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Multistability of the Brain Network 
for Self-other Processing
Yi-An Chen & Tsung-Ren Huang

Early fMRI studies suggested that brain areas processing self-related and other-related information 
were highly overlapping. Hypothesising functional localisation of the cortex, researchers have tried 
to locate “self-specific” and “other-specific” regions within these overlapping areas by subtracting 
suspected confounding signals in task-based fMRI experiments. Inspired by recent advances in whole-
brain dynamic modelling, we instead explored an alternative hypothesis that similar spatial activation 
patterns could be associated with different processing modes in the form of different synchronisation 
patterns. Combining an automated synthesis of fMRI data with a presumption-free diffusion spectrum 
image (DSI) fibre-tracking algorithm, we isolated a network putatively composed of brain areas and 
white matter tracts involved in self-other processing. We sampled synchronisation patterns from 
the dynamical systems of this network using various combinations of physiological parameters. Our 
results showed that the self-other processing network, with simulated gamma-band activity, tended to 
stabilise at a number of distinct synchronisation patterns. This phenomenon, termed “multistability,” 
could serve as an alternative model in theorising the mechanism of processing self-other information.

Social neuroscientists have been trying to identify brain areas processing self-related and other-related informa-
tion. These brain areas might be affected in autism, major depressive disorder and schizophrenia, which were 
associated with abnormal self-referential processing or mental state inference1–3. In many studies of functional 
magnetic resonance imaging (fMRI), brain areas activated by self-related or other-related tasks were contrasted 
against each other, or against some factors that were considered confounders of the relationships being stud-
ied, such as familiarity or closeness4–6. However, accumulating imaging data over the last decade still showed a 
high degree of overlap between self-related and other-related brain areas7. Although the overlapping areas could 
be interpreted as yet-to-be-subtracted confounding signals according to the functional localisation hypothesis 
of fMRI, recent advances in neural network dynamics have cast doubt on the essentialness of the localisation 
hypothesis.

Is it possible that two distinct concepts—self and other, for example—are processed by the same set of brain 
areas, hence similar activation patterns? Earlier ideas were conceived in studies of “mirror neuron,” which was 
found to respond similarly to self-initiated and other-initiated movements8, yet the interpretation was still 
debated9,10. Recent studies have shed light on the idea from a different perspective. Hansen et al. conducted 
human whole-brain computational modelling based on white matter connections derived from DSI and physi-
ologically grounded neural models11. Compatible with empirical data, the simulations demonstrated existence 
of multiple distinct whole-brain synchronisation patterns that were characterised by distinct epochs along the 
evolution trajectory of the same functional connectivity dynamics. More importantly, their data showed that 
synchronisation patterns were not bound to spatial activation patterns. In other words, synchronisation patterns 
could differ even when fMRI spatial patterns appeared similar. Some researchers have proposed to integrate the 
dynamic synchronisation theory developed by simulation studies with task-induced changes in selective coher-
ence observed in task-based experiments12. In summary, loosening the functional localisation constraints and 
incorporating dynamic properties revealed by simulation studies may help researchers gain more insight into 
information processing.

This type of structural-connection-based dynamic computational modelling has not yet been applied to local-
ised brain areas recognised by task-based fMRI as pertaining to particular cognitive functions. The reason might 
be the seeming incompatibility between these two approaches. Dynamic computational modelling, which con-
cerned itself with properties at the network level, generally avoided unwarranted exclusion of any brain area, 
since it might perturb the network configuration13. Therefore, most studies were conducted at the whole-brain 
level11,14,15. Besides, the nodes—basic computing unit in a model—were usually defined by anatomical landmarks 
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or parcellation schemes that segmented the brain into a few dozens to hundreds of cortical regions13,16,17. The 
degree of fineness of these parcellation schemes might be appropriate at the whole-brain level, but probably too 
low to capture the network structure of more confined brain areas. Despite of these conceptual and technical 
issues, it was generally accepted that brain areas supporting cognitive functions were spatially segregated to some 
extent, and the balance between integration and segregation has become an intensely investigated topic18. If the 
tendency of shifting between multiple stable synchronisation patterns—referred to as “multistability”—can be 
verified in a structural brain network whose cortical regions constitute cognitive modules identified by task-based 
fMRI, the cognitive implication of multistability can draw more support.

In the present study, we modified the dynamic computational modelling method to make it better suited for 
localised neural networks while complying with the principles of node definition in network topology analysis19,20.  
Combining fMRI term-based meta-analysis and DSI fibre tracking, we constructed a brain network by tracing out 
all fibre connections between brain areas putatively engaged in self-other processing. Next, we sampled synchro-
nisation patterns from structural-connection-based dynamical systems to characterise the dynamic organising 
properties of this brain network. For methodological comparison, the same simulation procedure was conducted 
on two separate brain networks: One with an anatomical parcellation scheme, the other with a random par-
cellation scheme with matched node number. We hypothesised that the self-other processing network in the 
brain could present multistability, which engendered dynamic shifting between different information-processing 
modes.

Results
Self-other processing areas and their structural connectivity. The self-other processing network, 
which should include brain areas and white matter tracts putatively engaged in self-related and other-related 
information processing tasks, was constructed with a data-driven approach. The process was depicted in the flow 
chart in Fig. 1a. First, we conducted a term-based meta-analysis by the Neurosynth tools and database to identify 
brain areas relevant to self-other processing21. Spatial coordinates reported in fMRI studies tagged by the key 
terms “self referential,” “mind tom,” “theory mind” and “mentalizing” were extracted from a database containing 
more than 10,900 fMRI studies, and a chi-square test was conducted to identify coordinates whose occurrence 
frequencies in the tagged studies were significantly higher than untagged studies. The meta-analytic images for 
“self ” and “other” were shown in Supplementary Fig. S1. The result of a two-way chi-square analysis of these two 
groups of studies conducted by Neurosynth tools revealed no statistically significant difference between “self ” and 
“other” coordinate distributions. These two images were merged into a complete “self-other processing” image for 
subsequent DSI fibre tracking. It should be mentioned that meta-analytic results produced by Neurosynth might 
not be as specific as traditional meta-analytic methods. However, we actually preferred a meta-analytic image 
that was more encompassing rather than narrow and specific, because social neuroscientists had not yet reached 
consensus on the operational definition of “self-processing” and “other-processing”22,23. Therefore, setting strict 
criteria on fMRI task types might bias the meta-analytic image toward certain types of tasks, hence biasing the 
definition of self-related and other-related information processing.

Next, the meta-analytic image was registered to a normalised DSI template to explore the fibre connections 
between self-other processing brain areas. As stated in the Introduction, task-related brain areas usually account 
for only a small part of the cerebral cortex, making their network configurations particularly prone to variations 
caused by differences in cortex parcellation schemes and the selection of regions of interest (ROI). Therefore, we 
tried to minimise a priori anatomical constraints imposed on fibre tracking algorithm by employing a data-driven 
approach. Instead of establishing major white matter tracts between pairs of pre-defined cortical segments24–26, 
the fibre-tracking algorithm was adjusted for a free exploration of all fibre connections between any two voxels 
located within the meta-analytic image. After tracing out all connections between any two regions within the 
meta-analytic image, we assigned nodes to the network by a k-means clustering analysis of the fibre end points. 
Voxels containing spatially close end points of fibres with similar orientations were spontaneously grouped into 
one node, which satisfied the node definition of spatial proximity and connectional homogeneity in network 
topology studies19,20. The resulting network, termed ‘dat’, and its connectivity matrix, was shown in the bottom 
of Fig. 1a.

As mentioned in the Introduction, previous studies of network analysis usually involved a priori definition 
of nodes by various parcellation schemes. Although we did not adopt this approach to establish dat network, a 
methodological comparison was necessary. Therefore, we constructed a separate network by establishing white 
matter tracts between pre-defined anatomical areas that were considered relevant to self-other processing in the 
literature. After a thorough literature review, the following anatomical landmarks were included: Anterior cingu-
late cortex, posterior cingulate cortex, precuneus, medial prefrontal cortex, pars triangularis and pars opercularis 
of inferior frontal gyrus, temporo-parietal junction, and insula5,7,27–29. These landmarks were manually traced 
out and registered to the DSI template, after which fibre tracts confined to these anatomical landmarks were con-
structed. This anat network and its connectivity matrix, with anatomical landmarks serving as the nodes, were 
shown at the bottom left of Fig. 1b.

The anat network had 14 nodes, while the dat network had 34. This raised the concern that network resolu-
tion or node number might confound the comparison. Therefore, we constructed the third network, anatpar, by 
randomly partitioning the anat nodes into 34 smaller segments that were comparable in size. Essentially, anatpar 
retained the white matter structure of anat while the nodes were replaced by 34 smaller random cortical seg-
ments. This anatpar network was shown at the bottom right of Fig. 1b.

Neural simulation and synchronisation analysis. We then conducted neural model simulations on the 
networks, creating oscillatory activities that mimicked gamma oscillations in the brain recorded in experimental 
settings12,30. There were many types of neural mass models that aimed at capturing different aspects of neural 
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activities, such as mean field model31, linear stochastic model32, and Kuramoto model14. We chose Kuramoto 
model because it was physiologically inspired, computationally efficient, and focused on the oscillatory activities. 
The mathematical derivation and physiological interpretation of Kuramoto model was detailed in earlier litera-
tures33,34; briefly, this model treated brain areas as weakly coupled oscillators that influenced each other through 
fibre connections of different lengths and strengths. In the present study, we randomly sampled 200 different com-
binations of N intrinsic frequencies from the gamma range (25 Hz to 75 Hz) for each N-node network, making the 
exploration of physiological parameters as exhaustive as possible. One combination of intrinsic frequencies con-
stituted one unique dynamical system, whose multistability should be assessed independently of other dynamical 
systems. Thus the 200 dynamical systems derived from the same neural network were assessed one by one, and 
the overall tendency of multistability constituted the multistable potential of the given brain network.

It should be mentioned that we did not include the noise term in the original equation of Kuramoto model. 
Noise was a freely adjustable parameter in the model and might play a role in driving the neural network into 
different synchronisation states. However, the current study aimed to explore the multistable potential granted 
by certain network structural configurations rather than characterising the detailed evolution along the temporal 
dimension. Besides, the exploration method we chose depended on the stabilisation of dynamical systems at 
particular synchronisation states. Therefore, we did not add noise to the Kuramoto model.
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Figure 1. Self-other processing networks constructed by three different methods. (a) The image derived 
from Neurosynth term-based meta-analysis was registered to the NTU-122 DSI template, after which fibre 
tracking and k-means clustering were used to construct structural connections between any two regions within 
this image and define network nodes. The structural connectivity matrix of this dat network was shown at the 
bottom. Colour bar unit: Generalised Fractional Anisotropy (GFA). (b) 14 anatomical regions relevant to self-
other processing were registered to the NTU-122 template. Fibre connections were constructed between all 
pairs of regions, giving rise to the anat network (bottom left). The anatpar network had the same white matter 
structure as anat while its nodes were composed of 34 random segments rather than the original 14 anatomical 
areas (bottom right).
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All Kuramoto model simulations underwent 2,000 iterations to ensure stabilisation into a particular syn-
chronisation state, and signal correlations between any two nodes at stability were evaluated to obtain the net-
work synchronisation pattern. Three nodes in the dat network were highlighted in Fig. 2a for illustration; their 
simulated Kuramoto signals were presented in Fig. 2b. All Kuramoto signals were mapped to the phase space by 
Hilbert transform for stroboscopic analysis, which scored the phase correlation between any two nodes with a 
synchronisation index ranging from 0 to 1. For dat network with 34 nodes, each simulation process produced 
561 pairwise synchronisation indices, forming the overall synchronisation pattern of a particular simulation at 
stability. Figure 2c illustrated the concept of stroboscopic analysis: The reference node 4 was fixed at 2π , and the 
concurrent phases of the other nodes—node 4, 14 and 30—were plotted on their respective polar coordinate 
systems (Fig. 2c, from left to right). Synchronisation level between any of the plotted nodes with the reference 
node was reflected by the averaged norm of the sum of unit vectors scattered around its polar coordinate system.

In summary, each of the three networks—dat, anat, anatpar—were assigned 200 random combinations of 
intrinsic frequencies, producing 200 dynamical systems for each. Kuramoto-model simulations and stroboscopic 
analyses were then conducted on the three groups of dynamical systems to obtain their synchronisation patterns 
at stable states.
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Figure 2. Neural mass model, oscillatory trace simulation and the synchronisation levels. (a) Three nodes 
in the dat network were chosen for illustration: Node 4, node 14, and node 30. Columns and rows representing 
these nodes were highlighted with gray in the connectivity matrix; the presence of fibre connections between 
any two nodes was indicated by white at their intersection entries. As shown in the matrix, the three nodes 
were not inter-connected. (b) First 500 iterations of Kuramoto-model-simulated oscillatory traces of the 
three nodes. Horizontal axis: Iteration number. Vertical axis: Amplitude. (c) Illustration of synchronisation 
levels and relative phase delays between pairs of nodes, with node 4 serving as the reference. Dots on the polar 
coordinates indicated the concurrent phase signals of the non-reference nodes. The left polar graph presented 
the synchronisation between node 4 and itself; as expected for auto-correlation, the synchronisation level was 
high (level indicated by vector length and labelled in graph), with nearly no phase delay (phase delay indicated 
by vector angle). The synchronisation between node 4 and the other two nodes varied in strength and delay 
(middle and right panels).
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Multistability analysis. To explore the multistability potential of the three self-other neural networks, their 
corresponding repertoires of 200 sampled dynamical systems with gamma oscillations were tested individually 
for multistability, namely the ability to present multiple stable synchronisation patterns. The collective results 
of the 200 dynamical systems constituted the multistable potential of each corresponding neural network. As 
explained in the previous section, one simulation yielded one synchronisation pattern. To assess multistability, 
each dynamical system was simulated for 100 times from randomly selected initial conditions (i.e., oscillation 
phases), and the 100 synchronisation patterns were sorted by their similarity to show clustering tendency. This 
treatment was based on the theory that attractor states of a dynamical system could be traced out by tracking the 
evolution trajectories from different initial conditions. If the evolving trajectories of the dynamical systems con-
verged to certain points within the state space, the points were considered attractors, and the dynamical system 
was deemed multistable34,35. On the other hand, if the dynamical system contained only one attractor state or no 
attractor states at all, the trajectories would either converge to the same point or fail to converge. Both conditions 
manifested themselves by a lack of clustering tendency of the 100 randomly sampled synchronisation patterns.

The above-mentioned analysis was illustrated in Fig. 3, which presented two of the dynamical systems from 
the dat category. The matrix labelled “Raw” in Fig. 3a represented the 100 synchronisation patterns of the particu-
lar dynamical system; each row in the matrix—constituted of 561 stroboscopic analysis-derived phase-correlation 
indices representing the pairwise synchronisation levels of the 34 nodes—stood for one synchronisation pattern. 
The matrix was then standardised column-wise as a pre-processing step for k-means algorithm36, after which 
k-means clustering with the Elbow method was used to determine whether the 100 synchronisation patterns 
could be segregated into distinct clusters37. For this particular case, the algorithm determined that the synchroni-
sation patterns could be segregated into two dissimilar clusters. For better visualisation, we cross-correlated the 
“Clustered” matrix with itself to obtain a Pearson correlation coefficient matrix that clearly revealed two distinct 
modules along the main diagonal. This indicated that the dynamical system was able to stabilise at two distinct 
types of synchronisation patterns. This particular dynamical system was therefore multistable. On the contrary, 
the other dynamical system did not show multistability (Fig. 3b).

Basically, any claim of network properties—such as the presence of multistability—should be based on a com-
parison to null-hypothesis networks, which were constructed by randomising the original networks in a way that 
preserved the node number, edge number, degree distribution, connectivity strength and length of the original 
networks19. Therefore, we created 15 randomised networks for each of the three networks and repeated the same 
simulation and analyses on them. The results obtained from randomised networks would be presented along with 
their corresponding neural networks in the following section.

Comparison of dat, anat and anatpar networks. After finishing the simulation and analysis described 
in previous sections, we obtained three groups of multistability assessment results. The results, presented in Fig. 4, 
were summarised from 200 correlation matrices of gamma-band synchronisation patterns for dat, anat and anat-
par network respectively. The number distributions of stable synchronisation states for each network were pre-
sented along with the results obtained from their corresponding random networks (dat-r, anat-r and anatpar-r). 
The presented square matrices were created by subtracting the average pattern-correlation matrix of randomised 
networks from the average pattern-correlation matrix of the three brain networks. These contrast matrices visual-
ised the difference between brain networks and randomised networks in terms of multistability potential; if brain 
networks tend to be multistable, the matrices should reveal an aggregation of high-value entries near the main 
diagonal.

Figure 4a presented the results of the anat neural network. The number distribution of stable synchronisation 
states showed that 59% of the 200 dynamical systems did not present multistability; the other 41% near-equally 
distributed between 2 to 6 stable states. The distribution was not significantly different from its randomised coun-
terparts (two-sided two-sample Kolmogorov-Smirnov test, alpha level =  0.01, p =  0.5706). As a result, the contrast 
matrix did not show apparent aggregation of high-value entries near the main diagonal, namely multistability.

Figure 4b presented the results of the anatpar neural network, a network having the same number of nodes as 
dat network and the same white matter structure as anat network. 85.5% of its dynamical systems did not present 
multistability, and the number distribution of stable synchronisation states was not significantly different from 
its null-hypothesis networks (two-sided two-sample Kolmogorov-Smirnov test, alpha level =  0.01, p =  0.7431). 
Consequently, its matrix did not show apparent tendency of multistability.

Figure 4c presented the results of the dat neural network. Unlike the other two networks, the distribution of 
stable synchronisation states from the dat network and its corresponding randomised networks were significantly 
different (two-sided two-sample Kolmogorov-Smirnov test, alpha level =  0.01, p =  7.9088 ×  10−18); the dat distri-
bution was skewed toward the higher stable state numbers compared to the null-hypothesis distribution. Hence, 
the contrast matrix showed an aggregation of high-value entries near the main diagonal, indicating a tendency 
of multistability.

We also compared distributions of stable synchronisation states among dat, anat and anatpar. Two-sided 
two-sample Kolmogorov-Smirnov test indicated significant differences between dat and the other two networks 
(alpha level =  0.01, p =  5.4331 ×  10−4 for anat; p =  7.6668 ×  10−10 for anatpar).

The comparisons above focused on differences between different network construction methods, and the 
results suggested that multistability was uniquely associated with the network constructed by data-driven 
approach. It was therefore important to clarify whether multistability should be attributed to the self-other-related 
network configuration or the data-driven construction method itself. To answer this question, we independently 
applied the same network construction method to the “self ” and “other” meta-analytic images shown in 
Supplementary Fig. S1. The self network was composed of 17 nodes, and the other network was composed of 30 
nodes. Kuramoto simulations and multistability analyses were conducted in the same way, and the results were 
shown in Supplementary Fig. S2. The results suggested that other network did not reveal significant multistability. 
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The experiment indicated that the data-driven network construction algorithm did not necessarily lead to the 
same degree of multistability of any combination of brain areas.

Discussion
Supported by a wide variety of evidence, functional localisation hypothesis has long been acknowledged in the 
neuroscience field. It is widely accepted that localised damage at Brodmann area 22 is associated with Wernicke’s 
aphasia38, and removing bilateral hippocampus permanently interrupts episodic memory formation39. However, 
the hypothesis seems to reach its limit when distinct psychological concepts induce similar spatial activa-
tion patterns in fMRI experiments. As illustrated in Supplementary Fig. S1, the processing of self-related ver-
sus other-related information is one such case, and researchers have tried to resolve this issue by dissembling 
these psychological processes into more basic components, such as familiarity and mental state attribution5,22. 
These components were then manipulated in fMRI experiments in an attempt to isolate brain areas that were 
“self-specific” or “other-specific.” However, many of these basic components were too abstract for researchers to 
operationalise, leading to difficulty and inconsistency in the interpretation of fMRI results.

Recent advances in dynamic computational modelling provided a different way to explore this issue. 
Combining neural simulation and Balloon-Windkessel model, researchers demonstrated the possibility of 
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Figure 3. Multistability analysis of individual dynamical systems. (a) Analysis of one dynamical system from 
the dat category. Raw matrix represented the 100 synchronisation patterns derived from 100 randomly phase-
initiated Kuramoto simulations; each row in the matrix represented one synchronisation pattern composed 
of 561 pairwise correlation indices of the 34 nodes in dat network. The matrix was standardised column-wise 
(Standardised) and clustered by the k-means clustering algorithm with the Elbow method (Clustered). Note 
that the 100 synchronisation patterns could be classified into two distinct subtypes in the Clustered matrix. The 
Pearson correlation coefficient matrix (right) of the Clustered matrix better visualised the two distinct subtypes 
as two blocks along the main diagonal. (b) Analysis of another dynamical system from the dat category. For this 
case, the k-means clustering algorithm could not identify subtypes within the 100 synchronisation patterns, 
hence no main-diagonal blocks in the Pearson correlation coefficient matrix.
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different synchronising modes exhibiting similar fMRI spatial patterns11. Note that such differential couplings 
among the same set of brain areas through dynamic synchronisation echoed the earlier proposal that brain 
dynamically engaged different cortical areas through oscillatory coupling to achieve different tasks30,40. As an 
example, some researchers applied the dynamic synchronisation theory to interpret discoveries in task-based 
experiments, such as the selective entrainment of higher visual area V4 by different neuronal groups in lower 
visual area V112.

Some methodological gaps existed between the simulation studies and the task-based experiments, though. 
First, while different synchronisation patterns might be associated with similar fMRI spatial patterns, the syn-
chronisation patterns were simulated at the whole-brain level. Therefore, it might be difficult to associate the 
synchronisation dynamics to regional activities that were implicated in specific cognitive functions. Second, the 
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of stable synchronisation states of anat and anat-r did not show statistically significant difference (p =  0.5706). 
Horizontal axis: Number of stable synchronisation states. Vertical axis: Ratio of counts. Right: Difference 
between average anat and anat-r pattern-correlation matrices did not reveal aggregation of high-value 
entries near the main diagonal, indicating lack of multistability. (b) Left: Number distributions of stable 
synchronisation state of anatpar and anatpar-r did not show statistically significant difference (p =  0.7431). 
Right: Difference between average anatpar and anatpar-r correlation matrices did not reveal aggregation of 
high-value entries near the main diagonal, indicating lack of multistability. (c) Left: Number distributions of 
stable synchronisation states of dat and dat-r showed statistically significant difference (p =  7.9088 ×  10−18). 
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near the main diagonal, indicating multistability.



www.nature.com/scientificreports/

8Scientific REPORTS | 7:43313 | DOI: 10.1038/srep43313

whole-brain simulation studies were not task-based. In fact, many of these studies compared their results to 
human resting-state fMRI11,14,15. Third, the brain parcellation schemes used in whole-brain modelling might not 
be applicable to localised neural networks corresponding to certain cognitive modules, which had smaller spatial 
scale.

In the present study, we tried to connect dynamic computational modelling to task-based studies by making 
a few modifications of the original approach. We identified brain areas involved in self-other processing by con-
ducting a term-based meta-analysis using Neurosynth tools and database. Neurosynth is sometimes criticised 
for its automated text mining and coordinate extraction approach, which raise concerns about its meta-analytic 
sensitivity and specificity. However, manual meta-analysis may be subject to selection bias, especially when the 
concept being investigated is abstract. Specifically, traditional meta-analysis of psychological concepts required 
a clear operational definition, which formed the basis of literature inclusion criteria. However, the operationali-
sation might involve personal preference on how the abstract concepts—such as “self ” and “others”—should be 
interpreted. In fact, literatures extracted by key words in this study revealed a variety of tasks that researchers 
claimed to be related to self-processing or other-processing, such as autobiographical memory retrieval, future 
scene construction, attributing intention, attributing false belief, and gaze processing. There is currently no con-
sensus on whether self-other processing depends on the union or intersection of all these cognitive functions; 
in this study, we chose union to avoid personal-preference bias. Combining this encompassing meta-analytic 
image with a DSI fibre-tracking algorithm that minimised anatomical constraints, we supposed that dat network 
included most of the brain areas and white matter tracts implicated in self-other processing, and the definition of 
nodes in dat network complied with the principles of network topology analysis. Simulation results derived from 
this network suggested that self-other processing network had the potential of presenting multistability.

Earlier studies have suggested a correlation between structural connectivity and static synchronisation 
pattern41. Consistent with those studies, the average synchronisation patterns of all three localised networks 
in our study showed positive correlation with their structural connectivity patterns (Fig. 5). However, the 
non-stationarity of functional connectivity demands more sophisticated analysis that considers the dynamic 
aspects of networks42. The functional connectivity dynamics (FCD) analysis proposed by Hansen et al. fulfilled 
such requirement11, and the multistability analysis in the present study actually bore some resemblance to the 
FCD analysis. The main difference was that we did not sample different synchronisation patterns by noise-driven 
exploration of dynamical system; we applied random sampling of initial conditions on noise-free dynamical 
systems instead. Unlike FCD, this algorithm was not designed for real fMRI signal analysis, since it assumed the 
dynamical systems to be noise free. Our multistability analysis could be considered as being built on the foun-
dation laid by FCD study. FCD analysis revealed the dynamic synchronisation phenomenon in empirical brain 
networks and explained it with the properties of fixed-point attractors in dynamical systems; our multistability 
analysis identified fixed-point attractors in DSI-based empirical networks with a massive sampling approach, 
presuming their contribution to multistability. Because multistability analysis concerned itself with the network 
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structural configuration rather than particular parameter settings, the result should be conservatively interpreted 
as the “potential” of multistability granted by the given network configuration rather than physiologically-verified 
multistability. Nevertheless, simulation results could be tested in the experimental setting.

With the advance of high-performance computing and rapid accumulation of brain imaging data, the neu-
roscience field seems to be experiencing a paradigmatic shift from detailed inspection of individual brain areas 
or tracts to characterisation of emergent features at the system level. Here we tried to find a middle ground 
between the functional localisation hypothesis and the dynamic synchronisation theory. Illustrating the existence 
of different synchronisation modes being adopted by the same set of activated brain areas with the controversial 
case of self-other processing, we explored an information processing mechanism distinct from that illustrated by 
functional localisation hypothesis. The results and methods proposed in this study might complement other study 
designs in the exploration of mechanisms underlying the dynamic reconfiguration of brain synchronisation and 
their cognitive implications.

Methods
Structural networks. The dynamical properties of a network depend on both its topological structure 
and node activities. The topological structure may not be entirely objective, however, because it depends on the 
construction approach selected. For example, two researchers may construct two versions of attention network 
that involve the same set of anatomical areas—intra-parietal sulcus, frontal eye field, etc.—yet differ in topolog-
ical structures, because they use different brain atlases. It was for this reason that we developed a data-driven 
approach that relied on meta-analyses rather than arbitrary atlases. Nevertheless, it would be better to compare 
the simulation results with those of networks constructed by conventional approaches, since the properties of 
this new data-driven approach has not yet been thoroughly investigated. As stated above, there is no “standard” 
conventional approach, because there is no standard cortex parcellation scheme. In order to make the compari-
son between data-driven approach and conventional approach more generalisable, two versions of conventional 
networks—anat and anatpar—were constructed. These two networks, together with the dat network constructed 
by the data-driven approach, constituted the three structural networks in this study. Their design concepts and 
detailed construction processes are described below.

The dat network—“dat” meaning “data-driven”—was the main target of investigation. The goal of construct-
ing dat was to investigate the dynamical properties of a self-other processing network constructed by a relatively 
objective, atlas-independent approach. Three features separated dat network from the other two networks. First, 
seed regions for its fibre-tracking process were derived from meta-analyses rather than arbitrary atlases. Second, 
we did not segment the seed regions into distinct ROIs and trace fibres between them; instead, we explored 
all possible connections both “within” and “between” brain regions. Third, network nodes were defined by 
fibre-endpoint clustering algorithm rather than arbitrary atlases.

The technical details of dat construction is described below. It was constructed by tracing out white matter 
connections between brain areas within a merged meta-analytic image created by the Neurosynth tools and the 
version 0.5 database. The database contained activation contrasts from more than 10,900 fMRI studies. After 
a preliminary exploration of a combination of different key words, we chose the key word “self referential” to 
conduct the term-based meta-analysis for self-related processing, and a combination of “mind tom,” “theory 
mind,” “mentalizing” minus “self ” for other-related processing. The term frequency-inverse document frequency 
(TF-IDF) was set to 0.05 for both meta-analyses. The false discovery rate (FDR) was set to 0.05; both forward 
inference and reverse inference images were obtained, and statistical threshold was set to Z =  4.5. The automated 
literature extraction returned 116 studies for self-related processing and 168 studies for other-related process-
ing. We performed a meta-analytic comparison between the two groups of studies; spatial activation patterns 
of the two were not significantly different. The union of these meta-analytic images, with subcortical regions 
removed, was used in DSI fibre tracking. The “self ” and “other” meta-analytic images were independently shown 
in Supplementary Fig. S1.

Fibre tracking was conducted by the DSI Studio software (http://dsi-studio.labsolver.org). The DSI template, 
reconstructed by the generalised Q-sampling imaging method, was kindly provided by Drs. Wen-Yih Isaac 
Tseng and Yu-Jen Chen from the National Taiwan University Molecular Imaging Center and is now available 
as the original diffusion-weighted image on the NITRC website (https://www.nitrc.org/projects/ntu-dsi-122/). 
Detailed information of the NTU-122 template can be found in the work by Hsu et al.43. We used the streamline 
fibre-tracking algorithm in which both end regions of fibre tracking were defined as the complete meta-analytic 
image. This design preserved any fibre that originate and terminate within the meta-analytic image, regardless 
of direction and exact spatial location. The quantitative anisotropy threshold was set to 0.0085, and the angular 
threshold was set to 60°. To prevent the tracking process from being overwhelmed by short association fibres, we 
set a minimal length constraint of 20 mm. 150,000 fibres were traced out, and we applied hierarchical clustering to 
group the fibres into tracts and trimmed off scattered fibres. The spatial coordinates of fibre end points were clus-
tered by the k-means clustering algorithm into network nodes. The resulting nodes were individually inspected to 
assess the clustering adequacy: If the algorithm erroneously clustered two ends of one tract into a single node due 
to spatial proximity, the node would be manually divided in two. This condition occasionally happened to fibres 
that straddled two gyri. This process gave rise to 34 nodes for the dat network.

The anat network—“anat” meaning “anatomical”—is more intuitive: It was built by tracing out major fibre 
connections between key anatomical landmarks involved in self-other processing. The purpose of building anat 
was to construct a self-other processing network in the conventional way; that is, atlas-dependent. Simulation 
result of anat—one of the two conventional networks—will be compared with that of dat in order to obtain 
insights into the influence construction approaches have on the dynamical properties.

The detailed construction process of anat is as follows. First, we manually traced out anatomical regions that 
were considered relevant to self-other processing in the earlier literature5,7,27–29. These regions included: Anterior 
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cingulate cortex, posterior cingulate cortex, precuneus, medial prefrontal cortex, pars triangularis and pars oper-
cularis of inferior frontal gyrus, temporo-parietal junction, and insula. We registered to the DSI template two 
different anatomical images—the normalised template in the Neurosynth package, and the MNI152 T1w brain 
image in the FSL package (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/)—as anatomical references, ensuring that the ana-
tomical landmarks were accurately located and traced out. Streamline fibre tracking was used to trace out fibre 
connections between any two anatomical landmarks. Termination fibre count was set to 5,000 for all pairs, with a 
rescuing seed count of 500,000. The resulting anat network has 14 nodes.

Finally, the anatpar network—“par” meaning “partition”—was constructed by randomly segregating the 14 
anatomical landmarks of anat into 34 segments, the same number as the node number of dat. In other words, 
anatpar had the same node number as dat and the same white matter structure as anat. As stated above, the 
main reason for building two conventional networks—anat and anatpar—was the lack of consensus on standard 
parcellation scheme. However, there was more to anatpar than merely another parcellation scheme. Earlier study 
suggested that node number or nodal scale might influence some network measures44; therefore, we matched the 
segment number of anatpar to the node number of dat. It is anticipated that comparing dat with two different 
versions of conventional networks—anat with anatomical nodes, anatpar with random nodes and matched node 
number—would make the comparison results more generalisable.

The null-hypothesis networks for dat, anat and anatpar were created by randomising these networks using the 
“randmio_und_connected” script in Brain Connectivity Toolbox19. 15 null-hypothesis networks were created for 
each of the three networks, preserving the degree distribution, connectivity strength and tract length.

Dynamical neural systems. Dynamical systems were based on Kuramoto model of coupled oscillators. The 
mathematical derivation of Kuramoto model is detailed in the original work33. In brief, the model assumes global 
and weak coupling among local neuronal populations, whose activities are modelled as self-sustained oscillators. 
The behaviour of Kuramoto model is governed by the following equation:
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According to eq. (1), the instant angular velocity of a node n is determined by the intrinsic angular velocity 
ωn, the phase difference between node n and other nodes (p) connected to it by strength Cnp, and the noise ηn. The 
phase differences were determined by the mean transmission time delays (τ np), which were linearly correlated 
with mean tract lengths between node n and other nodes (p). Cnp is determined by the generalised fractional 
anisotropy (GFA) value. The ω values were randomly drawn from the gamma band (25 Hz to 75 Hz), whose cor-
relation with global-level computation has been proposed previously30,40. To make the exploration of parameters 
as exhaustive as possible, 200 combinations of ω vectors—each composed of N ωn—were created for each neural 
network, yielding 200 dynamical systems. For the null-hypothesis networks, 40 sets of ω vectors were sampled for 
each randomised network. Because there is no consensus on the adjustment of k, the global scaling factor, it was 
arbitrarily set to 1,000 for an intermediate range of synchronisation levels. The τnp values were divided by 20 and 
rounded to integers. Since our analysis depended on the stabilisation of synchronisation states, the noise term ηn 
was removed from the Kuramoto equation. Euler’s method was used in all integration processes, and all simula-
tions were iterated through 2,000 steps to ensure stabilisation.

Stroboscopic analysis. Stroboscopic analysis, which quantifies the synchronisation level between a pair of 
nodes, is part of the multistability evaluation process. Inspired by the theory of Poincare map34, this analysis takes 
into consideration some special cases that might be otherwise overlooked by other indices. The mathematical 
derivation of this synchronisation index is as follows:
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The basic concept is as follows: Suppose two nodes p and q produce two time-series signals, and these two sig-
nals can be mapped to the phase space in the form of θp(t) and θq(t). If p and q synchronise with each other, their 
phase difference should be bounded35. Under this condition, for t =  T1, T2, T3… TM when the phases of p equals 
2π , the concurrent phases of q should be a fixed value. As illustrated in eqs (2) and (5), when the concurrent phase 
differences at these time-points are plotted on a unit circle in a polar coordinate system, the averaged norm of the 
sum of their corresponding complex unit vectors—the synchronisation index—will be 1. On the other hand, if p 
and q are completely uncorrelated, the concurrent phase differences will scatter around the unit circle, produc-
ing an index value of 0. In summary, stroboscopic analysis produces a synchronisation index for a pair of nodes 
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generating continuous time-series signals, such as the nodes in Kuramoto dynamical system. This index value 
ranges from 1 for completely synchronised nodes to 0 for completely de-synchronised nodes.

In terms of implementing stroboscopic analysis with computer algorithm, oscillatory signals of the nodes pro-
duced by Kuramoto model were subjected to Hilbert transform to map them into phase space. The first 100 itera-
tions of the time-series were deemed pre-stabilisation signals and discarded. These time-series were then analysed 
pairwisely. For every node pair, one of the two time-series served as the reference, and all the time-points where 
the reference phase approaches 2π  were extracted. These time-points were then used to extract concurrent phases 
of another node, and unit vectors with these phase angles were averaged to obtain an index whose absolute value 
ranges from 0 to 1. The two nodes then reversed roles, yielding another index. The average of the two indices 
represented the synchronisation level of the two nodes.

It is noteworthy that our index takes into account not only in-phase synchronisation, but also synchronisation 
with various phase lags, including anti-phase synchronisation. It is different from another commonly used syn-
chronisation index proposed by Shanahan14,45, which produces lower value as the phase lag between two signals 
increases. We did not assume that smaller phase lag indicates stronger synchronisation, as phase lag may be due to 
strong but distant signal transmission. Therefore, we devised this stroboscopic analysis index instead of adopting 
the index described above.

For demonstration in Fig. 5 the synchronisation patterns derived from the 20,000 simulation experiments 
(200 dynamical systems multiplied by 100 simulations) for each network were averaged and mapped back to the 
original N ×  N matrix, with nodes ordered as those in the GFA matrix. Auto-correlation values (i.e. main diagonal 
values) of these synchronisation matrices were set to 0.

Elbow method for k-means clustering. We used the “gap” statistic to estimate the number of optimal 
clusters for k-means clustering of a dataset. A detailed description of the gap statistic can be found in the work of 
Tibshirani et al.37. Briefly, this method finds the cluster number at which the within-cluster error dispersion is the 
lowest compared to the expected value of error dispersion determined by Monte Carlo sampling from a reference 
distribution. The gap value is defined as follows:
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In eqs (6) and (7), n denotes the sample size, k denotes the number of clusters to be evaluated, Wk denotes 
the within-cluster error dispersion, r denotes the index of a cluster, and nr denotes the number of data points in 
cluster r. In the case of k-means clustering, error dispersion is proportional to the sum of pairwise distances for 
all points within every individual cluster, denoted by Dr in the equation. The maximal cluster number to be evalu-
ated was set to 6. The evaluation results were used to construct the “Clustered” matrix and correlation coefficient 
matrix for each dynamical system, as is illustrated in Fig. 3. The number distributions of synchronisation states 
presented in Fig. 4 were obtained by pooling all optimal k values of dynamical systems belonging to each category. 
The optimal k values of all 15 null-hypothesis networks for each network category were also pooled for analysis.

Software. Neurosynth meta-analysis was done by Python version 2.7. Kuramoto model simulation, stro-
boscopic analysis and the k-means algorithm with Elbow method were done using Matlab, 2014b version. 
Visualization of activation map and anatomical correlates in Fig. 1 was done by the Caret software (http://www.
nitrc.org/projects/caret/)46.
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