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Dynamic control of asymmetric 
electromagnetic wave transmission 
by active chiral metamaterial
Ke Chen, Yijun Feng, Li Cui, Junming Zhao, Tian Jiang & Bo Zhu

The asymmetric transmission of electromagnetic (EM) wave can be fully manipulated by chiral 
metamaterials, but little can achieve real-time and high efficient tunability due to challenges in 
practically deployable solutions. Here, we proposed a new scheme for flexibly and dynamically 
controlling the asymmetric EM wave transmission at microwave frequencies using planar metamaterial 
of deep subwavelength thickness incorporated with active components of PIN diodes. The asymmetric 
transmission of linearly polarized EM wave exhibits a high efficiency and a pronounced real-time 
continuous tunability controlled by the external stimulation of voltage biasing. In addition, the 
asymmetric transmission effect can be well preserved at large oblique incident angle up to ±70°. The 
design principle and EM performance are validated by both full wave simulations and experimental 
measurements. Such dynamically controllable chiral metamaterial may provide robust and flexible 
approach to manipulate EM wave propagation, as well as to facilitate EM device integration to create 
diverse functionalities.

From bio-molecules, polymers to crystals, chiral molecules and structures are ubiquitously in the real physical 
world, but the chiral effect in these naturally occurring media is quite weak. Metamaterials, the artificial composites  
with subwavelength structural inclusions (or termed as meta-atoms), have been emerged as a promising platform to 
realize custom-designed chiral response which is much stronger than that of natural materials1–3. By breaking the mir-
ror symmetry, these chiral metamaterials can be utilized to achieve many abnormal phenomena including negative 
refraction2,4,5 and handedness-dependent non-linear response6, as well as other functional devices aiming to manip-
ulate the polarization states of electromagnetic (EM) waves with novel features like asymmetric transmission7–10,  
giant optical activity4,11 and circular dichroism3,12, etc. Particularly, the asymmetric EM wave transmission is a fas-
cinating physical phenomenon, which is recognized as a difference in total transmission energy between forward 
and backward propagations either for circularly or linearly polarized EM waves. However, conventional devices 
to achieve asymmetric transmission with non-reciprocity methods are usually heavy, complex and bulky, which 
could not be readily integrated into modern compact systems13. The alternative approaches in reciprocal and pla-
nar fashions by chiral metamaterials enable asymmetric transmission with unique advantages of passive operation, 
light-weight and especially subwavelength thickness, which have already manifested their potential uses in many 
real-world applications, such as spectroscopy, signal processing and communications.

Although metamaterials can be designed in various forms, the vast majority of them are composed of passive 
meta-atoms, such as structured metallic or dielectric inclusions with fixed EM wave performances, which cannot 
be reconfigured in real-time once fabricated, limiting their capability in manipulating the EM wave propagation. 
Therefore, substantial efforts are now focused on metamaterials with switchable, tunable or reconfigurable prop-
erties actuated by thermal14, electric bias15–17 and mechanical deformation18,19, and many meta-devices includ-
ing switchable absorbers16,20, ultrafast EM wave modulators15, reconfigurable lenses21, as well as devices with 
tunable optical activity or polarization22–27 have been widely implemented in various applications, thus making 
metamaterials controllable with external stimulations realistic schemes. Remarkably, in the microwave regime, 
PIN diodes has been demonstrated as a well-controllable active component that could be hybridized with the 
meta-atoms to dynamically manipulate the EM responses, which is more preferable than other alternative routes 
like thermal or structural deformation to realize switchable or tunable functional devices (especially when requir-
ing fast response time), such as tunable frequency selective surfaces (FSS)28–30, absorbers16,20, polarizers27 and 
reconfigurable antennas31–33.
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Although asymmetric transmission of EM wave is successfully realized by various types of metamaterials 
with symmetry-broken chiral configurations, its performance is usually fixed which lacks of dynamic and recon-
figurable control, and inherently limits its practical uses7–10,34–39. Recently some theoretical proposals have been 
reported to realize dynamic asymmetric transmission for certain polarized EM wave23,25, but practical challenges 
are still needed to be tackled for real-time tunability with practically deployable solutions. Here in this paper, we 
proposed a new strategy to realize dynamic control of the asymmetric transmission for certain linearly polarized 
EM waves at microwave frequencies. Through elaborately designing a chiral meta-atom incorporating active 
component of PIN diode, without much extra complexity in the structural design and optimization, we are able 
to dynamically control over the transmission property. Benefit from the transient state of the PIN diode as the 
bias voltage gradually changes, the asymmetric transmission can be continuously and flexibly manipulated at will 
in real-time according to the external voltage stimulation. In addition, the asymmetric transmission effect can be 
well preserved at large oblique incident angle up to ± 70° for both wave polarizations. The dynamic performances 
have been validated both from the simulation and measurement on fabricated prototype with good coincidence 
with each other. We expect such dynamically controllable chiral metamaterial could provide new ways for active 
and reconfigurable functionality, which may be applicable to versatile compact EM device designs.

Results
Concept and experimental verification. The most straightforward approach to generate strong chiral 
response is to mimic the construction of helical molecule in nature by suitably scaling the overall dimension and 
thus synthesizing real three-dimensional (3D) chiral meta-atoms that look like helices3,40–44. Such method can be 
readily reduced to their planar counterpart as recently demonstrated, where the total thickness of the meta-at-
oms along the wave propagation direction is usually much smaller than the operational wavelength7,10,12,45–48.  
By placing two metallic square split ring resonators (SRRs) twisted 90° to each other on two sides of the dielectric 
substrate, we both theoretical and experimentally demonstrate that high asymmetric transmission of linearly 
polarized EM wave can be successfully realized10. Here, the proposed active chiral metamaterial is based on such 
twisted SRRs structure, and the configuration of the unit cell is sketched in the lower-left part of Fig. 1. In order to 
achieve a tunable metamaterial, two metallic arms of the front SRR structure are cut and then connected by two 
identical PIN diodes working with same states to dynamically control the structural resonances. The two SRRs are 
shaped with identical geometric parameters and separated by a dielectric layer of Taconic RF-35A2 with thickness 
of 1.52 mm (with a relative permittivity of 3.5 and a loss tangent of 0.0018), but the one on back side has no PIN 
diodes and is twisted by an angle of 90° in the x-y plane with respect to the front one. The bias lines are etched on the 
front side to connect the active lumped elements to the external DC voltage sources. Two chip resistors (20 K ohm)  
serving as the currents choke are embedded between the metallic bias lines and resonant structure to get rid of 
unwanted coupling between these adjacent metallic parts that may further spoil the tunable performance, as 
well as the high transmittance. All the metallic films used in the design are made of copper with a thickness of 
0.018 mm.

Figure 1. Active chiral metamaterial for dynamic control of the asymmetric EM wave transmission.  
(a) Biased by an external DC voltage source of 15 V, the chiral metamaterial can transform the x-polarized 
EM wave along forward direction (+ z) into y-polarization with high transmittance, while reflect the opposite 
incoming EM wave to its specular direction, leading to an asymmetric EM wave transmission. The unit cell is 
shown on the lower-left part with optimized geometric parameters of p =  12 mm, h =  1.52 mm, b =  8.2 mm. 
The wire width of the square SRR structure and bias line are 1.3 mm and 0.4 mm, respectively. The width of the 
slots on both sides is 0.6 mm. The distance between the bias line and the SRR structure is 0.9 mm. (b) Biased by 
an external DC voltage source of 0 V, the x-polarized EM wave either propagating along forward or backward 
direction can pass through the chiral metamaterial without much attenuation, resulting in symmetric EM wave 
transmission. (c) The photograph of the frontside (left) and the backside (right) of the fabricated sample. Inset 
shows the enlarged view of the unit cell.
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Asymmetric transmission of linearly polarized EM wave is usually associated with the efficient 
cross-polarization conversion when the incident EM wave impinging on a certain side of the chiral metamaterial, 
while such conversion is quite different for the same polarization incident along the opposite direction. For a lin-
early polarized wave propagating along the forward direction (+ z) that normally impinges on the structure, the 
incident and transmitted electric fields can be decomposed into two linearly polarized x- and y-components8,10,44:
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where  ω is the frequency, k is the wave vector, and Ix, Iy and Tx, Ty represent the complex amplitudes of the inci-
dent and transmitted wave, respectively. Transmission Jones matrix can be applied to better intuitionally relates 
the incident field to the transmitted field with consideration of the polarization states:
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where the superscript ‘f’ indicates the forward propagation, and the subscript ‘lin’ indicates the linear polari-
zation. Since there does not involve non-reciprocal component in the medium, the reciprocal theorem can be 
applied to derive the transmission matrix for the EM wave propagating along backward direction (− z), which 
gives (the superscript ‘b’ indicates the backward propagation):
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Tunable metamaterials can change the functionalities or their performances upon the external stimulations, 
which is the most advantage over conventional metamaterials. Here, we start the proposal with PIN diodes work-
ing at two extreme states, namely, the ON or OFF state, to show that the dynamically switchable asymmetric 
transmission can be realized by the active chiral metamaterials around the working frequency of 9.2 GHz. In the 
present scheme, the PIN diodes are selected from the off-the-shelf commercial products whose overall dimen-
sions are negligible compared to the operational wavelength, thus minimizing the parasitic effect and their mutual 
coupling with metallic cut wires. This PIN diode can be molded as an inductance of 0.7 nH serially connected 
with a resistance of 2 ohm at the ON state, while a capacitance of 0.15 pF at the OFF state. One can flexibly alter 
the working state of the PIN diode from an insulator to an almost conductive one by choosing appropriate bias 
voltage. The performances of the proposed chiral metamaterial has been first optimized in full-wave simulations 
through a commercial software. Then, a planar sample composed of an array of 12 ×  12 unit cells with the bias 
lines addressing every unit cell is implemented and fabricated through standard printed circuit board (PCB) 
technique. The prototype of the sample is shown in Fig. 1(c). The active chiral metamaterial is experimentally 
characterized after the fabrication and details of the measurement can be found in Methods section.

The switchable performances of the proposed active chiral metamaterials are schematically illustrated in 
Fig. 1, and the corresponding simulated and measured results of the transmission Jones matrix for plane wave 
along forward and backward direction under the bias voltage of 15 V or 0 V are shown in Fig. 2, respectively. 
Commercial software Ansys HFSS is used to perform the simulations. When biased by the external DC voltage 
source of 15 V that exceeds the threshold voltage of diodes, the PIN diodes are switched on to act as conductive 
parts in the SRR structures. In this case, the overall chiral metamaterial structure is similar to that of ref. 10, which 
can provide high transmission of x-polarized EM wave along forward direction by converting the incidence into 
y-polarization, but blocks the x-polarized EM wave that incidents from the opposite side of the metamaterial. 
As illustrated in Fig. 2(a), the forward cross-polarization transmission coefficient tyx experiences a transmission 
peak with a maximum reaching 0.82 at the operating frequency of 9.2 GHz both in simulation and measurement, 
while the co-polarization transmission coefficient txx nearly reduces to its minimum of less than 0.3. The back-
ward co-polarization transmission coefficient txx is same as that of forward propagation due to the reciprocity 
principle, but the tyx remains close to zero, as shown in Fig. 2(c). The remarkable difference of tyx between two EM 
waves with opposite propagation directions will results in a high asymmetric cross-polarization-conversion for 
x-polarized EM wave, thereby, leading to the total transmitted energy being quite different. As Fig. 3(a) shows, the 
total transmittance (|tyx|2 +  txx|2) of backward propagation is only about 0.1 at the resonant frequency, indicating 
10% of the total incident energy can efficiently transmit through the metamaterial. However, the transmittance 
is dramatically improved and reaches to about 0.8 for the forward propagation. In addition, Fig. 2(a) and (c) 
indicates that the cross-polarization transmission coefficient of tyx and txy will interchange with each other once 
the propagation direction is reversed due to the reciprocity theorem, which exactly complies with the theoretical 
prediction in Equations (3 and 4). All these results show good agreements between full-wave simulations and 
measurements, therefore validate that high asymmetric transmission can be obtained through voltage biasing on 
the proposed active chiral metamaterial.

On the contrary, there is weak asymmetric transmission occurs for the case of PIN diodes without voltage 
biasing. When the PIN diode is switched off, it works simply as a capacitance that destroys the SRR structure and 
further the chiral response of the metamaterial, leading to direct transmission without polarization conversion 
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for x-polarized EM wave coming from either side of the metamaterial. This is demonstrated in Fig. 2(b) and (d), 
where a high co-polarization transmission coefficient (txx) of about 0.8 is observed for both forward and backward 
propagated EM waves, while the cross-polarization conversion is quite weak and the corresponding transmission 
coefficient is reduced to a minimum close to zero. The total transmitted energy is shown in Fig. 3(b), where the 
transmittance of x-polarized EM wave along forward direction is nearly the same as that of x-polarized EM wave 
along backward direction, therefore, demonstrates that weak asymmetric transmission (or highly symmetric 
transmission) can be obtained by switching off the PIN diodes of the active chiral metamaterial.

As mentioned above, the asymmetric transmission is actually attributed to the cross polarization transmis-
sion components, which are different for certain polarized EM wave between forward and backward transmis-
sion. Achieving high cross-polarization-conversion for linearly polarized EM wave requires anisotropic electric 

Figure 2. Simulated and measured switchable properties of the active chiral metamaterial. Forward 
transmission Jones matrix with the PIN diodes in the metamaterial (a) switched on, or (b) switched off. Backward 
transmission Jones matrix with the PIN diodes in the metamaterial (c) switched on, or (d) switched off.

Figure 3. Simulated and measured results of forward and backward total transmittance under the 
illumination of x-polarized plane wave. The PIN diodes are (a) switched on by bias voltages of 15 V, or (b) 
switched off by bias voltages of 0 V.
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response and magneto-electric mutual coupling in the structure. Anisotropic electric property can be easily design 
by ultrathin patterned metallic sheets, since the frequency-selective-surface theory provides extensive literature 
to generated arbitrary electric response49. However, such single-layered structures cannot offer magneto-electric 
coupling, the most important condition necessary for high cross-polarization conversion. Indeed, the fundamental 
limit of conversion efficiency is only 25% for a single layer50. Therefore, we adopt two-layered metallic SRR struc-
ture in this paper, but the thickness is only 0.046λ (λ is wavelength in free space), still much smaller compared to 
the wavelength. A metallic SRR structure could have polarization-dependent responses to the incident EM wave51, 

Figure 4. The spectrum responses of a single metallic SRR under the normal illumination of a plane wave 
incidence. 

Figure 5. Electric field and surface current distributions. Normalized electric field distributions at 9.2 GHz 
for an x-polarized wave incident along the (a) forward and (b) backward direction when the diodes are switched 
on, and results for the an x-polarized wave incident along (c) forward and (b) backward direction when the 
diodes are switched off. The three slices are recorded at 10 mm from the sample front surface, the middle of the 
dielectric spacer and 10 mm from the sample back surface, respectively. The upper-right panel of each figure 
shows the corresponding surface current distribution on the metallic SRR structures at 9.2 GHz.
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and the spectrum responses of the single metallic SRR structure in this paper (the one on backside of the unit 
cell) is shown in Fig. 4. For an x-polarized incidence, the wave energy can propagate through the structure with 
a high transmission due to the existing slot along x-direction. On the contrary, the y-polarized incidence is near 
totally reflected when impinging onto the structure. The single SRR structure allows the EM wave to pass through 
it only if the incident polarization is in parallel to the slot. In our design, when all the PIN diodes are switched on, 
the EM responses of the unit cell is similar to that of two SRR structures twisted by an angle of 90° to each other 
on two sides of a dielectric spacer. Therefore, a forward x-polarized propagating wave penetrates through the first 
SRR but interacts with the second one, which in turn interacts with the first one due to the near-field magnetic 
coupling between the adjacent SRRs and finally a linear y-polarized EM wave is radiated. For the backward case, 
an x-polarized EM wave first hits the second SRR, which can hardly be coupled into the structure and mostly got 
bounced to the specular direction with respect to the incidence, resulting in a low co-polarization transmission. 
However, once the PIN diodes are switched off, the second SRR will have slots on both x- and y-directions. Thus the 
highly polarization-dependent property of the second SRR structure is destroyed, leading to high co-polarization 
symmetric transmission for x-polarized incidences from both sides of the metamaterial.

Electric field evolution and the surface current distribution of the SRR structure are shown in Fig. 5 to fur-
ther elucidate the working mechanism of the active chiral metamaterial. When the diodes are switched on and 
a forward x-polarized incidence impinges on the structure, currents will be induced in the metallic SRR and 
results in antiparallel currents on one lateral side of the two resonators attributed to their conjugated arrange-
ment, while parallel currents on the other lateral side, as shown in the upper-right panel of Fig. 5(a). Therefore, a 
magnetic dipolar resonance along x-direction and an electric dipolar resonance along y-direction can be excited. 
The coupled electric and magnetic fields finally lead to a polarization rotation at the resonant frequency, namely 
a y-polarized transmitted EM wave, as demonstrated by the corresponding electric field evolution in Fig. 5(a). 
However, the resonant feature of the unit cell is quite different when the incidence is inverted to the backward 
direction. As illustrated in Fig. 5(b), the incidence first hits the second SRR and its magnetic resonance cannot be 
excited, which therefore results in a comparably weak coupling and a low level of backward co-polarization trans-
mission. Such excitation of different modes for forward and backward cases successfully gives rise to a compara-
ble high asymmetric transmission for x-polarized incidence. On the contrary, once the PIN diodes are switched 
off, the resonant features of the unit cell are similar between forward and backward propagating wave, resulting 
in high co-polarization symmetric transmission for x-polarized incidences from both sides of the metamaterial, 
as shown in Fig. 5(c) and (d).

Figure 6. Continuously tuning of asymmetric transmission by proposed active chiral metamaterial.  
(a) The cross-polarization components of tyx (solid lines) and txy (dashed lines) of the forward transmission  
for x-polarized EM wave under different bias voltages, and (b) the corresponding results of asymmetric 
transmission parameter ∆lin

x . (c) Bias-voltage-dependent asymmetric transmission parameters at the target 
frequency of 9.2 GHz. (d) Bias-voltage-dependent polarization conversion ratio at the target frequency of 
9.2 GHz.
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Continuously tuning of asymmetric transmission. The key to realize tunable asymmetric transmis-
sion is to create changeable resonant properties in the unit cell structures. Possible alternative active components 
could be the varactor diodes whose capacitance can be dynamically tunable but their resistance keeps as a con-
stant value, by which, however, only the resonant frequency but not the strength of resonance could be poten-
tially changed52. In this regard, PIN diodes are preferable in cases where the continuously tuning of the resonant 
strength or the surface impedance is needed, due to their resistance can be tuned over several orders between 
ON and OFF states at microwave frequencies20. As the demonstration in the next, we will show that continuously 
tuning of the asymmetric transmission can be dynamically controlled by the proposed active metamaterial.

To quantify the bias-voltage-controlled asymmetric transmission effect, we here introduce asymmetric transmis-
sion parameter Δ , which is usually utilized to characterize the asymmetric transmission property and can be defined 
as the difference between the total transmissions of EM waves along two opposite directions. It can be calculated by
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where the subscript “lin” indicates the linearly polarization. As illustrated in Fig. 6(a), if we gradually increase the 
resistance of the PIN-diodes on the front side by reducing the bias voltage, the near-field coupling effect between the 
two layers will change as well, leading to the cross-polarization transmission coefficient for x-polarized EM wave (tyx) 
along forward direction gradually reduced to zero observed at the working frequency of 9.2 GHz, while the ones for 
y-polarized EM wave (txy) remains almost unchanged, as it is not strongly affected by the coupling effect but is intrin-
sically restrained close to zero due to the particular bi-anisotropic responses of the SRR structure on the backside. 
Hence, the asymmetric transmission parameter ∆lin

x  gradually decreases from about 0.67, the maximum across the 
entire frequency band of 8–10.4 GHz, to zero as the bias voltage reduces to 0 V, as shown in Fig. 6(b). Here we also 
use the polarization conversion ratio (PCR) to quantify the performance of the cross-polarization conversion for x- 
or y-linearly polarized incidence propagating along forward direction. The PCR is defined as the ratio of the 
cross-polarization transmittance to the total transmittance, which can be calculated by

Figure 7. Simulated and measured results of asymmetric transmission parameter ∆lin
x  for TE-polarized 

oblique incidence. Simulated results with PIN diodes (a) switched on, or (b) switched off, and the 
corresponding measured results are shown in (c,d), respectively.
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where subscript “x” or “y” indicates the x- or y-polarization incidence, respectively. The resulting PCR for both 
polarizations is illustrated in Fig. 6(d), where the PCRx gradually increases and finally reaches to about 0.9 as 
the voltage changes from 0 to 15 V. Meanwhile, the PCRy are negligible, due to the component txy always stays 
close to zero as indicated in Fig. 6(a). The above results suggest that by appropriately choosing the external bias 
voltage to determine the working state of the PIN diodes from an insulator to the almost conductive one, the 
cross-polarization transmission for a certain linearly polarized EM wave can be altered at will, further leading to 
a desirable asymmetric transmission parameter.

Oblique performances. The robust angular-dependent performance is an important criterion to evaluate 
the metamaterials in many practical applications. However, the chiral responses usually weakens in intrinsically 
chiral metamaterial under oblique incidence. Hence, we have investigated an acceptable incident angle range 
where the dynamical control of asymmetric transmission is achievable. For the simplicity and view, we only plot 
the results of either the PIN diodes are switched off or on. Figure 7(a) and (b) plot the simulated parameter ∆lin

x  
versus different angles of TE wave incidence (the magnetic field parallel to y-z plane while the electric field per-
pendicular to it) with the bias voltage of 15 V and 0 V, respectively. It is clearly that little degradation of the high 
asymmetric transmission occurs until the incident angle up to 70° when the PIN diodes are in ON state, while the 
asymmetric transmission remains very weak close to zero across the entire working frequency band when the 
PIN diodes are switched to OFF state. The results for TM incidence are plotted in Fig. 8, where the robust 
angular-dependent performances are also observed only except that the high asymmetric transmission seems to 
degrade rapidly as the variation of frequency at large incident angle (i.e. 70°) when the PIN diodes are switched to 
ON state. As experimental verifications, the measured results illustrated in Figs 7(c,d) and 8(c,d) are in good 
coincidence with the simulation predictions when taking the consideration of the fabrication tolerance and 
imperfect assembly.

Figure 8. Simulated and measured results of asymmetric transmission parameter ∆lin
x  for TM-polarized 

oblique incidence. Simulated results with PIN diodes (a) switched on, or (b) switched off, and the 
corresponding measured results are shown in (c,d), respectively.
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Discussion
We have realized real-time tunability of active chiral metamaterial structure with specific metallic cut wires con-
nected by PIN diodes, which can be changed from an insulator to an almost conductive one upon corresponding 
electrical biasing. The asymmetric EM wave transmission for certain linearly polarized wave is verified both 
by full-wave simulations and experiments with good agreements between them. In addition, the performances 
of high asymmetric transmission are robust to oblique incident angles up to about 70° both under TE and TM 
polarized incidences. It is worth mentioning that the switchable properties are electrically controlled by the bias 
voltages, where the switchable speed could reach as fast as a few microseconds depending on the dynamic behav-
ior of the PIN diodes employed in the metamaterial, thus offering robust and flexible approaches to dynamically 
manipulate electromagnetic wave propagation. The active chiral metamaterials can be also scaled to other fre-
quency bands such as terahertz or optical regime, where the active components may be realized by graphene or 
semiconductor materials15,17. In general, we believe that the design principle is not limited to asymmetric trans-
mission for linearly polarized EM wave but can also be applied to realize other device functionalities, such as to 
realize handedness switching, dynamic polarization control and signal modulation.

Methods
Experimental setup. The transmission measurements are carried out in a microwave anechoic chamber to 
minimize the reflections from surroundings as well as to avoid the interference from the environment. A pair of 
lens antenna serving as the emitter and the detector is connected to the two ports of a vector network analyzer 
(Agilent N5245A) by coaxial-cables, respectively. A DC voltage source is utilized to give a precise control over the 
working state of PIN diodes. The polarization state of the incidence can be adjusted by rotating the emitter with 
an angle of 0° or 90° to obtain either x- or y-linearly polarized EM wave, and the detector can be reconfigurable 
to co-polarization or cross-polarization states by rotating with an angle of 0° or 90° with respect to the emitting 
antenna. To characterize the transmission properties of the active chiral metamaterial, the unity transmission 
coefficient is calibrated by the direct co-polarization transmission between the two antennas. For normal inci-
dence, the fabricated sample is placed between the two antennas and parallel to the lens aperture. For oblique 
incidence cases, the sample is tilted to different angles gradually varying from − 70° to 70° with respect to the 
input EM wave mode, while the other components in the experiment setup are kept unchanged.
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