FL:1.56; Δ IBB:1.86, p = 0.0000) and number of paraspeckles per cell (FL:9.04; Δ IBB:15.58, p = 0.0063) differs significantly. Unexpectedly, the Δ IBB construct displays higher F_{n/c} and paraspeckle number per cell, and the average foci volume per cell trends higher (FL:1.29; Δ IBB:2.59, p = 0.0080, not considered significant with Bonferroni correction).

Analysis of IMP α 4 variants revealed significant effects on several outcomes measured for exogenous PSPC1, but only when considered at the level of individual cells. The IMP α 4-FL values were higher than Δ IBB levels for: percentage of cells with nuclear foci (FL:59.6%; Δ IBB:37%, p = 0.0000), number of foci per cell (FL:14.94; Δ IBB:7.78, p = 0.0001) and cumulative volume of foci (FL:2.48; Δ IBB:1.00, p = 0.0001). No significant reduction in DsRed2-PSPC1 F_{n/c} was recorded, which was different than the significant decreases observed with the transport-deficient isoforms of either IMP α 2 or IMP α 6. This suggests transport of exogenous PSPC1 is not regulated by IMP α 4 levels, but that IMP α 4 does influence PSPC1 localization into paraspeckles. This aligns with ELISA-based assays that measured IMP α 4 binding to PSPC1 only at high IMP α 4 concentrations, with weaker binding than was recorded for IMP α 2 or IMP α 6⁴⁹.

Expression levels of IMP α **2 or IMP** α **4 correlate with PSPC1 nucleocytoplasmic distribution.** As an alternative approach to measuring the outcomes of modulating importin function, IMP α 2

or IMP α 4 knockdown by targeted siRNA was followed by simultaneous detection of either endogenous PSPC1 or SFPQ (each in duplicate experiments) and the relevant IMP α by indirect immunofluorescence (Supplementary Tables S8–S15). The mean intensity of IMP α 2 per cell on a population basis was reduced across the four experimental samples by introduction of siRNA targeting IMP α 2 when compared to the scrambled siRNA control. The IMP α 2 siRNA versus control signals were 0.43 and 0.59 for samples in which PSPC1 was detected, and 0.65 and 0.87 for SFPQ samples (calculated from values in Supplementary Tables S8–S15), demonstrating effective IMP α 2-targeting by these siRNAs. This was confirmed by Western blot with cell lysates (data not shown). Although the attempted siRNA knockdown of IMP α 4 was not consistently effective, these samples provided cell populations with a range of IMP α 4 levels that were used in subsequent analyses.

A faster approach for image acquisition was trialled, using a resonance scanner to capture confocal z-series images for these samples. While scanning times were reduced to approximately 25% (from 32 days with galvo-scan imaging, to 8 days using the resonance scanner), reduced image quality made robust identification of foci impossible. As a consequence, outputs requiring foci detection are not presented or discussed for these experiments. $F_{n/c}$ measurements, which require only detection of the cell nucleus and cytoplasm, were reliably determined from these images, allowing the influence of each IMP α on PSPC1 or SFPQ nuclear accumulation to be determined following resonance scanning. The PSPC1 $F_{n/c}$ values in the IMP α 2 siRNA knockdown samples were reduced to ~80% of their scrambled counterparts (PSPC1: 0.78 and 0.80; SFPQ: 0.81 and 0.94; calculated from values in Supplementary Tables S8–S15).

To explore the flexibility and power of creating hierarchically linked outputs that describe multiple aspects of each cell, a different analysis approach was applied. Instead of making comparisons between siRNA knockdown groups, these outputs based on fluorescence signal were considered across the whole population of cells, regardless of treatment group. Correlations between PSPC1 $F_{n/c}$ and the IMP α signal within each cell are presented in Fig. 4. The upward sloping line in Fig. 4Ai indicates that, as IMP α 2 levels increase within cells, PSPC1 $F_{n/c}$ and increase (correlation coefficients of 0.169 and 0.191 obtained for two independent experiments). The IMP α 4 samples generated the opposite result, showing a reciprocal relationship between PSPC1 $F_{n/c}$ and IMP α 4 levels (downwards sloping trend line, Fig. 4Bi; correlation coefficients of -0.294 and -0.350 for each of two experiments). These results provide an additional indication that IMP α 2 is a nuclear transporter for endogenous PSPC1 in HeLa cells, and they suggest that IMP α 4 is not. An alternative explanation for the lack of correlation with IMP α 4 levels may be that the expression across the cell population is relatively low and uniform, yielding a small dynamic range of signal. A similar analysis for SFPQ did not yield consistent results between replicates (Supplementary Figure S1); we interpret this to indicate IMP α 2 and IMP α 4 are not the only transporters for this paraspeckle protein because knockdown did not alter SFPQ distribution, while over-expression of IMP α s did (Fig. 3).

Finally, non- and mock- transfected cell groups alone were examined to study cell populations with a broad range of endogenous IMP α expression in the absence of any importin manipulations (Fig. 4Aii and Bii). The overall trends observed were similar to those obtained from the complete set of siRNA knockdown samples (Fig. 4Ai and Bi). This result confirms the value of previous studies, in which $F_{n/c}$ values correlate with IMP-based transport outcomes. Most importantly, the result of analyzing cells which have not been transfected demonstrates how application of a high throughput image analysis system can yield sophisticated and functionally relevant outcomes using only indirect immunofluorescence to detect endogenous cargo(s) and IMP proteins. This provides an exciting avenue for studying nucleocytoplasmic transport within intact tissues, by examining developmental systems in the absence of manipulations.

Discussion

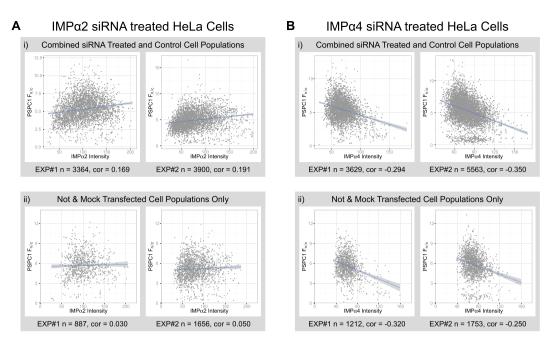
Development and application of an automated image analysis pipeline enabled the rigorous interrogation of how IMP α functionality affects paraspeckle number and size. Imaris software allowed non-subjective and relatively fast batch-processing of hundreds of 3D images to identify cells, nuclei and foci. This was linked into an analysis pipeline using python and R scripts that extended the flexibility of data manipulation and provided access to a diversity of statistical analysis tools and graphical outputs. To also investigate nuclear transport of two key paraspeckle components, PSPC1 and PSF, distinct from their localization for nuclear foci formation, the pipeline calculated the ratio between the fluorescent nuclear and cytoplasmic signals for these proteins ($F_{n/c}$). Manual $F_{n/c}$ measurement is very time-consuming, potentially subjective, and cannot be accurately applied to samples with uneven fluorescent signals that can arise from protein localization to subcellular structures, such as paraspeckles. Because our approach segments the entire nucleus and cytoplasm in 3D, brighter or darker structures in either compartment are accounted for in the measured means. Once appropriate cell/nucleus/vesicle detection parameters have been determined, many images/cells can be analysed easily, with high quality 3D image acquisition times then becoming the primary limiting factor for extending cell analysis numbers. At present, achieving the correct balance between lengthy imaging times and final image quality is a challenging aspect of such high throughput experiments. We trialled the use of resonance confocal scanning to accelerate image acquisition for the IMP α siRNA experiments. The associated loss of image quality made this approach inappropriate for sub-organelle feature scale quantification, however analyses of organelle feature scales (such as $F_{n/c}$ outcomes) for whole cell populations provided meaningful measurement of endogenous nucleocytoplasmic transport activity.

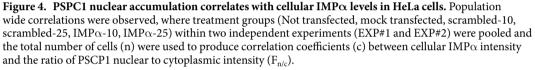
Using an automated high-throughput image analysis pipeline can generate an overwhelming amount of data across multiple parameters in a relatively short time frame; sifting through this to identify the meaningful results can be both challenging and tedious. To help solve this problem we included principal component analysis (PCA) as part of the analysis pipeline. Through PCA, multiple parameters across groups of each experiment were condensed into two principal components, allowing a simple 2D relationship across all included parameters to be generated (Fig. 5). In addition to providing an accessible summary of the results, PCA also helps identify key

		GFP	GFP- IMPα2-FL	GFP- IMPα2ΔIBB	GFP- IMPa2-ED	GFP- IMPα4-FL	GFP- IMPα4ΔIBB	GFP- IMPα6-FL	GFP- IMPα6ΔIBB
A)	Number of cells analysed - Total: 2530	180	228	241	446	317	386	513	219
B)	DsRed2-PSPC1 nuclear foci - Total: 38657	2508	3392	2147	6218	10853	4339	5473	3745
C)	Number of cells +VE for nuclear foci	50	117	92	195	189	143	195	87
	% Cells +VE for foci	27.8%	51.3%	38.2%	43.7%	59.6%	37%	38%	39.7%
	95% CI	(18.7 ↔ 36.8)%	$(38.0 \leftrightarrow 64.6)\%$	$(28.3 \leftrightarrow 48.1)\%$	$(35.5 \leftrightarrow 51.9)\%$	(46.2↔73.0)%	$(29.4 \leftrightarrow 44.7)\%$	$(31.2 \leftrightarrow 44.8)\%$	$(29.0 \mathop{\leftrightarrow} 50.5)\%$
D)	Odds Ratio (IMPα Normalised)		1.000	0.586	0.737	1.000	0.399	1.000	1.075
	95% CI		(Control)	$(0.406 \leftrightarrow 0.846)$	$(0.535 \leftrightarrow 1.015)$	(Control)	$(0.294 \leftrightarrow 0.541)$	(Control)	$(0.777 \leftrightarrow 1.486)$
	Significance Value (Lg Reg)			p=0.0042*	p=0.0614		p=0.0000*		p=0.6625
Mean	per cell values (All cells)	GFP	GFP- IMPα2-FL	GFP- IMPα2ΔIBB	GFP- IMPa2-ED	GFP- IMPα4-FL	GFP- IMPα4∆IBB	GFP- IMPα6-FL	GFP- IMPα6ΔIBB
	GM F _{n/c} per cell - DsRed2- PSPC1	1.66	1.86	1.62	1.60	1.94	1.78	1.56	1.86
	95% CI	$(1.57 \leftrightarrow 1.76)$	$(1.75 \leftrightarrow 1.98)$	$(1.53 \leftrightarrow 1.72)$	$(1.54 \leftrightarrow 1.66)$	$(1.82 \leftrightarrow 2.06)$	$(1.70 \leftrightarrow 1.87)$	$(1.51 \leftrightarrow 1.62)$	$(1.72 \leftrightarrow 3.62)$
E)	Odds Ratio (IMP α Normalised)		1.000	0.873	0.860	1.000	0.922	1.000	1.191
	95% CI		(Control)	$(0.801 \mathop{\leftrightarrow} 0.951)$	$(0.798 \leftrightarrow 0.928)$	(Control)	$(0.859 \leftrightarrow 0.989)$	(Control)	$(1.105 \leftrightarrow 1.284)$
	Significance Value (Ln Reg)			p=0.0019*	p=0.0001*		p=0.0235		p=0.0000*
	GM intensity per cell - DsRed2-PSPC1	5.78	5.85	4.28	5.19	6.38	4.95	4.40	4.59
	95% CI	$(5.57 \leftrightarrow 6.00)$	$(5.66 \leftrightarrow 6.06)$	$(4.123 \leftrightarrow 4.434)$	$(4.99 \leftrightarrow 5.40)$	$(6.12 \leftrightarrow 6.65)$	$(4.76 \leftrightarrow 5.15)$	$(4.28 \leftrightarrow 4.53)$	$(4.38 \leftrightarrow 4.81)$
F)	Odds Ratio (IMP α Normalised)		1.000	0.730	0.887	1.000	0.777	1.000	1.042
	95% CI		(Control)	$(0.685 \leftrightarrow 0.779)$	$(0.838 \leftrightarrow 0.939)$	(Control)	$(0.737 \leftrightarrow 0.819)$	(Control)	$(0.986 \mathop{\leftrightarrow} 1.103)$
	Significance Value (Ln Reg)			p=0.0000*	p=0.0000*		p=0.0000*		p=0.144
	GM intensity per cell – GFP	24.51	11.10	18.05	13.04	10.59	14.31	15.74	14.46
	95% CI	$(21.6 \leftrightarrow 27.9)$	$(10.30 \leftrightarrow 11.96)$	$(16.39 \leftrightarrow 19.89)$	$(12.29 \leftrightarrow 13.84)$	$(9.99 \leftrightarrow 11.22)$	$(13.25 \leftrightarrow 15.47)$	$(14.67 \leftrightarrow 16.88)$	$(13.05 \mathop{\leftrightarrow} 16.01)$
G)	Odds Ratio (IMPα Normalised)		1.000	1.627	1.175	1.000	1.352	1.000	0.919
	95% CI		(Control)	$(1.427 \leftrightarrow 1.855)$	$(1.047 \leftrightarrow 1.139)$	(Control)	$(1.214 \leftrightarrow 1.505)$	(Control)	$(0.819 \mathop{\leftrightarrow} 1.030)$
	Significance Value (Ln Reg)			p=0.0000*	p=0.0062*		p=0.0000*		p=0.1462
	per cell values (DsRed2-PSPC1 ar foci positive cells only)	GFP	GFP- IMPa2-FL	GFP- IMPα2ΔIBB	GFP- IMPa2-ED	GFP- IMPα4-FL	GFP- IMPα4ΔIBB	GFP- IMPα6-FL	$GFP-IMP\alpha 6\Delta IBB$
		12.70	11.51	7.49	10.32	14.94	7.78	9.04	15.58
	GM number of foci (per cell)								
H)	95% CI Odds Ratio (IMPα	$(7.88 \leftrightarrow 20.48)$	(9.04 ↔ 14.65)	$(5.53 \leftrightarrow 10.13)$	$(8.39 \leftrightarrow 12.70)$	$(11.70 \leftrightarrow 19.07)$	$(5.96 \leftrightarrow 10.15)$	$(7.33 \leftrightarrow 11.14)$	$(11.30 \leftrightarrow 21.50)$
H)	95% CI Odds Ratio (IMPα Normalised)		$(9.04 \leftrightarrow 14.65)$ 1.000	0.651	0.897	1.000	$(5.96 \leftrightarrow 10.15)$ 0.521	1.000	1.725
H)	95% CI Odds Ratio (IMP Normalised) 95% CI		(9.04 ↔ 14.65)	0.651 (0.427 ↔ 0.992)	0.897 $(0.629 \leftrightarrow 1.278)$		$(5.96 \leftrightarrow 10.15)$ 0.521 $(0.372 \leftrightarrow 0.729)$, ,	1.725 (1.167 \leftrightarrow 2.549)
H)	95% CI Odds Ratio (IMP Normalised) 95% CI Significance Value (Ln Reg)	(7.88 ↔ 20.48)	(9.04 ↔ 14.65) 1.000 (Control)	$0.651 (0.427 \leftrightarrow 0.992) p = 0.0462$	$0.897 (0.629 \leftrightarrow 1.278) p = 0.5481$	1.000 (Control)	$(5.96 \leftrightarrow 10.15)$ 0.521 $(0.372 \leftrightarrow 0.729)$ $p = 0.0001^*$	1.000 (Control)	$ \begin{array}{r} 1.725 \\ (1.167 \leftrightarrow 2.549) \\ p = 0.0063^* \end{array} $
H)	95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM∑ foci volume (per cell)	(7.88 ↔ 20.48) 2.15	(9.04 ↔ 14.65) 1.000 (Control) 1.88	$0.651 (0.427 \leftrightarrow 0.992) p = 0.0462 1.03$	0.897 (0.629 \leftrightarrow 1.278) p=0.5481 1.43	1.000 (Control) 2.48	$(5.96 \leftrightarrow 10.15)$ 0.521 $(0.372 \leftrightarrow 0.729)$ $p = 0.0001^*$ 1.00	1.000 (Control) 1.29	$\begin{array}{c} 1.725 \\ (1.167 \leftrightarrow 2.549) \\ p = 0.0063^{*} \\ \hline 2.59 \end{array}$
H) I)	95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM∑ foci volume (per cell) 95% CI Odds Ratio (IMPα	(7.88 ↔ 20.48)	(9.04 ↔ 14.65) 1.000 (Control)	$0.651 (0.427 \leftrightarrow 0.992) p = 0.0462$	$0.897 (0.629 \leftrightarrow 1.278) p = 0.5481$	1.000 (Control)	$(5.96 \leftrightarrow 10.15)$ 0.521 $(0.372 \leftrightarrow 0.729)$ $p = 0.0001^*$	1.000 (Control)	$ 1.725 (1.167 \leftrightarrow 2.549) p = 0.0063^* $
	95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM∑ foci volume (per cell) 95% CI Odds Ratio (IMPα Normalised)	(7.88 ↔ 20.48) 2.15	(9.04 ↔ 14.65) 1.000 (Control) 1.88 (1.37 ↔ 2.53) 1.000	0.651 (0.427 \leftarrow 0.992) $p = 0.0462$ 1.03 (0.71 \leftarrow 1.51) 0.550	0.897 (0.629 \leftarrow 1.278) $p = 0.5481$ 1.43 (1.10 \leftarrow 1.86) 0.761	1.000 (Control) 2.48 (1.79 ↔ 3.42) 1.000	$(5.96 \leftrightarrow 10.15)$ 0.521 $(0.372 \leftrightarrow 0.729)$ $p = 0.0001^{*}$ 1.00 $(0.71 \leftrightarrow 1.42)$ 0.405	1.000 (Control) 1.29 (0.97 ↔ 1.71) 1.000	1.725 (1.167 \leftarrow 2.549) $p = 0.0063^*$ 2.59 (1.71 \leftarrow 3.91) 2.003
	95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM ∑ foci volume (per cell) 95% CI Odds Ratio (IMPα Normalised) 95% CI	(7.88 ↔ 20.48) 2.15	$(9.04 \leftrightarrow 14.65)$ 1.000 (Control) 1.88 (1.37 \leftrightarrow 2.53)	$\begin{array}{c} 0.651 \\ (0.427 \leftrightarrow 0.992) \\ p = 0.0462 \\ \hline 1.03 \\ (0.71 \leftrightarrow 1.51) \\ 0.550 \\ (0.316 \leftrightarrow 0.956) \end{array}$	$\begin{array}{c} 0.897 \\ \hline (0.629 \leftrightarrow 1.278) \\ p = 0.5481 \\ \hline 1.43 \\ \hline (1.10 \leftrightarrow 1.86) \\ \hline 0.761 \\ \hline (0.478 \leftrightarrow 1.211) \end{array}$	1.000 (Control) 2.48 $(1.79 \leftrightarrow 3.42)$	$(5.96 \leftrightarrow 10.15)$ 0.521 $(0.372 \leftrightarrow 0.729)$ $p = 0.0001^{*}$ 1.00 $(0.71 \leftrightarrow 1.42)$ 0.405 $(0.261 \leftrightarrow 0.628)$	1.000 (Control) 1.29 $(0.97 \leftrightarrow 1.71)$	$\begin{array}{c} 1.725 \\ (1.167 \leftrightarrow 2.549) \\ p = 0.0063^* \\ \hline 2.59 \\ (1.71 \leftrightarrow 3.91) \\ 2.003 \\ (1.200 \leftrightarrow 3.343) \end{array}$
	95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM Σ foci volume (per cell) 95% CI Odds Ratio (IMPα Normalised) 95% CI Significance Value (Ln Reg) GM Σ foci DSRed2-PSPC1	(7.88 ↔ 20.48) 2.15	(9.04 ↔ 14.65) 1.000 (Control) 1.88 (1.37 ↔ 2.53) 1.000	0.651 (0.427 \leftarrow 0.992) $p = 0.0462$ 1.03 (0.71 \leftarrow 1.51) 0.550	0.897 (0.629 \leftarrow 1.278) $p = 0.5481$ 1.43 (1.10 \leftarrow 1.86) 0.761	1.000 (Control) 2.48 (1.79 ↔ 3.42) 1.000	$(5.96 \leftrightarrow 10.15)$ 0.521 $(0.372 \leftrightarrow 0.729)$ $p = 0.0001^{*}$ 1.00 $(0.71 \leftrightarrow 1.42)$ 0.405	1.000 (Control) 1.29 (0.97 ↔ 1.71) 1.000	1.725 (1.167 \leftrightarrow 2.549) p = 0.0063* 2.59 (1.71 \leftrightarrow 3.91) 2.003
	$\begin{array}{c} 95\% \ CI \\ Odds \ Ratio \ (IMP \alpha \\ Normalised) \\ 95\% \ CI \\ Significance \ Value \ (Ln \ Reg) \\ \hline \mathbf{GM} \sum \mathbf{foci} \ \mathbf{volume} \ (\mathbf{per \ cell}) \\ 95\% \ CI \\ Odds \ Ratio \ (IMP \alpha \\ Normalised) \\ 95\% \ CI \\ \hline Significance \ Value \ (Ln \ Reg) \\ \hline \mathbf{GM} \sum \mathbf{foci} \ \mathbf{DsRed2-PSPC1} \\ \mathbf{intensity} \ (\mathbf{per \ cell}) \\ \end{array}$	$(7.88 \leftrightarrow 20.48)$ 2.15 (1.13 \leftrightarrow 4.08) 8724	(9.04 ↔ 14.65) 1.000 (Control) 1.88 (1.37 ↔ 2.53) 1.000 (Control) 7704	$\begin{array}{c} 0.651 \\ \hline (0.427 \leftrightarrow 0.992) \\ p = 0.0462 \\ \hline 1.03 \\ \hline (0.71 \leftrightarrow 1.51) \\ \hline 0.550 \\ \hline (0.316 \leftrightarrow 0.956) \\ p = 0.0342 \\ \hline 3921 \end{array}$	$\begin{array}{c} 0.897 \\ \hline (0.629 \leftrightarrow 1.278) \\ p = 0.5481 \\ \hline 1.43 \\ \hline (1.10 \leftrightarrow 1.86) \\ \hline 0.761 \\ \hline (0.478 \leftrightarrow 1.211) \\ p = 0.2490 \\ \hline 5499 \end{array}$	1.000 (Control) 2.48 (1.79 ↔ 3.42) 1.000 (Control) 10240	$(5.96 \leftrightarrow 10.15)$ 0.521 $(0.372 \leftrightarrow 0.729)$ $p = 0.0001^{*}$ 1.00 $(0.71 \leftrightarrow 1.42)$ 0.405 $(0.261 \leftrightarrow 0.628)$ $p = 0.0001^{*}$ 3838	1.000 (Control) 1.29 (0.97 ↔ 1.71) 1.000 (Control) 5102	1.725 (1.167 \leftrightarrow 2.549) p=0.0063* 2.59 (1.71 \leftrightarrow 3.91) 2.003 (1.200 \leftrightarrow 3.343) p=0.0080 10400
	95% CI Odds Ratio (IMP α Normalised) 95% CI Significance Value (Ln Reg) GM Σ foci volume (per cell) 95% CI Odds Ratio (IMP α Normalised) 95% CI Odds Ratio (IMP α Normalised) 95% CI Significance Value (Ln Reg) GM Σ foci DsRed2-PSPC1 intensity (per cell) 95% CI Odds Ratio (IMP α	$(7.88 \leftrightarrow 20.48)$ 2.15 (1.13 \leftarrow 4.08)	(9.04 ↔ 14.65) 1.000 (Control) 1.88 (1.37 ↔ 2.53) 1.000 (Control)	$\begin{array}{c} 0.651 \\ (0.427 \leftrightarrow 0.992) \\ p = 0.0462 \\ \hline 1.03 \\ (0.71 \leftrightarrow 1.51) \\ 0.550 \\ (0.316 \leftrightarrow 0.956) \\ p = 0.0342 \end{array}$	$\begin{array}{c} 0.897 \\ \hline (0.629 \leftrightarrow 1.278) \\ p = 0.5481 \\ \hline 1.43 \\ \hline (1.10 \leftrightarrow 1.86) \\ \hline 0.761 \\ \hline (0.478 \leftrightarrow 1.211) \\ p = 0.2490 \end{array}$	1.000 (Control) 2.48 $(1.79 \leftrightarrow 3.42)$ 1.000 (Control)	$\begin{array}{c} (5.96 \leftrightarrow 10.15) \\ \hline 0.521 \\ (0.372 \leftrightarrow 0.729) \\ \hline p = 0.0001^* \\ \hline 1.00 \\ (0.71 \leftrightarrow 1.42) \\ \hline 0.405 \\ (0.261 \leftrightarrow 0.628) \\ \hline p = 0.0001^* \end{array}$	1.000 (Control) 1.29 (0.97 ↔ 1.71) 1.000 (Control)	$\begin{array}{c} 1.725 \\ (1.167 \leftrightarrow 2.549) \\ p = 0.0063^{*} \\ \hline 2.59 \\ (1.71 \leftrightarrow 3.91) \\ \hline 2.003 \\ (1.200 \leftrightarrow 3.343) \\ p = 0.0080 \end{array}$
I)	$\begin{array}{c} 95\% \ CI \\ Odds \ Ratio (IMP \alpha \\ Normalised) \\ 95\% \ CI \\ Significance \ Value (Ln Reg) \\ \hline GM \sum foci \ volume \ (per \ cell) \\ 95\% \ CI \\ Odds \ Ratio (IMP \alpha \\ Normalised) \\ 95\% \ CI \\ \hline Significance \ Value \ (Ln \ Reg) \\ \hline GM \sum foci \ DsRed2-PSPC1 \\ intensity \ (per \ cell) \\ 95\% \ CI \\ \hline \end{array}$	$(7.88 \leftrightarrow 20.48)$ 2.15 (1.13 \leftrightarrow 4.08) 8724	(9.04 ↔ 14.65) 1.000 (Control) 1.88 (1.37 ↔ 2.53) 1.000 (Control) 7704 (5476 ↔ 10840)	$\begin{array}{c} 0.651 \\ (0.427 \leftrightarrow 0.992) \\ p = 0.0462 \\ \hline 1.03 \\ (0.71 \leftrightarrow 1.51) \\ 0.550 \\ (0.316 \leftrightarrow 0.956) \\ p = 0.0342 \\ \hline 3921 \\ (2602 \leftrightarrow 5908) \end{array}$	$\begin{array}{c} 0.897 \\ (0.629 \leftrightarrow 1.278) \\ p = 0.5481 \\ \hline 1.43 \\ (1.10 \leftrightarrow 1.86) \\ 0.761 \\ (0.478 \leftrightarrow 1.211) \\ p = 0.2490 \\ \hline 5499 \\ (4152 \leftrightarrow 7283) \end{array}$	1.000 (Control) 2.48 $(1.79 \leftrightarrow 3.42)$ 1.000 (Control) 10240 (7250 ↔ 14460)	$(5.96 \leftrightarrow 10.15)$ 0.521 $(0.372 \leftrightarrow 0.729)$ $p = 0.0001^*$ 1.00 $(0.71 \leftrightarrow 1.42)$ 0.405 $(0.261 \leftrightarrow 0.628)$ $p = 0.0001^*$ 3838 $(2649 \leftrightarrow 5562)$	1.000 (Control) 1.29 $(0.97 \leftrightarrow 1.71)$ 1.000 (Control) 5102 $(3744 \leftrightarrow 6954)$	1.725 (1.167 \leftrightarrow 2.549) p=0.0063* 2.59 (1.71 \leftrightarrow 3.91) 2.003 (1.200 \leftrightarrow 3.343) p=0.0080 10400 (6684 \leftrightarrow 16190)
I) J)	$\begin{array}{c} & & & & \\ 95\% \ CI \\ \hline Odds \ Ratio (IMP \alpha \\ Normalised) \\ \hline 95\% \ CI \\ \hline Significance \ Value (Ln Reg) \\ \hline GM \sum foci \ volume \ (per \ cell) \\ \hline 95\% \ CI \\ \hline Odds \ Ratio (IMP \alpha \\ Normalised) \\ \hline 95\% \ CI \\ \hline Significance \ Value \ (Ln Reg) \\ \hline GM \sum foci \ DsRed2-PSPC1 \\ intensity \ (per \ cell) \\ \hline 95\% \ CI \\ \hline Odds \ Ratio (IMP \alpha \\ Normalised) \\ \hline 95\% \ CI \\ \hline Odds \ Ratio (IMP \alpha \\ Normalised) \\ \hline 95\% \ CI \\ \hline Odds \ Ratio (IMP \alpha \\ Normalised) \\ \hline 95\% \ CI \\ \hline Odds \ Ratio (IMP \alpha \\ Normalised) \\ \hline 95\% \ CI \\ \hline Odds \ Ratio (IMP \alpha \\ Normalised) \\ \hline 95\% \ CI \\ \hline Significance \ Value \ (Ln \ Reg) \\ \hline \end{array}$	$(7.88 \leftrightarrow 20.48)$ 2.15 (1.13 \leftrightarrow 4.08) 8724	(9.04 ↔ 14.65) 1.000 (Control) 1.88 (1.37 ↔ 2.53) 1.000 (Control) (5476 ↔ 10840) 1.000 (Control)	$\begin{array}{c} 0.651 \\ \hline (0.427\leftrightarrow 0.992) \\ p=0.0462 \\ \hline 1.03 \\ \hline (0.71\leftrightarrow 1.51) \\ \hline 0.550 \\ \hline (0.316\leftrightarrow 0.956) \\ p=0.0342 \\ \hline 3921 \\ \hline (2602\leftrightarrow 5908) \\ \hline 0.509 \\ \hline (0.281\leftrightarrow 9.214) \\ p=0.0259 \\ \end{array}$	$\begin{array}{c} 0.897 \\ \hline 0.629 \leftrightarrow 1.278) \\ p = 0.5481 \\ \hline 1.43 \\ \hline (1.10 \leftrightarrow 1.86) \\ \hline 0.761 \\ \hline (0.478 \leftrightarrow 1.211) \\ p = 0.2490 \\ \hline 5499 \\ \hline (4152 \leftrightarrow 7283) \\ \hline 0.714 \\ \hline (0.434 \leftrightarrow 1.175) \\ p = 0.1850 \end{array}$	1.000 (Control) 2.48 (1.79 ↔ 3.42) 1.000 (Control) 10240 (7250 ↔ 14460) 1.000 (Control)	$(5.96 \leftrightarrow 10.15)$ $(5.96 \leftrightarrow 10.15)$ $(0.372 \leftrightarrow 0.729)$ $p = 0.0001^*$ 1.00 $(0.71 \leftrightarrow 1.42)$ 0.405 $(0.261 \leftrightarrow 0.628)$ $p = 0.0001^*$ 3838 $(2649 \leftrightarrow 5562)$ 0.375 $(0.234 \leftrightarrow 6.012)$ $p = 0.0001^*$	1.000 (Control) 1.29 (0.97 ↔ 1.71) 1.000 (Control) 5102 (3744 ↔ 6954) 1.000 (Control)	$\begin{array}{c} 1.725 \\ (1.167 \leftrightarrow 2.549) \\ p = 0.0063^* \\ \hline 2.59 \\ (1.71 \leftrightarrow 3.91) \\ \hline 2.003 \\ (1.200 \leftrightarrow 3.343) \\ p = 0.0080 \\ \hline 0.008$
I) J)	95% CI Odds Ratio (IMP α Normalised) 95% CI Significance Value (Ln Reg) GM Σ foci volume (per cell) 95% CI Odds Ratio (IMP α Normalised) 95% CI Significance Value (Ln Reg) GM Σ foci DsRed2-PSPC1 intensity (per cell) 95% CI Odds Ratio (IMP α Normalised) 95% CI Odds Ratio (IMP α Normalised) 95% CI Significance Value (Ln Reg) 95% CI Odds Ratio (IMP α Normalised) 95% CI Significance Value (Ln Reg) values per DsRed2-PSPC1	$(7.88 \leftrightarrow 20.48)$ 2.15 (1.13 \leftrightarrow 4.08) 8724	(9.04 ↔ 14.65) 1.000 (Control) 1.88 (1.37 ↔ 2.53) 1.000 (Control) (Control) (5476 ↔ 10840) 1.000	$\begin{array}{c} 0.651 \\ \hline (0.427\leftrightarrow 0.992) \\ p=0.0462 \\ \hline 1.03 \\ \hline (0.71\leftrightarrow 1.51) \\ \hline 0.550 \\ \hline (0.316\leftrightarrow 0.956) \\ p=0.0342 \\ \hline 3921 \\ \hline (2602\leftrightarrow 5908) \\ \hline 0.509 \\ \hline (0.281\leftrightarrow 9.214) \end{array}$	$\begin{array}{c} 0.897 \\ \hline 0.629 \leftrightarrow 1.278) \\ p = 0.5481 \\ \hline 1.43 \\ \hline (1.10 \leftrightarrow 1.86) \\ \hline 0.761 \\ \hline (0.478 \leftrightarrow 1.211) \\ p = 0.2490 \\ \hline 5499 \\ \hline (4152 \leftrightarrow 7283) \\ \hline 0.714 \\ \hline (0.434 \leftrightarrow 1.175) \end{array}$	1.000 (Control) 2.48 $(1.79 \leftrightarrow 3.42)$ 1.000 (Control) 10240 (7250 \leftrightarrow 14460) 1.000	$(5.96 \leftrightarrow 10.15)$ 0.521 $(0.372 \leftrightarrow 0.729)$ $p = 0.0001^*$ 1.00 $(0.71 \leftrightarrow 1.42)$ 0.405 $(0.261 \leftrightarrow 0.628)$ $p = 0.0001^*$ 3838 $(2649 \leftrightarrow 5562)$ 0.375 $(0.234 \leftrightarrow 6.012)$	1.000 (Control) 1.29 $(0.97 \leftrightarrow 1.71)$ 1.000 (Control) 5102 $(3744 \leftrightarrow 6954)$ 1.000	$\begin{array}{c} 1.725 \\ (1.167 \leftrightarrow 2.549) \\ p = 0.0063^* \\ \hline 2.59 \\ (1.71 \leftrightarrow 3.91) \\ 2.003 \\ (1.200 \leftrightarrow 3.343) \\ p = 0.0080 \\ \hline 10400 \\ (6684 \leftrightarrow 16190) \\ 2.039 \\ (1.177 \leftrightarrow 3.532) \end{array}$
I) J) Mean	95% CIOdds Ratio (IMP α Normalised)95% CISignificance Value (Ln Reg)GM Σ foci volume (per cell)95% CIOdds Ratio (IMP α Normalised)95% CISignificance Value (Ln Reg)GM Σ foci DsRed2-PSPC1 intensity (per cell)95% CIOdds Ratio (IMP α Normalised)95% CIOdds Ratio (IMP α Normalised)95% CIOdds Ratio (IMP α Normalised)95% CISignificance Value (Ln Reg)values per DsRed2-PSPC1 ur fociGM foci volume (per foci)	(7.88 ↔ 20.48) 2.15 (1.13 ↔ 4.08) 8724 (4397 ↔ 17310) GFP 0.215	(9.04 ↔ 14.65) 1.000 (Control) 1.88 (1.37 ↔ 2.53) 1.000 (Control) (Control) (5476 ↔ 10840) 1.000 (Control) (Control)	$\begin{array}{c} 0.651 \\ (0.427 \leftrightarrow 0.992) \\ p = 0.0462 \\ \hline 1.03 \\ (0.71 \leftrightarrow 1.51) \\ 0.550 \\ (0.316 \leftrightarrow 0.956) \\ p = 0.0342 \\ \hline 3921 \\ (2602 \leftrightarrow 5908) \\ \hline 0.509 \\ (0.281 \leftrightarrow 9.214) \\ p = 0.0259 \\ \hline \mathbf{GFP} \end{array}$	$\begin{array}{c} 0.897 \\ \hline 0.629 \leftrightarrow 1.278) \\ p = 0.5481 \\ \hline 1.43 \\ \hline (1.10 \leftrightarrow 1.86) \\ \hline 0.761 \\ \hline (0.478 \leftrightarrow 1.211) \\ p = 0.2490 \\ \hline 5499 \\ \hline (4152 \leftrightarrow 7283) \\ \hline 0.714 \\ \hline (0.434 \leftrightarrow 1.175) \\ p = 0.1850 \\ \hline GFP- \end{array}$	1.000 (Control) 2.48 (1.79 ↔ 3.42) 1.000 (Control) (7250 ↔ 14460) 1.000 (Control) 1.000 (Control) GFP- IMPα4-FL 0.229	$(5.96 \leftrightarrow 10.15)$ $(5.96 \leftrightarrow 10.15)$ $(0.372 \leftrightarrow 0.729)$ $p = 0.0001^*$ 1.00 $(0.71 \leftrightarrow 1.42)$ 0.405 $(0.261 \leftrightarrow 0.628)$ $p = 0.0001^*$ 3838 $(2649 \leftrightarrow 5562)$ 0.375 $(0.234 \leftrightarrow 6.012)$ $p = 0.0001^*$ $GFP-$	1.000 (Control) 1.29 (0.97 ↔ 1.71) 1.000 (Control) 5102 (3744 ↔ 6954) 1.000 (Control) GFP- IMPcc6-FL 0.197	$\begin{array}{c} 1.725 \\ (1.167 \leftrightarrow 2.549) \\ p = 0.0063^{*} \\ \hline 2.59 \\ (1.71 \leftrightarrow 3.91) \\ \hline 2.003 \\ (1.200 \leftrightarrow 3.343) \\ p = 0.0080 \\ \hline 0.0$
I) J) Mean	95% CIOdds Ratio (IMP α Normalised)95% CISignificance Value (Ln Reg)GM Σ foci volume (per cell)95% CIOdds Ratio (IMP α Normalised)95% CISignificance Value (Ln Reg)GM Σ foci DsRed2-PSPC1 intensity (per cell)95% CIOdds Ratio (IMP α Normalised)95% CIOdds Ratio (IMP α Normalised)95% CIOdds Ratio (IMP α Normalised)95% CISignificance Value (Ln Reg)values per DsRed2-PSPC1 art fociGM foci volume (per foci) 95% CI95% CI	(7.88 ↔ 20.48) 2.15 (1.13 ↔ 4.08) 8724 (4397 ↔ 17310) GFP	(9.04 ↔ 14.65) 1.000 (Control) 1.88 (1.37 ↔ 2.53) 1.000 (Control) (Control) (5476 ↔ 10840) 1.000 (Control) 1.000 (Control)	$\begin{array}{c} 0.651 \\ (0.427 \leftrightarrow 0.992) \\ p = 0.0462 \\ \hline 1.03 \\ (0.71 \leftrightarrow 1.51) \\ 0.550 \\ (0.316 \leftrightarrow 0.956) \\ p = 0.0342 \\ \hline 3921 \\ (2602 \leftrightarrow 5908) \\ 0.509 \\ (0.281 \leftrightarrow 9.214) \\ p = 0.0259 \\ \hline GFP- \\ IMP & (\Delta AIBB) \\ \end{array}$	$\begin{array}{c} 0.897 \\ \hline 0.629 \leftrightarrow 1.278) \\ p = 0.5481 \\ \hline 1.43 \\ \hline (1.10 \leftrightarrow 1.86) \\ \hline 0.761 \\ \hline (0.478 \leftrightarrow 1.211) \\ p = 0.2490 \\ \hline 5499 \\ \hline (4152 \leftrightarrow 7283) \\ \hline 0.714 \\ \hline (0.434 \leftrightarrow 1.175) \\ p = 0.1850 \\ \hline GFP- \\ IMP \alpha 2-ED \\ \end{array}$	1.000 (Control) 2.48 (1.79 ↔ 3.42) 1.000 (Control) (Control) (7250 ↔ 14460) 1.000 (Control) 3.000 (Control)	$(5.96 \leftrightarrow 10.15)$ $(5.96 \leftrightarrow 10.15)$ $(0.372 \leftrightarrow 0.729)$ $p = 0.0001^*$ 1.00 $(0.71 \leftrightarrow 1.42)$ 0.405 $(0.261 \leftrightarrow 0.628)$ $p = 0.0001^*$ 3838 $(2649 \leftrightarrow 5562)$ 0.375 $(0.234 \leftrightarrow 6.012)$ $p = 0.0001^*$ $GFP-$ $IMP \alpha 4 \Delta IBB$	1.000 (Control) 1.29 (0.97 ↔ 1.71) 1.000 (Control) 5102 (3744 ↔ 6954) 1.000 (Control) 1.000	$\begin{array}{c} 1.725 \\ (1.167 \leftrightarrow 2.549) \\ p = 0.0063^* \\ \hline 2.59 \\ (1.71 \leftrightarrow 3.91) \\ 2.003 \\ (1.200 \leftrightarrow 3.343) \\ p = 0.0080 \\ \hline 0.0080 $
I) J) Mean	95% CIOdds Ratio (IMP α Normalised)95% CISignificance Value (Ln Reg)GM Σ foci volume (per cell)95% CIOdds Ratio (IMP α Normalised)95% CISignificance Value (Ln Reg)GM Σ foci DsRed2-PSPC1 intensity (per cell)95% CIOdds Ratio (IMP α Normalised)95% CIOdds Ratio (IMP α Normalised)95% CIOdds Ratio (IMP α Normalised)95% CISignificance Value (Ln Reg)values per DsRed2-PSPC1 ur fociGM foci volume (per foci)	(7.88 ↔ 20.48) 2.15 (1.13 ↔ 4.08) 8724 (4397 ↔ 17310) GFP 0.215	(9.04 ↔ 14.65) 1.000 (Control) 1.88 (1.37 ↔ 2.53) (Control) (Control) (5476 ↔ 10840) (5476 ↔ 10840) (Control) 1.000 (Control) (Control) 1.000 (Control) (C	$\begin{array}{c} 0.651 \\ (0.427 \leftrightarrow 0.992) \\ p = 0.0462 \\ \hline 1.03 \\ (0.71 \leftrightarrow 1.51) \\ 0.550 \\ (0.316 \leftrightarrow 0.956) \\ p = 0.0342 \\ \hline 3921 \\ (2602 \leftrightarrow 5908) \\ 0.509 \\ (0.281 \leftrightarrow 9.214) \\ p = 0.0259 \\ \hline GFP- \\ IMP\alpha 2\Delta IBB \\ \hline 0.159 \\ \hline \end{array}$	$\begin{array}{c} 0.897 \\ \hline 0.629 \leftrightarrow 1.278) \\ p = 0.5481 \\ \hline 1.43 \\ \hline (1.10 \leftrightarrow 1.86) \\ \hline 0.761 \\ \hline (0.478 \leftrightarrow 1.211) \\ p = 0.2490 \\ \hline 5499 \\ \hline (4152 \leftrightarrow 7283) \\ \hline 0.714 \\ \hline (0.434 \leftrightarrow 1.175) \\ p = 0.1850 \\ \hline GFP_{IMP\alpha 2-ED} \\ \hline 0.155 \\ \hline \end{array}$	1.000 (Control) 2.48 (1.79 ↔ 3.42) 1.000 (Control) (7250 ↔ 14460) 1.000 (Control) 1.000 (Control) GFP- IMPα4-FL 0.229	$(5.96 \leftrightarrow 10.15)$ $(5.96 \leftrightarrow 10.15)$ $(0.372 \leftrightarrow 0.729)$ $p = 0.0001^*$ 1.00 $(0.71 \leftrightarrow 1.42)$ $(0.261 \leftrightarrow 0.628)$ $p = 0.0001^*$ 3838 $(2649 \leftrightarrow 5562)$ $(0.234 \leftrightarrow 6.012)$ $p = 0.0001^*$ $GFP-$ $IMPCA \Delta IBB$ 0.179	1.000 (Control) 1.29 (0.97 ↔ 1.71) 1.000 (Control) 5102 (3744 ↔ 6954) 1.000 (Control) GFP- IMPcc6-FL 0.197	$\begin{array}{c} 1.725 \\ (1.167 \leftrightarrow 2.549) \\ p = 0.0063^{*} \\ \hline 2.59 \\ (1.71 \leftrightarrow 3.91) \\ \hline 2.003 \\ (1.200 \leftrightarrow 3.343) \\ p = 0.0080 \\ \hline 0.0$
I) J) Mean nucles	95% CI Odds Ratio (IMP α Normalised) 95% CI Significance Value (Ln Reg) GM Σ foci volume (per cell) 95% CI Odds Ratio (IMP α Normalised) 95% CI Significance Value (Ln Reg) GM Σ foci DsRed2-PSPC1 intensity (per cell) 95% CI Odds Ratio (IMP α Normalised) 95% CI Odds Ratio (IMP α Normalised) 95% CI Significance Value (Ln Reg) values per DsRed2-PSPC1 ut foci GM foci volume (per foci) 95% CI Significance Value (Ln Reg) values per DsRed2-PSPC1 ut foci GM foci volume (per foci) 95% CI Odds Ratio (IMP α	(7.88 ↔ 20.48) 2.15 (1.13 ↔ 4.08) 8724 (4397 ↔ 17310) GFP 0.215	(9.04 ↔ 14.65) 1.000 (Control) 1.88 (1.37 ↔ 2.53) 1.000 (Control) (Control) (5476 ↔ 10840) 1.000 (Control) (Control) GFP- IMPcx2-FL 0.162 (0.157 ↔ 0.167)	0.651 $(0.427 \leftrightarrow 0.992)$ p=0.0462 1.03 $(0.71 \leftrightarrow 1.51)$ 0.550 $(0.316 \leftrightarrow 0.956)$ p=0.0342 3921 $(2602 \leftrightarrow 5908)$ 0.509 $(0.281 \leftrightarrow 9.214)$ p=0.0259 GFP- IMP $\alpha 2 \Delta 1BB$ 0.159 $(0.152 \leftrightarrow 0.166)$	$\begin{array}{c} 0.897 \\ (0.629 \leftrightarrow 1.278) \\ p = 0.5481 \\ \hline 1.43 \\ (1.10 \leftrightarrow 1.86) \\ 0.761 \\ (0.478 \leftrightarrow 1.211) \\ p = 0.2490 \\ \hline 5499 \\ (4152 \leftrightarrow 7283) \\ 0.714 \\ (0.434 \leftrightarrow 1.175) \\ p = 0.1850 \\ \hline GFP \\ IMP \approx 2-ED \\ 0.155 \\ (0.151 \leftrightarrow 0.159) \end{array}$	1.000 (Control) (Control) (Control) (Control) (Control) (7250 ↔ 14460) 1.000 (Control) (Control) (Control) (Control) (Control) (Control) (Control)	$(5.96 \leftrightarrow 10.15)$ $(5.96 \leftrightarrow 10.15)$ 0.521 $(0.372 \leftrightarrow 0.729)$ $p = 0.0001^*$ 1.00 $(0.71 \leftrightarrow 1.42)$ 0.405 $(0.261 \leftrightarrow 0.628)$ $p = 0.001^*$ 3838 $(2649 \leftrightarrow 5562)$ 0.375 $(0.234 \leftrightarrow 6.012)$ $p = 0.0001^*$ $GFP-IMP\alpha4\Delta IBB$ 0.179 $(0.174 \leftrightarrow 0.185)$	1.000 (Control) (Control) (0.97 ↔ 1.71) 1.000 (Control) (Control) (3744 ↔ 6954) 1.000 (Control) (Control) (Control) (Control) (0.192 ↔ 0.202)	1.725 $(1.167 \leftrightarrow 2.549)$ $p = 0.0063^*$ 2.59 $(1.71 \leftrightarrow 3.91)$ 2.003 $(1.200 \leftrightarrow 3.343)$ $p = 0.0080$ 10400 $(6684 \leftrightarrow 16190)$ 2.039 $(1.177 \leftrightarrow 3.532)$ $p = 0.0112$ GFP $IMPc6\Delta IBB$ 0.180 $(0.174 \leftrightarrow 0.185)$
I) J) Mean nuclea K)	95% CI Odds Ratio (IMP α Normalised) 95% CI Significance Value (Ln Reg) GM \sum foci volume (per cell) 95% CI Odds Ratio (IMP α Normalised) 95% CI Significance Value (Ln Reg) GM \sum foci DsRed2-PSPC1 intensity (per cell) 95% CI Odds Ratio (IMP α Normalised) 95% CI Significance Value (Ln Reg) values per DsRed2-PSPC1 ur foci GM foci volume (per foci) 95% CI Odds Ratio (IMP α Normalised)	(7.88 ↔ 20.48) 2.15 (1.13 ↔ 4.08) 8724 (4397 ↔ 17310) GFP 0.215	(9.04 ↔ 14.65) 1.000 (Control) 1.88 (1.37 ↔ 2.53) 1.000 (Control) (Control) (5476 ↔ 10840) (5476 ↔ 10840) 1.000 (Control) (Control	0.651 $(0.427 \leftrightarrow 0.992)$ p=0.0462 1.03 $(0.71 \leftrightarrow 1.51)$ 0.550 $(0.316 \leftrightarrow 0.956)$ p=0.0342 3921 $(2602 \leftrightarrow 5908)$ 0.509 $(0.281 \leftrightarrow 9.214)$ p=0.0259 GFP- IMP $\alpha 2\Delta IBB$ 0.159 $(0.152 \leftrightarrow 0.166)$ 0.980	$\begin{array}{c} 0.897 \\ \hline 0.629 \leftrightarrow 1.278) \\ p = 0.5481 \\ \hline 1.43 \\ \hline (1.10 \leftrightarrow 1.86) \\ \hline 0.761 \\ \hline (0.478 \leftrightarrow 1.211) \\ p = 0.2490 \\ \hline 5499 \\ \hline (4152 \leftrightarrow 7283) \\ \hline 0.714 \\ \hline (0.434 \leftrightarrow 1.175) \\ p = 0.1850 \\ \hline GFP- \\ IMP \alpha 2-ED \\ \hline 0.155 \\ \hline (0.151 \leftrightarrow 0.159) \\ \hline 0.956 \\ \end{array}$	1.000 (Control) (Control) (Control) (Control) (Control) (7250 ↔ 14460) 1.000 (Control) (Control) (Control) (0.225 ↔ 0.234) (0.225 ↔ 0.234)	$(5.96 \leftrightarrow 10.15)$ $(5.96 \leftrightarrow 10.15)$ $(0.372 \leftrightarrow 0.729)$ $p = 0.0001^*$ 1.00 $(0.71 \leftrightarrow 1.42)$ $(0.261 \leftrightarrow 0.628)$ $p = 0.0001^*$ 3838 $(2649 \leftrightarrow 5562)$ $(0.234 \leftrightarrow 6.012)$ $p = 0.0001^*$ $GFP-$ $IMP\alpha4\Delta IBB$ 0.179 $(0.174 \leftrightarrow 0.185)$ 0.783	1.000 (Control) 1.29 (0.97 ↔ 1.71) 1.000 (Control) (Control) (3744 ↔ 6954) 1.000 (Control) (Control) (0.97 ↔ 0.902) (0.192 ↔ 0.202) 1.000	1.725 $(1.167 \leftrightarrow 2.549)$ $p=0.0063^*$ 2.59 $(1.71 \leftrightarrow 3.91)$ 2.003 $(1.200 \leftrightarrow 3.343)$ $p=0.0080$ 10400 $(6684 \leftrightarrow 16190)$ $(6684 \leftrightarrow 16190)$ $(.177 \leftrightarrow 3.532)$ $p=0.0112$ $GFP-$ $IMPcc\Delta 1BB$ 0.180 $(0.174 \leftrightarrow 0.185)$ 0.911

		GFP	GFP- IMPa2-FL	GFP- IMPα2ΔIBB	GFP- IMPa2-ED	GFP- IMPα4-FL	GFP- IMPα4∆IBB	GFP- IMPα6-FL	GFP- IMPα6ΔIBB
	GM foci DsRed2-PSPC1 voxel intensity (per foci)	99.89	95.18	97.14	92.37	102.8	95.52	102.1	97.08
	95% CI	$(98.84 \leftrightarrow 100.9)$	$(94.42 \leftrightarrow 95.94)$	$(95.95 \leftrightarrow 98.34)$	$(91.83 \leftrightarrow 92.92)$	$(102.3 \leftrightarrow 103.4)$	$(94.76 \leftrightarrow 96.29)$	$(101.3 \leftrightarrow 102.9)$	$(96.22 \leftrightarrow 97.94)$
L)	Odds Ratio (IMP α Normalised)		1.000	1.023	0.971	1.000	0.929	1.000	0.951
	95% CI		(Control)	$(0.931 \leftrightarrow 1.12)$	$(0.924 \leftrightarrow 1.02)$	(Control)	$(0.861 \leftrightarrow 1.002)$	(Control)	$(0.880 \leftrightarrow 1.026)$
	Significance Value (GEE)			p=0.637	p=0.232		p=0.0565		p=0.1947
	GM∑foci DsRed2-PSPC1 intensity (per foci)	885	614	613	577	970	694	820	707
	95% CI	$(845 \leftrightarrow 928)$	$(590 \leftrightarrow 638)$	$(581 \leftrightarrow 647)$	$(560 \leftrightarrow 594)$	$(946 \leftrightarrow 994)$	$(669 \leftrightarrow 720)$	$(793 \leftrightarrow 848)$	(679 ↔ 736)
M)	Odds Ratio (IMPα Normalised)		1.000	1.00	0.94	1.000	0.716	1.000	0.862
	95% CI		(Control)	$(0.649 \leftrightarrow 1.55)$	$(0.726 \leftrightarrow 1.22)$	(Control)	$(0.532 \leftrightarrow 0.963)$	(Control)	$(0.617 \leftrightarrow 1.205)$
	Significance Value (GEE)			p=0.991	p=0.6383		p=0.0270		p=0.385

Table 3. Outcomes of modulating IMP α expression and transport function on exogenous dsRed2-PSPC1-positive nuclear foci. The analysed cell numbers for each GFP-tagged IMP α group, all co-transfected with DsRed2-PSPC1, the number of detected DsRed2-PSPC1-positive nuclear foci and proportion of cells determined to contain DsRed2-PSPC1 nuclear foci (detected by DsRed2-PSPC1 fluorescence) are presented. Samples were assessed on a per cell or per DsRed2-PSPC1 nuclear foci basis, with geometric means (GM) and 95% confidence intervals (95% CI) calculated. To determine significant differences between groups, a logistic regression (Lg Reg) model was used for DsRed2-PSPC1 foci positive/negative cells, linear regression (Ln Reg) models were used for per cell data and generalised estimating equations (GEE) were used for per DsRed2-PSPC1 nuclear foci data. Comparative significance values using IMP α -FL as the reference groups (set at 1.000) are shown. Using Bonferroni correction, the significance threshold was reassigned from ≤ 0.05 to ≤ 0.0063 (0.05 \div 8 experimental groups), with those outcomes below the threshold indicated (*). Further details are provided in Fig. 2B with additional samples and analysis parameters included in Supplementary Tables S4 and S7.

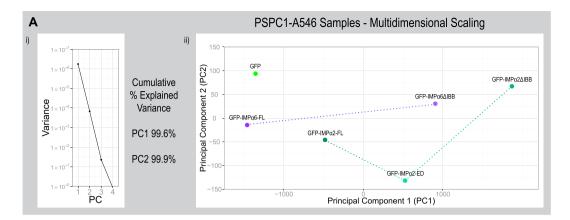

.....

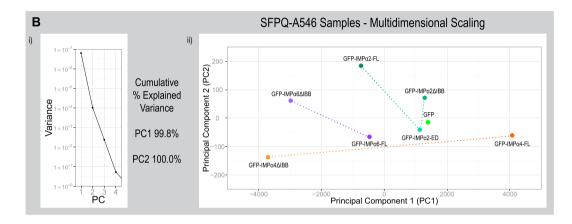

outcomes during the initial stages of data analysis, thereby providing strategic directions for subsequent data interrogation.

The results in this study collectively demonstrate that modulating functional levels of IMP α 2, IMP α 4 and IMP α 6 will impact nuclear import and delivery of PSPC1 and SFPQ to nuclear paraspeckles, and also provides evidence that the relative abundance of individual IMP α s and the cargo paraspeckle protein(s) influences these outcomes. In addition to reinforcing the knowledge that PSPC1 is a transport cargo of $IMP\alpha 2^{49}$, the manipulation of IMPa6 functionality in HeLa cells provides new evidence that this importin can also effect nuclear transport of this core paraspeckle protein. The transport role of $IMP\alpha4$ is less clear, because the $F_{n/c}$ of over-expressed PSPC1 was not significantly different between samples co-transfection with either fully functional (FL) or transport-deficient (Δ IBB) isoforms. This contrasts with IMP α 2 and IMP α 6, for which the Δ IBB variants had lower nuclear-localized PSPC1 relative to FL counterparts. The endogenous SFPQ dataset (Fig. 3B and Table 2) differs, with IMP $\alpha 2$, IMP $\alpha 4$ and IMP $\alpha 6$ isoforms each influencing nuclear accumulation (F_{n/c}) and the percentage of foci-positive cells. Given that SFPQ has not been documented as an IMP α cargo, further investigation would be required to determine if these effects are a result of direct or indirect actions of IMP α . Importantly, all SFPQ paraspeckle parameters are significantly influenced by the IMP α 4 isoform (but not by IMP α 2 and IMP α 6, for which no individual foci parameters were affected). This suggests a unique functional relationship exists between SFPQ and IMP α 4 that facilitates SFPQ nuclear import and paraspeckle localization. IMP α 4 over-expression does not increase exogenous PSPC1 nuclear accumulation, but increases DsRed2-PSPC1 nuclear foci numbers, indicative of higher paraspeckle numbers in each cell. We hypothesize that $IMP\alpha4$ over-expression mediates paraspeckle enlargement, potentially through the elevation of SFPQ in paraspeckles, thereby stabilizing NEAT1 RNA¹⁷, and enabling higher levels of PSPC1 recruitment and accumulation into paraspeckles.

These findings will be of particular importance in developmental systems in which IMP α levels are dynamically regulated and paraspeckles or components thereof are also present. We previously showed that IMP α 2 expression peaks in the embryonic mouse testis (E12.5) and the adult mouse testis at developmental stages overlapping with PSPC1 expression⁴⁹. NEAT1 transcripts also increase during muscle differentiation from myoblasts into myotubes, when paraspeckles are documented as enlarged and present in greater numbers¹². This observation is interesting given that regulated expression of the nuclear transport machinery has also been implicated in muscle differentiation, with increasing IMP α 2 linked to myoblast proliferation, myocyte migration and myotube size⁴⁶.

IMP α 2 expression has been identified as a prognostic marker of poor outcome in many cancers⁵⁸, including those in which the long non-coding paraspeckle RNA NEAT1 has been independently implicated, including breast^{59–62}, colon⁶³, liver⁶⁴ and lung^{65,66}. The link identified here between functional IMP α levels and the nuclear accumulation and localization of PSPC1 and SFPQ to paraspeckles leads us to speculate that enhanced paraspeckle formation and function may affect prognostic outcomes and provide therapeutic targets in oncology. The automated image analysis pipeline allowed for non-subjective, comprehensive examination of subcellular features on a mass scale, with the number of cells analysed extending far beyond what is feasible with manual analysis.


This adaptable, high-throughput analysis pipeline could be used to answer other research questions requiring quantification of subtle changes at subcellular levels or larger imaging scales. Within the Imaris cells module, the object named "vesicles" can be used to identify spots or foci, while the "nucleus" and "cell" components will identify larger objects. These three object types do not have to be cells, nuclei or vesicles; they could be anything, micro or macro, that is identifiable by intensity thresholding. Because the parameters from these object types are linked hierarchically within Imaris, the diversity of outputs, and information about their inter-relationships, is extensive. Furthermore, custom parameters can be achieved by those with programming knowledge by creating Imaris plug-ins (XTensions) or calculating them from existing Imaris outputs within the R environment for statistical computing. As imaging techniques advance and larger 3D data sets can be acquired in shorter time frames, automated analysis pipelines such as this, which allow subtle subcellular events to be rigorously interrogated across many thousands or millions of cells, will deepen our understanding of fundamental cellular processes.


Materials and Methods

Constructs. GFP-tagged IMP α constructs for mammalian cell expression were generated previously^{44,50,55} and encoded full length IMP α variants (GFP-IMP α 2-FL, GFP-IMP α 4-FL, GFP-IMP α 6-FL), ED mutants (GFP-IMP α 2-ED) and truncated dominant negative IMP α s (GFP-IMP α 2 Δ IBB, GFP-IMP α 4 Δ IBB, GFP-IMP α 6 Δ IBB). The murine PSPC1 sequence (encoding aa 3–523) was amplified by PCR and recombined into a DsRed2-tagged mammalian cell expression vector using the Invitrogen Gateway System, as previously described⁴⁹.

Cell culture, transfection and indirect immunofluorescent staining. HeLa cells were maintained in Dulbecco's modified eagle medium with 10% (v/v) fetal calf serum, Penicillin-Streptomycin (Pen-Strep), L-Glutamine and MEM Non-Essential Amino Acids in 5% CO₂ at 37 °C. Twenty-four hrs prior to transfection, cells were seeded on round coverslips in medium lacking Pen-Strep in 12 well plates for siRNA knockdown or 24 well plates for GFP/RFP-tagged construct transfections. Lipofectamine 2000 (Invitrogen) was used to transfect PSPC1 and IMP α 2 constructs, following the manufacturer's method with 2.5 µg of DNA (single plasmid or 1.25 µg of each for co-transfection). The Dharmacon ON-TARGETplus siRNA system (GE Life Sciences) with DharmaFECT 1 transfection reagent was used as per manufacturer's instructions. Pre-designed siRNAs targeting IMP α 2 (SMARTpool L-004702-00) and IMP α 4 (SMARTpool L-017477-00) were used, with a non-targeting (SCRAM siRNA) control pool (D-001810-10) as the siRNA negative control.

At 48 hrs post transfection, cells were fixed in 3.2% paraformaldehyde (in PBS) for 10 min and washed $(2 \times 5 \text{ min}, \text{PBS})$ before proceeding to indirect immunofluorescence staining, as previously⁴⁹. To detect endogenous mouse PSPC1 and SFPQ, mouse monoclonal antibodies specific to SFPQ and to the longer PSPC1 isoform were used⁶⁷. Rabbit anti-IMP α 2 (Abcam, cat#ab84440) and goat anti-IMP α 4 (Abcam, cat#ab6039) were used to detect IMP α 2 and IMP α 4, respectively, for immunofluorescence. Primary antibodies (1:100 in 0.5% BSA/PBS) were applied overnight at 4°C. Secondary antibodies, rabbit anti-mouse Alexa Fluor 546 (Molecular Probes-Invitrogen, cat#A11060) for GFP/RFP-tagged transfections and donkey anti-mouse Alexa Fluor 488 (Molecular Probes-Invitrogen, cat#A21202) plus goat anti-rabbit Alexa Fluor 546 (Molecular Probes-Invitrogen, cat#A21202) plus goat anti-rabbit Alexa Fluor 546 (Molecular Probes-Invitrogen, cat#A21202) plus goat anti-rabbit Alexa Fluor 546 (Molecular Probes-Invitrogen, cat#A21202) plus goat anti-rabbit Alexa Fluor 546 (Molecular Probes-Invitrogen, cat#A21202) plus goat anti-rabbit Alexa Fluor 546 (Molecular Probes-Invitrogen, cat#A21202) plus goat anti-rabbit Alexa Fluor 546 (Molecular Probes-Invitrogen, cat#A21202) plus goat anti-rabbit Alexa Fluor 546 (Molecular Probes-Invitrogen, cat#A21202) plus goat anti-rabbit Alexa Fluor 546 (Molecular Probes-Invitrogen, cat#A21202) plus goat anti-rabbit Alexa Fluor 546 (Molecular Probes-Invitrogen, cat#A21202) plus goat anti-rabbit Alexa Fluor 546 (Molecular Probes-Invitrogen, cat#A21202) plus goat anti-rabbit Alexa Fluor 546 (Molecular Probes-Invitrogen, cat#A21202) plus goat anti-rabbit Alexa Fluor 546 (Molecular Probes-Invitrogen, cat#A21202) plus goat anti-rabbit Alexa Fluor 546 (Molecular Probes-Invitrogen, cat#A21202) plus goat anti-rabbit Alexa Fluor 546 (Molecular Probes-Invitrogen, cat#A21202) plus goat anti-rabbit Alexa Fluor 546 (Molecular Probes-Invitrogen, cat#A21202) plus goat anti-rabbit Alexa Fluor 546 (Molecular Probes-I

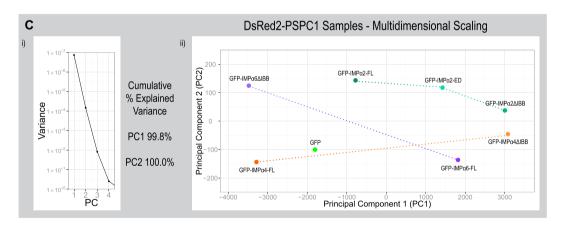


Figure 5. Modulating functional IMP $\alpha 2/\alpha 4/\alpha 6$ levels affected a plethora measurable paraspeckle related outcomes that can be simultaneously visualised using principal component analysis (PCA). The results of transiently transfecting HeLa cells with constructs encoding GFP-tagged IMP $\alpha 2/\alpha 4/\alpha 6$ variants (Tables 1, 2 and 3 and Fig. 2) were used to perform PCA, allowing simultaneous comparisons of multiple parameters and revealing strong patterns between groups. In each experiment PC1 explains >99% of the variance across all parameter and therefore the distances between groups across the X axis (PC1) should be considered as the primary delineator. Paraspeckles were assessed within experimental groups using indirect immunofluorescence with an Alexa Fluor 546 (A546) secondary antibody to detect endogenous PSPC1 (A), using indirect immunofluorescence with an Alexa Fluor 546 (A546) secondary antibody to detect endogenous SFPQ (B) or through exogenous PSPC1 by co-transfecting with a plasmid encoding DsRed2-PSPC1 (C). Parameters used to compare the geometric means of groups within experiments using a specific paraspeckle marker (PSM; A:PSPC1, B:SFPQ, C:DsRed2-PSPC1) were "% cells positive for foci," cytoplasmic PSM intensity," "nuclear PSM intensity," "SM $F_{n/c}$ per cell," "PSM intensity per cell," "number of nuclear foci per cell," "sum volume of nuclear foci per cell," sum nuclear foci PSM intensity."

SCIENTIFIC REPORTS | 7:43323 | DOI: 10.1038/srep43323

cat#A11010) or rabbit anti-goat Alexa Fluor 546 (Molecular Probes-Invitrogen, cat#A21085) for siRNA knockdown samples (1:200 in 0.5% BSA/PBS), were applied for 90 mins at room temperature.

HeLa cell image acquisition. Imaging was performed using a Leica SP5 laser scanning confocal system (DMI6000 microscope, motorised stage, $63 \times$ water/glycerol objective, Monash Micro Imaging Facility). Images were collected as Z-series and tiled in a 7×7 field of view grid (coverage of approximately 1.7 mm^2), with resonant scanning mode (8000 Hz) used for siRNA samples (coverage of approximately 0.9 mm^2).

Imaris-assisted image analysis to detect cells, nucleus and paraspeckles. To assess paraspeckle number, size and PSPC1 intensity within each cell, the Imaris software package "Cells" module (Bitplane, Version 8) was used to batch process identification of cells, their nuclei, and paraspeckles, within the larger image sets described above (as shown in Fig. 1Bi–viii). Throughout the GFP-tagged IMP α transient transfection experiments, Draq5 signal identified the nucleus, GFP signal was used to identify the cell body, and nuclear foci were identified using the particular paraspeckle marker signal under investigation (i.e. PSPC1, SFPQ or DsRed2-PSPC1). For siRNA samples, DAPI signal identified the nucleus, IMP α (IMP α 2 or IMP α 4) signal identified the cell body, and nuclear foci were identified using the paraspeckle marker signal (PSPC1 or SFPQ). The results (output in CSV file formats) were combined and manipulated using Python scripts (Python Software Foundation, version 2.7), then analysed using the R Project for Statistical Computing scripts (The R Foundation, version 3.2). Incomplete cells with no nucleus or their nucleus on the very edge of an image (X, Y or Z image planes) were excluded from datasets for analysis and GFP thresholding was applied to datasets as described for the GFP-tagged IMP α transient transfection experiments. Additional R packages used for analysis were "car"⁶⁸, "epitools"⁶⁹, "geepack"⁷⁰, "ggplot2"⁷¹. Graphs presented in Fig. 2 were generated using Prism (GraphPad Software, Version 6), while all others were generated using R and the "ggplot2" package.

Statistical Analysis. For statistical testing, individual cells were assumed to be independent, but paraspeckles within each cell were assumed to be correlated. When analysing the individual cell or paraspeckle data, three outcome types were generated: 1) binary responses based on whether or not a cell was positive for paraspeckles, 2) counts data based on the number of paraspeckles within each cell (including/excluding zeroes) and 3) continuous data based on paraspeckle volume sum and paraspeckle PSPC1 intensity sum.

Comparisons between groups were made using generalised linear models (GLM); logistic regression for the binary data, linear regression for the count and continuous data. As the count and continuous data were both skewed, data were transformed using the natural logarithm to allow valid statistical inference from the linear regression models. The p-values are based on the transformed data; however, the results were then back-transformed to give estimates in the original scale for ease of interpretation. By taking the exponent of the mean of log-transformed data, the geometric mean and confidence intervals (CIs) were obtained on the original linear scale. By taking the exponent of the linear regression coefficients obtained on the log-transformed scale, the ratio of the geometric means and their 95% CIs were obtained on the original scale. Odds ratios are given for logistic regression results. When assessing data on a per paraspeckle basis, continuous outcomes were examined, which again required log transformations. Generalised estimating equations (GEE) were used to enable correlation between paraspeckles originating from the same cell⁷².

References

- 1. Zhao, R., Bodnar, M. S. & Spector, D. L. Nuclear neighborhoods and gene expression. *Curr Opin Genet Dev* 19, 172–179, doi: 10.1016/j.gde.2009.02.007 (2009).
- 2. Spector, D. L. Nuclear domains. J Cell Sci 114, 2891-2893 (2001).
- 3. Matera, A. G. Nuclear bodies: multifaceted subdomains of the interchromatin space. Trends Cell Biol 9, 302-309 (1999).
- Gruenbaum, Y., Margalit, A., Goldman, R. D., Shumaker, D. K. & Wilson, K. L. The nuclear lamina comes of age. Nat Rev Mol Cell Biol 6, 21–31, doi: 10.1038/nrm1550 (2005).
- Boisvert, F. M., van Koningsbruggen, S., Navascues, J. & Lamond, A. I. The multifunctional nucleolus. Nat Rev Mol Cell Biol 8, 574–585, doi: 10.1038/nrm2184 (2007).
- 6. Cioce, M. & Lamond, A. I. Cajal bodies: a long history of discovery. Annu Rev Cell Dev Biol 21, 105–131, doi: 10.1146/annurev. cellbio.20.010403.103738 (2005).
- 7. Lallemand-Breitenbach, V. & de The, H. PML nuclear bodies. Cold Spring Harb Perspect Biol 2, a000661, doi: 10.1101/cshperspect. a000661 (2010).
- Lamond, A. I. & Spector, D. L. Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4, 605–612, doi: 10.1038/ nrm1172 (2003).
- 9. Spector, D. L. & Lamond, A. I. Nuclear speckles. Cold Spring Harb Perspect Biol 3, doi: 10.1101/cshperspect.a000646 (2011).
- 10. Fong, K. W. et al. Whole-genome screening identifies proteins localized to distinct nuclear bodies. J Cell Biol 203, 149–164, doi: 10.1083/jcb.201303145 (2013).
- 11. Fox, A. H. et al. Paraspeckles: a novel nuclear domain. Curr Biol 12, 13-25, doi: 10.1016/S0960-9822(01)00632-7 (2002).
- 12. Sunwoo, H. *et al.* MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. *Genome Research* **19**, 347–359, doi: 10.1101/gr.087775.108 (2009).
- Sasaki, Y. T., Ideue, T., Sano, M., Mituyama, T. & Hirose, T. MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc Natl Acad Sci USA 106, 2525–2530, doi: 10.1073/pnas.0807899106 (2009).
- Clemson, C. M. *et al.* An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. *Mol Cell* 33, 717–726, doi: 10.1016/j.molcel.2009.01.026 (2009).
- Chen, L. L. & Carmichael, G. G. Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. *Mol Cell* 35, 467–478, doi: 10.1016/j.molcel.2009.06.027 (2009).
- Bond, C. S. & Fox, A. H. Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol 186, 637–644, doi: 10.1083/ jcb.200906113 (2009).
- Naganuma, T. *et al.* Alternative 3'-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. *EMBO J* 31, 4020–4034, doi: 10.1038/emboj.2012.251 (2012).

- Hennig, S. *et al.* Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles. J Cell Biol 210, 529–539, doi: 10.1083/jcb.201504117 (2015).
- 19. Prasanth, K. V. et al. Regulating gene expression through RNA nuclear retention. Cell 123, 249–263, doi: 10.1016/j.cell.2005.08.033 (2005).
- Hirose, T. et al. NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol Biol Cell 25, 169–183, doi: 10.1091/mbc.E13-09-0558 (2014).
- Choudhry, H. et al. Tumor hypoxia induces nuclear paraspeckle formation through HIF-2alpha dependent transcriptional activation of NEAT1 leading to cancer cell survival. Oncogene 34, 4546, doi: 10.1038/onc.2014.431 (2015).
- Wu, Y. et al. Nuclear-enriched abundant transcript 1 as a diagnostic and prognostic biomarker in colorectal cancer. Mol Cancer 14, 191, doi: 10.1186/s12943-015-0455-5 (2015).
- 23. Li, Y. *et al.* NEAT expression is associated with tumor recurrence and unfavorable prognosis in colorectal cancer. *Oncotarget* **6**, 27641–27650, doi: 10.18632/oncotarget.4737 (2015).
- He, C., Jiang, B., Ma, J. & Li, Q. Aberrant NEAT1 expression is associated with clinical outcome in high grade glioma patients. *APMIS* 124, 169–174, doi: 10.1111/apm.12480 (2016).
- Blume, C. J. et al. p53-dependent non-coding RNA networks in chronic lymphocytic leukemia. Leukemia 29, 2015–2023, doi: 10.1038/leu.2015.119 (2015).
- Zeng, C. et al. Inhibition of long non-coding RNA NEAT1 impairs myeloid differentiation in acute promyelocytic leukemia cells. BMC Cancer 14, 693, doi: 10.1186/1471-2407-14-693 (2014).
- Guo, S. et al. Clinical implication of long non-coding RNA NEAT1 expression in hepatocellular carcinoma patients. Int J Clin Exp Pathol 8, 5395–5402 (2015).
- Pan, L. J. et al. Upregulation and clinicopathological significance of long non-coding NEAT1 RNA in NSCLC tissues. Asian Pac J Cancer Prev 16, 2851–2855 (2015).
- 29. Hu, X. *et al.* The plasma lncRNA acting as fingerprint in non-small-cell lung cancer. *Tumour Biol* **37**, 3497–3504, doi: 10.1007/s13277-015-4023-9 (2016).
- Zhao, W., An, Y., Liang, Y. & Xie, X. W. Role of HOTAIR long noncoding RNA in metastatic progression of lung cancer. Eur Rev Med Pharmacol Sci 18, 1930–1936 (2014).
- 31. You, J. et al. MicroRNA-449a inhibits cell growth in lung cancer and regulates long noncoding RNA nuclear enriched abundant transcript 1. Indian J Cancer **51** Suppl 3, e77–81, doi: 10.4103/0019-509X.154055 (2014).
- Chakravarty, D. et al. The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nat Commun 5, 5383, doi: 10.1038/ncomms6383 (2014).
- Nakagawa, S., Naganuma, T., Shioi, G. & Hirose, T. Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. J Cell Biol 193, 31–39, doi: 10.1083/jcb.201011110 (2011).
- Standaert, L. et al. The long noncoding RNA Neat1 is required for mammary gland development and lactation. RNA 20, 1844–1849, doi: 10.1261/rna.047332.114 (2014).
- 35. Nakagawa, S. et al. The lncRNA Neat1 is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice. *Development* 141, 4618–4627, doi: 10.1242/dev.110544 (2014).
- Alvisi, G. & Jans, D. A. Basis of cargo recognition by importin alphas: the power of structure. Structure 23, 251–252, doi: 10.1016/j. str.2015.01.005 (2015).
- Lange, A. et al. Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem 282, 5101–5105, doi: 10.1074/jbc.R600026200 (2007).
- Kimura, M. & Imamoto, N. Biological significance of the importin-beta family-dependent nucleocytoplasmic transport pathways. *Traffic* 15, 727–748, doi: 10.1111/tra.12174 (2014).
- Pumroy, R. A. & Cingolani, G. Diversification of importin-alpha isoforms in cellular trafficking and disease states. *Biochem J* 466, 13–28, doi: 10.1042/BJ20141186 (2015).
- Major, A. T., Whiley, P. A. & Loveland, K. L. Expression of nucleocytoplasmic transport machinery: clues to regulation of spermatogenic development. *Biochim Biophys Acta* 1813, 1668–1688, doi: 10.1016/j.bbamcr.2011.03.008 (2011).
- Yasuhara, N. et al. Importin alpha subtypes determine differential transcription factor localization in embryonic stem cells maintenance. Dev Cell 26, 123–135, doi: 10.1016/j.devcel.2013.06.022 (2013).
- 42. Sekimoto, T., Miyamoto, Y., Arai, S. & Yoneda, Y. Importin alpha protein acts as a negative regulator for Snail protein nuclear import. *J Biol Chem* 286, 15126–15131, doi: 10.1074/jbc.M110.213579 (2011).
- 43. Arjomand, A. *et al.* The alpha-importome of mammalian germ cell maturation provides novel insights for importin biology. *FASEB* J 28, 3480–3493, doi: 10.1096/fj.13-244913 (2014).
- Young, J. C., Major, A. T., Miyamoto, Y., Loveland, K. L. & Jans, D. A. Distinct effects of importin alpha2 and alpha4 on Oct3/4 localization and expression in mouse embryonic stem cells. *FASEB J* 25, 3958–3965, doi: 10.1096/fj.10-176941 (2011).
- Yasuhara, N. et al. Triggering neural differentiation of ES cells by subtype switching of importin-alpha. Nat Cell Biol 9, 72–79, doi: 10.1038/ncb1521 (2007).
- Hall, M. N., Griffin, C. A., Simionescu, A., Corbett, A. H. & Pavlath, G. K. Distinct roles for classical nuclear import receptors in the growth of multinucleated muscle cells. *Dev Biol* 357, 248–258, doi: 10.1016/j.ydbio.2011.06.032 (2011).
- Hall, M. N., Corbett, A. H. & Pavlath, G. K. Regulation of nucleocytoplasmic transport in skeletal muscle. *Curr Top Dev Biol* 96, 273–302, doi: 10.1016/B978-0-12-385940-2.00010-3 (2011).
- Loveland, K. L. *et al.* Putting things in place for fertilization: discovering roles for importin proteins in cell fate and spermatogenesis. *Asian J Androl* 17, 537–544, doi: 10.4103/1008-682X.154310 (2015).
- Major, A. T. et al. Specific interaction with the nuclear transporter importin alpha2 can modulate paraspeckle protein 1 delivery to nuclear paraspeckles. Mol Biol Cell 26, 1543–1558, doi: 10.1091/mbc.E14-01-0678 (2015).
- Ly-Huynh, J. D. et al. Importin alpha2-interacting proteins with nuclear roles during mammalian spermatogenesis. Biol Reprod 85, 1191–1202, doi: 10.1095/biolreprod.111.091686 (2011).
- Miyamoto, Y., Boag, P. R., Hime, G. R. & Loveland, K. L. Regulated nucleocytoplasmic transport during gametogenesis. *Biochim Biophys Acta* 1819, 616–630, doi: 10.1016/j.bbagrm.2012.01.015 (2012).
- 52. Myojin, R. *et al.* Expression and functional significance of mouse paraspeckle protein 1 on spermatogenesis. *Biol Reprod* 71, 926–932, doi: 10.1095/biolreprod.104.028159 (2004).
- 53. Fox, A. H. & Lamond, A. I. Paraspeckles. Cold Spring Harb Perspect Biol 2, a000687, doi: 10.1101/cshperspect.a000687 (2010).
- Goldfarb, D. S., Corbett, A. H., Mason, D. A., Harreman, M. T. & Adam, S. A. Importin alpha: a multipurpose nuclear-transport receptor. *Trends Cell Biol* 14, 505–514, doi: 10.1016/j.tcb.2004.07.016 (2004).
- Yasuda, Y. *et al.* Nuclear retention of importin alpha coordinates cell fate through changes in gene expression. *EMBO J* 31, 83–94, doi: 10.1038/emboj.2011.360 (2012).
- Giesecke, A. & Stewart, M. Novel binding of the mitotic regulator TPX2 (target protein for Xenopus kinesin-like protein 2) to importin-alpha. J Biol Chem 285, 17628–17635, doi: 10.1074/jbc.M110.102343 (2010).
- Fulcher, A. J., Roth, D. M., Fatima, S., Alvisi, G. & Jans, D. A. The BRCA-1 binding protein BRAP2 is a novel, negative regulator of nuclear import of viral proteins, dependent on phosphorylation flanking the nuclear localization signal. *FASEB J* 24, 1454–1466, doi: 10.1096/fj.09-136564 (2010).

- Rachidi, S. M., Qin, T., Sun, S., Zheng, W. J. & Li, Z. Molecular profiling of multiple human cancers defines an inflammatory cancerassociated molecular pattern and uncovers KPNA2 as a uniform poor prognostic cancer marker. *PLoS One* 8, e57911, doi: 10.1371/ journal.pone.0057911 (2013).
- 59. Dahl, E. et al. Molecular profiling of laser-microdissected matched tumor and normal breast tissue identifies karyopherin alpha2 as a potential novel prognostic marker in breast cancer. Clin Cancer Res 12, 3950–3960, doi: 10.1158/1078-0432.CCR-05-2090 (2006).

 Gluz, O. et al. Nuclear karyopherin alpha2 expression predicts poor survival in patients with advanced breast cancer irrespective of treatment intensity. Int J Cancer 123, 1433–1438, doi: 10.1002/ijc.23628 (2008).

- 61. Dankof, A. *et al.* KPNA2 protein expression in invasive breast carcinoma and matched peritumoral ductal carcinoma *in situ*. *Virchows Arch* **451**, 877–881, doi: 10.1007/s00428-007-0513-5 (2007).
- 62. Noetzel, E. *et al.* Nuclear transport receptor karyopherin-alpha2 promotes malignant breast cancer phenotypes *in vitro*. *Oncogene* **31**, 2101–2114, doi: 10.1038/onc.2011.403 (2012).
- 63. Zhang, Y. *et al.* Karyopherin alpha 2 is a novel prognostic marker and a potential therapeutic target for colon cancer. *J Exp Clin Cancer Res* 34, 145, doi: 10.1186/s13046-015-0261-3 (2015).
- 64. Hu, Z. Y., Yuan, S. X., Yang, Y., Zhou, W. P. & Jiang, H. Pleomorphic adenoma gene 1 mediates the role of karyopherin alpha 2 and has prognostic significance in hepatocellular carcinoma. *J Exp Clin Cancer Res* 33, 61, doi: 10.1186/s13046-014-0061-1 (2014).
- Wang, C. I. et al. Importin subunit alpha-2 is identified as a potential biomarker for non-small cell lung cancer by integration of the cancer cell secretome and tissue transcriptome. Int J Cancer 128, 2364–2372, doi: 10.1002/ijc.25568 (2011).
- 66. Wang, C. I. et al. Quantitative proteomics reveals regulation of karyopherin subunit alpha-2 (KPNA2) and its potential novel cargo proteins in nonsmall cell lung cancer. Mol Cell Proteomics 11, 1105–1122, doi: 10.1074/mcp.M111.016592 (2012).
- 67. Kuwahara, S. *et al.* PSPC1, NONO, and SFPQ are expressed in mouse sertoli cells and may function as coregulators of androgen receptor-mediated transcription. *Biology of Reproduction* **75**, 352–359, doi: 10.1095/biolreprod.106.05 (2006).
- 68. Fox, J. & Weisberg, S. An R companion to applied regression. (Sage, 2010).
- 69. Aragon, T. Epitools: epidemiology tools. *R package version 0.5-2*, http://www.medepi.com (2008).
- 70. Højsgaard, S., Halekoh, U. & Yan, J. The R Package geepack for Generalized Estimating Equations. *Journal of Statistical Software* 15, 1–11 (2006).
- 71. Wickham, H. ggplot2: elegant graphics for data analysis. (Springer Science & Business Media, 2009).
- Hanley, J. A., Negassa, A., Edwardes, M. D. & Forrester, J. E. Statistical analysis of correlated data using generalized estimating equations: an orientation. Am J Epidemiol 157, 364–375 (2003).

Acknowledgements

We acknowledge the excellent support of the Monash Micro Imaging facility (Monash University, Clayton, Australia) during confocal image acquisition and analysis, with specific thanks to Ian Harper, Stephen Firth and Chad Johnson. We thank Yasuyuki Kurihara (Faculty of Engineering Science, Yokohama National University, Yokohama, Japan) for the PSPC1 and SFPQ antibodies, Catherine L. Smith (AMREP Biostatistics Consulting Platform, Prahran, Australia) for direction with statistical analysis methods and Roxane Legaie (Monash Bioinformatics Platform, Clayton, Australia) for direction with implementing PCA analysis. This work was supported by the Victorian Government Operational Infrastructure Support Scheme. This work was supported in part by grants from the Australian Research Council Centre of Excellence in Biotechnology and Development (CE0348239 to KL and DJ), an Australian Postgraduate Award (AM) and the National Health and Medical Research Council of Australia (KL, ID1079646; DJ, ID384105/APP1002486).

Author Contributions

A.M., K.L., Y.M., C.L. and D.J. designed the experiments and analysis. A.M. implemented the experiments, image analysis and statistical analysis. A.M. and K.L. were primarily responsible for writing the manuscript, with all authors making significant contributions to the final manuscript.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing Interests: The authors declare no competing financial interests.

How to cite this article: Major, A. T. *et al.* Development of a pipeline for automated, high-throughput analysis of paraspeckle proteins reveals specific roles for importin α proteins. *Sci. Rep.* 7, 43323; doi: 10.1038/srep43323 (2017).

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017