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Facing the phase problem in 
Coherent Diffractive Imaging via 
Memetic Algorithms
Alessandro Colombo1, Davide Emilio Galli1, Liberato De Caro2, Francesco Scattarella3 & 
Elvio Carlino3

Coherent Diffractive Imaging is a lensless technique that allows imaging of matter at a spatial resolution 
not limited by lens aberrations. This technique exploits the measured diffraction pattern of a coherent 
beam scattered by periodic and non–periodic objects to retrieve spatial information. The diffracted 
intensity, for weak–scattering objects, is proportional to the modulus of the Fourier Transform of the 
object scattering function. Any phase information, needed to retrieve its scattering function, has to 
be retrieved by means of suitable algorithms. Here we present a new approach, based on a memetic 
algorithm, i.e. a hybrid genetic algorithm, to face the phase problem, which exploits the synergy of 
deterministic and stochastic optimization methods. The new approach has been tested on simulated 
data and applied to the phasing of transmission electron microscopy coherent electron diffraction 
data of a SrTiO3 sample. We have been able to quantitatively retrieve the projected atomic potential, 
and also image the oxygen columns, which are not directly visible in the relevant high-resolution 
transmission electron microscopy images. Our approach proves to be a new powerful tool for the study 
of matter at atomic resolution and opens new perspectives in those applications in which effective 
phase retrieval is necessary.

Full-field and scanning microscopes can be either lens-based or lensless imaging systems. Coherent Diffractive 
Imaging (CDI) is a lensless technique that permits imaging matter at a spatial resolution not limited by lens aber-
rations. The seminal idea of CDI was due to David Sayre in 19521 but it was only experimentally demonstrated for 
X-rays in 19992 and, more recently, also for electrons, using a Transmission Electron Microscope (TEM), giving 
rise to the Electron Diffractive Imaging (EDI)3–5.

The goal is to retrieve a qualitative/quantitative image of a scattering function related to a physical property 
of the scattering object, such as the electron density (X-ray CDI) or the atomic potential (EDI). High Resolution 
TEM (HRTEM) images of the projected atomic potential are phase-contrast images limited by the high-order 
aberrations of the objective lens, which distort the phase of the scattered wave function, giving rise to images 
of the sample, which in general are not immediately interpretable in terms of its atomic structure6. Instead, dif-
fraction patterns of scattering objects are not affected by these aberrations. Therefore they contain, in principle, 
undistorted information on the scattering function at a better spatial resolution with respect to lens-based imag-
ing systems3–5. The diffracted intensity, for weak-scattering objects, is proportional only to the modulus of the 
Fourier Transform (FT) of the scattering function. Any phase information, which is experimentally lost (phase 
problem1), has to be retrieved by means of suitable algorithms. The lensless image of the scattering function, 
obtained by means of an inverse FT of the diffraction pattern once that the correct phase has been retrieved, is 
characterized by a final resolution experimentally limited only by the Numerical Aperture (NAdiff) corresponding 
to the highest spatial frequency contained in the diffraction pattern that can be related to the atomic structure of 
the investigated sample5. Wavelength, noise, radiation damage, thermal and mechanical stability of the experi-
mental setup, dynamics of the detector, etc.7 could limit the spatial resolution achievable.

In order to find a unique solution to the phase problem, phase retrieval algorithms need a-priori constraints, 
such as fixing a region around the sample characterized by zero scattering8. The extension of the zero-scattering 
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region has to be large enough regarding the object support S, containing the scattering object. This requirement 
is the so-called oversampling of the diffraction pattern, needed to satisfy the Nyquist sampling requirements1.

For extended samples, alternative approaches have been developed to have enough a-priori information to 
make the phasing problem overdetermined. In particular, Abbey et al.9 for X-rays CDI experiments substituted 
the region of zero scattering with a region of zero illumination using a confined probe with a technique named 
keyhole CDI. The possibility to perform Keyhole coherent diffraction experiments has been demonstrated also 
for electrons in EDI, obtaining the KEDI approach10.

So far, several phase retrieval algorithms have been developed11, which are mostly evolutions of Fienup’s mod-
ification8 of the Gerchberg-Saxton’s algorithm12 working with a dual-space strategy. The common approach of 
many phasing algorithms is to impose constraints both in real space (the prior information on the zero scattering/
illuminating region) and in Fourier space (the amplitudes are adapted to the experimental values). The impo-
sition of a constraint in one space always causes the violation of the constraint in the other. Consequently, the 
standard strategy is to use iterative schemes but, in this way, the global minimum of the reconstruction errors is 
often reached with difficulty13. Indeed, the support S of the scattering function is either unknown (X-ray CDI) or 
known at a worse spatial resolution. This is the case of EDI, for example, where the support is obtained by means 
of a lens-based image of the scattering function (projected atomic potential), i.e. by the HRTEM image.

In case of unknown complex scattering functions the knowledge of the support S (non-zero illumination 
region) at the same spatial resolution of the measured diffraction pattern seems to be mandatory for the suc-
cess of the phasing, especially when phasing algorithms are not suitably structured to escape stagnation in local 
minima5,10. This aspect would limit the advantages of indirect imaging based on lensless systems with respect to 
conventional lens-based set-ups.

Indeed, standard phasing approaches, such as the Hybrid Input-Output (HIO), are mainly deterministic iter-
ative algorithms, which, going back and forth from the real to the Fourier space, try to optimize a specific error 
functional8. For this reason they are highly efficient in finding local minima, but they suffer from stagnation 
mainly due to the incomplete knowledge of the support S. Furthermore, the final result is highly dependent on 
the initial conditions13. In order to overcome these limitations, phasing procedures usually involve a lot of parallel 
and independent retrieval processes, with different initial conditions, choosing the scattering function with the 
lowest reconstruction errors as a possible solution. A first step toward a smarter use of information coming from 
multiple phase retrieval processes is the Guided Hybrid Input-Output algorithm14.

A different approach to face the phase problem in CDI could make use of pure stochastic optimization meth-
ods. However, a major limitation of these methods is their inefficency once the number of unknowns is huge, so 
that, in typical CDI applications, such an approach is doomed to fail even by exploiting actual super–computing 
facilities.

In this article we make a step further proposing a new hybrid stochastic approach to better explore the phase 
solution space through a smart use of Genetic Algorithms (GAs)15. GAs have been already applied to the phase 
problem in different fields16–19. The novelty of our new approach consists in the development of a Memetic 
Algorithm (MA)20 in the context of phase retrieval applied to CDI; this scheme represents a natural choice for a 
smart merging of stochastic and deterministic optimization methods: the algorithm has been developed hybrid-
izing a GA, which guarantees a wide exploration of the configuration space, with local optimization algorithms 
like Hybrid Input-Output and Error Reduction.

We have shown on simulated data that the MA phasing approach is able to retrieve the correct scattering 
function, when it is real, imposing a very loose support constraint S in the direct space. Moreover, still on simu-
lated data, we have shown that the new MA phasing approach is able to retrieve the correct scattering function, 
even if it is complex, starting from a knowledge of the support S at a resolution four times worse than the one 
corresponding to NAdiff, even worse than normally observed in EDI/KEDI real experiments. Our new approach 
shows convergence performances towards the global minimum that go well beyond those achievable by standard 
phasing deterministic algorithms.

Finally, we have applied the GA-based phasing approach to a KEDI experiment realized on a SrTiO3 sample 
in a [100] axis orientation. The image obtained after the phase reconstruction is a detailed structural map of 
the specimen atomic potential projected along the [100] direction at a sub-Ångström spatial resolution corre-
sponding to the highest frequency measured in the experimental diffraction pattern. The intensity distribution 
enables one to distinguish between atomic sites containing different chemical species. Also the oxygen signals can 
be detected, despite the presence of heavy atoms in the crystal cell, whereas they are not visible in the relevant 
HRTEM image.

These results pave the way to the highest spatial resolution, accuracy and reliability achievable in lensless 
imaging and represent a new powerful tool for the study of matter.

Results and Discussion
The Memetic Phase Retrieval approach. A GA15 is a stochastic optimization method that imitates the 
survival–to–fitness typical of the natural evolution of a population. In general, this is obtained by elaborating the 
genetic information via three genetic operators: Selection, Crossover and Mutation. In our algorithm we induce the 
genetic dynamics on a set of initial densities ρ

= …
x{ ( )}i i N1 p

 (also called population) which represents Np possible 

solutions to the phase problem. In standard GAs Mutation and Crossover induce a stochastic shift on every ele-
ment of the population in the space of configurations; this improves the ability of exploring the space, but makes 
the GA efficient only when Np increases with the number of unknowns21. In the phase retrieval problem this 
condition makes standard GA impracticable due to the computational cost.
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A practised way to overcome this issue consists in implementing hybrid GAs, known as Memetic Algorithms 
(MAs)22–25, where global optimization is boosted by local optimization procedures. This operation, in the frame-
work of Memetic Algorithms, is known as Self (or Local) Improvement.

Using this method, we introduce local iterative deterministic phase retrieval procedures in our algorithm 
as Self Improvement operation. For this reason, the new proposed phasing approach is called Memetic Phase 
Retrieval (MPR). Figure 1 shows an overview on the procedure, while a more detailed description of the 
method is reported in the Methods section. It is worth noting that the standard phasing approach can be seen 
as MPR without the genetic operators Selection, Crossover and Mutation. MPR has to be considered as a smart 
framework to take advantage and improve the performances of any current iterative phase retrieval approach; 
it is clear, in fact, that any phase retrieval algorithm can be implemented in MPR. In this work we use the 
Error Reduction and Hybrid Input-Output algorithms as Self Improvement operations because they are simple, 
well known and well-characterized methods. Moreover, as we will show in the following, the sole inclusion of 
HIO and ER inside MPR is enough to build a very powerful phase retrieval algorithm. MPR actually includes 
also methods for the retrieval of the optimal support function, like the Shrinkwrap algorithm26; this feature 
makes MPR a Co-evolving Memetic Algorithm27, where the Self Improvement co-evolves along with candidate 
solutions. This peculiar feature will be discussed in future works because it has not been used in the present 
application on KEDI data, where sufficient information about the support function was available, making 
Shrinkwrap procedure unnecessary.

Testing MPR on simulated data. In the Supplementary Information we discuss in detail several numer-
ical tests performed to verify the potentialities of the new proposed approach to retrieve in a reliable way 
phase information in comparison to standard deterministic phasing approaches. Here, we reassume the main 
results obtained by simulations before discussing the application of MPR on true experimental data of a KEDI 
experiment.

In the comparison of the performances between MPR and standard phasing algorithms, applied on simu-
lated data, we will focus on the best phase reconstructed by both methods and not on a statistical analysis of 
the results obtained from the set of phase retrieval processes started in parallel with different initial conditions. 
This is necessary because the genetic dynamics has the distinctive feature to mix and share parallel information 
during the stochastic evolution; this makes smarter the stochastic search for a better phase, but also tends to push 
the population near to the best candidate solution. A statistical analysis would be thus biased in favor of MPR. 
Moreover, we are going to compare MPR and standard phasing algorithms under equal conditions: the same 
number of candidate solutions in the population and the same kind of iterative phase retrieval algorithms. The 
first test of comparison between MPR and the standard phasing approach is a phase retrieval of a positive and 
real-valued two-dimensional (2D) scattering function, as shown in Fig. 2a. In the test the provided support func-
tion S (Fig. 2b) is a square four times smaller than the total area of the direct space, which gives a constraint ratio28 
Ω =  2. With this regard it is useful to remember that Ω ≥  1 is the mathematical condition to assure the existence 
of a unique solution to the phase problem. Ω is defined as the ratio between the support of the autocorrelation 
of the scattering object and two times the object support, which are areas for 2D phase problem, volumes for 3D 
ones. In this example, the support function is not updated during the phase retrieval.

Figure 3 shows the obtained results for a population Np =  16384. In particular, Fig. 2b shows the sup-
port S, never updated during the phasing process. Figure 3a shows the retrieved unknown function obtained 
by standard phasing algorithms (see Supplementary Information for further details). The poor quality of the 

Figure 1. Comparison between the MPR algorithm and the standard phasing approach. 
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retrieved phase is due to the weak constraint in real space, as the support constraint S has not been updated. 
Figure 3c shows the retrieved unknown function obtained by MPR (see Phase retrieval of real-valued data in 
Supplementary Information for further details).

Figure 2. Real-valued data. (a) Unknown test function (Lena, adapted from the picture 4.2.04 in the USC–SIPI 
image database29), (b) support function.

Figure 3. Real-valued phasing test. Retrieved function (a) and a zoom (b) for the standard approach; retrieved 
function (c) and a zoom (d) for MPR.
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The performances of the new proposed stochastic approach are much better than the classic deterministic 
phasing methods. MPR works accurately even without a tight support constraint.

In the case of simulated data one can evaluate the true error defined as the normalized absolute difference for 
every pixel of the retrieved 2D function with respect to the solution (Lena image, adapted from the picture 4.2.04 
in the USC–SIPI image database29) (see Supplementary Information for more details). The true error for the 
deterministic phasing approach is larger than 24%. Instead, MPR leads to a true error less than 1%.

A second numerical test of MPR concerns the reconstruction of a complex-valued scattering function. In 
particular, we have considered a situation typically encountered in EDI, in which HRTEM allows us to obtain a 
lens-based image of the sample under investigation characterized by a worse spatial resolution with respect to that 
corresponding to the NAdiff of the measured diffraction pattern. In order to simulate this experimental situation, 
we have binned with a factor 4 the module of the scattering function to be retrieved (Fig. 4a) to obtain a rough 
estimation of its support, thresholding the binned image as shown in Fig. 4c, whereas Fig. 4b shows the phase in 
direct space that has also to be retrieved.

This data can be represented as depicted in Fig. 5a via the Hue-Saturation-Value (HSV) color system, where 
the information on the phase is stored in the hue, the modulus corresponds to the value and the saturation level is 
set to the maximum. Even in this case, the standard phasing approach is far from recovering the correct complex 
scattering function, reported in Fig. 5b. Instead, MPR is able to correctly retrieve both module and phase of the 
complex unknown scattering function (Fig. 5c) (see Supplementary Information for further details). The final 
true error for this test is about 10% for the standard approach and 1.5% for MPR.

Application of MPR on experimental data for Keyhole Electron Diffractive Imaging. KEDI 
experiments10 are challenging tests for phase retrieval algorithms as the scattering function to be reconstructed 
is complex. SrTiO3 was considered as a case study for the great importance of this oxide from both an applicative 
and a fundamental point of view. The role of the oxygen sub-lattice is of particular importance in the studies of 

Figure 4. Complex-valued data. (a) Unknown modulus of the complex-valued function (modulus of the 
solution); (b) unknown phase of the complex-valued function (phase of the solution), with range 0–360°;  
(c) initial support function; (d) representation of the complex solution (adapted from the image at http://
openwalls.com/image?id= 17210, Copyright Creative Commons Attribution 3.0 Unported), assigning to the 
brightness the values of the modulus and to the hue the values of phases, following the Hue-Saturation-Value 
(HSV) color system.

http://openwalls.com/image?id=17210
http://openwalls.com/image?id=17210
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two dimensional electron gases formed at the interface between two insulating oxides and has recently attracted 
great attention30. The capability to image the lattice of complex oxides at atomic resolution is necessary to under-
stand the intriguing properties of this class of material. Moreover imaging of a light chemical element, such as 
oxygen, in a matrix of heavier atoms, like titanium and strontium, is not straightforward31,32. The samples were 
prepared for KEDI experiments in a [100] zone axis as this configuration enables the imaging of different atomic 
species in the crystal sub-lattice (see Methods section).

KEDI requires an HRTEM image (Fig. 6a) and a nano-diffraction pattern acquired from the same sample area 
with the same electron optical conditions10. The HRTEM experiment enables us to image the sample (Fig. 6a,b), 
to complement the diffraction pattern at the lower spatial frequency (Fig. 6c) and to estimate the support (Fig. 6d) 
at the resolution allowed by the experimental conditions and by the electron objective lens aberrations10. In the 
case of the electron-optical set-up used for these experiments the relevant spatial resolution in the HRTEM image 
at optimum defocus is 0.19 nm33. The HRTEM image in Fig. 6b has been successfully simulated in the frame-
work of full dynamical Bloch-wave approach34 for a thickness of 25 nm and an underfocus value of 41.3 nm (see 
Supplementary Information). It should be noted that the phase contrast in the HRTEM image of Fig. 6b does 
not show any evident clues that could be correlated to the presence of the oxygen atomic columns which should 
be seen in the [100] projection of the SrTiO3 atomic potential, as evidenced in the simulation (see Fig. S7 of 
Supplementary Information). Indeed, it is worthwhile to remark that the HRTEM image is, in general, an interfer-
ence pattern of the waves scattered by the atomic potentials in the specimen, and the positions of the maxima and 
minima in the image cannot be straightforwardly interpreted as structural features and therefore the comparison 
with the simulated images is needed6 (see Fig. S7 of Supplementary Information).

The KEDI diffraction pattern, shown in Fig. 6c has been obtained by combining the measured diffraction 
pattern with the modulus of the HRTEM image FT, after a suitable matching procedure requiring its rotation 
and scaling10. The pattern in Fig. 6c is the starting point for the phase retrieval process. It is worth noting that the 
MPR phasing process has been carried out without any a–priori information about the phases, an information 
which is, instead, needed by standard phasing procedures applied to KEDI5. Further details on MPR applied to 
experimental data have been reported in the Supplementary Information.

Figure 7 shows the retrieved scattering function obtained by using MPR, where the brightness corresponds 
to the modulus and the hue to the phase of the retrieved real-space complex-valued scattering function. The long 
range phase variation is due to the phase variation of the illumination nano-probe35.

Figure 8a shows the phase retrieved amplitude for the structure of the SrTiO3 seen in a [100] projection. 
Figure 8d has been obtained by subtracting the contribution of the TEM illumination function to quantify the 
SrTiO3 projected potential. The first important point that should be emphasised, is that in the phase recovered 
image the positions of the maxima are correctly in correspondence with the expected positions of the atomic 
columns seen in the [100] projection. In other words, the phase reconstructed image is a structural image of the 
specimen. This is a fundamental issue that paves the way for quantitative structural imaging at atomic resolution. 
Indeed, as shown in Fig. 8d, the Sr and Ti +  O columns are precisely seated on the relevant square sublattice of the 
SrTiO3 in the [100] projection (see Fig. 8b,c). Approximately in the center of the sublattice there is a lower signal 
which corresponds to the oxygen columns. A second point concerns the retrieval of quantitative information 
about the atomic potential. By comparing data shown in Fig. 8d with the expected projected atomic potential 
(Fig. 8c) we found that the ratios between the intensities of Sr, Ti +  O and O columns are correctly retrieved, pro-
viding truly quantitative information on the specimen. In particular, the expected intensity ratios are IO/ISr =  0.35 
and ITi+O/ISr =  0.96 while the experimental retrieved data give IO/ISr =  0.35 ±  0.05 and ITi+O/ISr =  0.89 ±  0.10. The 
possibility to do KEDI experiments by MPR reconstruction paves the way for a detailed structural characteri-
zation of the investigated samples and opens up new possibilities for the understanding of the properties of the 
matter at sub-Ångström resolution.

Figure 5. Complex-valued phasing test. (a) Detail of the solution (adapted from the image at http://openwalls.
com/image?id= 17210, Copyright Creative Commons Attribution 3.0 Unported); (b) Retrieved scattering 
function for the standard approach; (c) Retrieved scattering function for MPR. The values of the modulus are 
assigned to the brightness while the values of phases are assigned to the hue, following the Hue-Saturation-
Value (HSV) color system.

http://openwalls.com/image?id=17210
http://openwalls.com/image?id=17210
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Figure 6. KEDI data. (a) Experimental HRTEM image in [100] zone axis and (b) zoom; (c) KEDI diffraction 
pattern used as input for the phasing; (d) initial support function extracted from (a).

Figure 7. Recovered image.  Brightness is proportional to the retrieved modulus and colors indicate the 
retrieved phase.
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Conclusions
In this work we have discussed some of the potentialities of a new phasing approach, stochastic in the exploration 
of the space of solutions, based on a memetic algorithm, applicable both to X-ray and electron coherent diffrac-
tion imaging. We have tested the new phasing algorithm, named Memetic Phase Retrieval, on simulated data and 
we have obtained the result that the knowledge of the support - which defines the boundaries in the direct space 
of the unknown scattering function that one wants to retrieve - is less binding than previously reported. The more 
efficient exploration of the space of solution, possible thanks to the stochastic genetic procedures implemented 
in MPR, should be the higher gear of the new proposed phasing method with respect to those already available. 
Indeed, both the possibility to correctly retrieve a real-valued scattering function by its diffraction pattern without 
imposing any tight support and to reconstruct a complex-valued scattering function by using a low-resolution 
estimate of the support, are examples of the great capabilities of MPR to face the phase problem. Our tests on 
simulated data demonstrate the superior capabilities of the MPR for accurate phase retrievals. Indeed, by using 
the same computational resources, the MPR approach has proved to be much more powerful than deterministic 
phasing procedures in facing the phase problem. The application to an experimental case of Keyhole Electron 
Diffraction Imaging has shown that the atomic potentials of SrTiO3 can be quantitatively imaged, representing a 
relevant improvement for the study of the matter. We believe that the Memetic Phase Retrieval approach could be 
of interest in all the fields that require accurate phase retrievals.

Methods
The phase problem as an optimization problem. The ideal solution to the phase problem is a function 
ρs(x), representing the spatial distribution of the sample, whose Fourier Transform (FT), ρ q( )s , has a square mod-
ulus equal to I(q), which is proportional to the experimental diffraction pattern intensity. ρs(x) is also assumed to 
be zero outside a well-defined region of the real space, the so-called support S, in order to satisfy the oversampling 
condition, which assures the necessary information to retrieve ρs(x)1. Here, x =  (x, y), with x and y the cartesian 
components of the position vector x with respect to the reference system. Analogously, q =  (u, v), where u and v 
are the spatial frequencies components with respect to the reference axes.

Figure 8. Results of MPR on experimental KEDI data. (a) Modulus of the retrieved scattering function 
(relevant to 6a); (b) SrTiO3 unit cell; (c) simulation of the SrTiO3 projected potential in [100] zone axis and  
(d) experimental data extracted from the phased map.
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In principle, this solution can be represented as an intersection of sets.  can be defined as the set of all func-
tions ρ(x) compatible with experimental data I(q), i.e.:

 ρ ρ= = .


Ix q q{ ( ): ( ) ( )} (1)2

  is, instead, the set of all functions ρs(x) satisfying the oversampling condition, which is defined by a binary 
function Π (x) representing the object support S. So, the set   is described by:

 ρ ρ ρ= = Π .x x x x{ ( ): ( ) ( ) ( )} (2)

Thanks to (1) and (2), the ideal solution is:

∩ρ = .x( ) (3)s M S

The main issue concerning experimental measurements is the presence of noise and lack of data; this, in gen-
eral, implies that   and  do not intersect:

M S∩ = ∅. (4)

Due to the condition (4) a different way to define what we mean by “solution” is needed. It is useful, at this 
point, to introduce two projection operators, which act on the function ρ(x):

FM Mρ = ρ−
P P I ex q x: ( ) [ ( ) ]( ), (5)i q1 arg[ ( ) ]

 ρ ρ= Π .P P x x x: ( ) ( ) ( ) (6)

It’s trivial to prove that P and P are projectors on sets  and  , previously defined in (1) and (2). Thanks 
to these operators, it’s now possible to give a new definition of solution in place of the one defined in the eq. (3):

M Sρ ρ ρ=
ρ

D P Px x x( ) min [ ( ), ( )],
(7)s

where the functional D[A, B] represents the metric of the space. Hereafter, we will refer to the eq. (7) whenever we 
will talk about the “solution” of the problem, ρs(x).

It’s now clear that, in this framework, finding a solution to the phase problem means minimizing the distance 
between sets  and : the phase problem becomes an optimization problem for the quantity M Sρ ρD P Px x[ ( ), ( )], 
which can be reinterpreted as the error of the recovered density ρ(x). Different definitions of the metric imply 
different definitions of the error assigned to a given ρ(x) and, as consequence, different optimization targets. We 
can define the error functional E[ρ] as

M Sρ ρ ρ=E D P Px x[ ] [ ( ), ( )], (8)

such that the eq. (7) turns into

ρ ρ= .
ρ

Ex( ) min [ ]
(9)s

Standard approaches to the phase problem are mainly deterministic iterative algorithms which, going back 
and forth from the real to the Fourier space, try to minimize a specific error functional8. These methods are highly 
efficient in finding local minima, but they suffer from stagnation and the final result is highly dependent on the 
initial conditions13. In order to overcome these issues, phasing procedures usually involve a lot of parallel and 
independent retrieval processes with different initial conditions and then selecting the one with the lowest error.

The founding idea of the new proposed phasing method is to better perform this parallel exploration of the 
space, through the use of a Memetic Algorithm.

Selection as a Rigged Roulette. The Selection process is a delicate step in the Evolution process. A 
Selection strongly favoring only the better elements in ρ

= …
x{ ( )}i i N1 p

 (i.e., elements with the better fitness value) 

will improve the convergence speed, but the algorithm will suffer with stagnation in local minima. On the other 
side, a selection process that weakly favors those elements will have, instead, an unstable convergence and will 
require an excessive length of time to find the solution.

There are several ways to select elements depending on their fitness value. The one chosen in this work is the 
so-called “rigged roulette”. Once an error value Ei is assigned to every ρi(x) in ρ

= …
x{ ( )}i i N1 p

 according to the 

eq. (14), the set ρ
= …

x{ ( )}i i N1 p
 is ordered by increasing values of Ei (which is equivalent to a decreasing values of 

the fitness). Whenever the algorithm has to select a ρi(x) in ρ
= …

x{ ( )}i i N1 p
 for the Crossover operation, an index is 

extracted through the relation

= 
 ⋅ 

 +s N{rand[0, 1)} 1, (10)
r

p

where r ≥ 1 is related to the “strength” of the selection process. Usual values of r range from 1.5 to 2.5.
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Eq. (10) maps a flat distribution in ⊂[1, 0)  to an unbalanced distribution in ⊂N{1, }p , where the higher 
the value is the greater the probability is of getting a lower index and, therefore, selecting a better element.

Differential Crossover. In the Natural Evolution process, the Crossover operation is the mixing of the par-
ents’ genetic pool. In our implementation chromosomes are represented by every single (complex) value of 
ρ ρ=


q q( ) [ ]( ) . This means that, given two parent functions ρ1(x) and ρ2(x) selected according to their fitness, 
the son function ρson(x) is created according to

ρ
ρ

ρ
=






>






C
q

q
q

( )
( ), if rand[0, 1)
( ), otherwise, (11)

son
1

2

where rand [0, 1) is a random number with flat distribution in [0, 1) and C is a balancing coefficient between 0 
and 1.

An improvement in performances can be obtained using the so called Differential Crossover36 where, instead 
of selecting two parents, four parents, ρ1(x) ρ2(x) ρ3(x) and ρ4(x), are chosen. The differential crossover acts as 
follows:
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where Dc is called differential coefficient with typical values between 0.5 and 1.5.
The population of sons can be, in general, smaller than the whole population. This means that if the popu-

lation of sons has Ns =  G · Np elements, a fraction of Np −  Ns parents, chosen randomly, will survive to the next 
generation.

The parameter G, which can be called genetic fraction, has values between 0 and 1: G =  1 means that all of the 
parent population is replaced by the sons, while G =  0 means that no sons are created, the genetic operators are 
switched off and we get a situation equivalent to the standard deterministic approach, as depicted in Fig. 1.

Mutation. Every element in the population ρ
= …

x{ ( )}i i N1 p
 may be subjected to a stochastic modification. In 

this work, the mutation operation has been switched off because it does not introduce a remarkable improvement 
in the performance of MPR on treated data. Different implementations of the mutation operator are under study 
and will be topics of future works.

Self improvement via deterministic optimization. Optimization algorithms such as Error Reduction 
(ER) and Hybrid Input-Output (HIO) are efficient methods to find local minima or, more precisely, minima 
bounded to a region of the configuration space near the starting point. These algorithms are strictly bounded to 
the metric D[A(x), B(x)] defined as:

 ∫= − .D A B A Bx x q q q[ ( ), ( )] d [ [ ]( ) [ ]( ) ] (13)
2

This implies that the local optimization target is the functional E[ρ] defined as:

∫ρ ρ ρ ρ= = − Π .E D P P Ix x q q q[ ] [ ( ), ( )] d [ ( ) [ ]( ) ] (14)
2

FM S

In our algorithm this local optimization is carried on by elaborating every ρi(x) with NHIO iterations of the 
Hybrid Input-Output algorithm and NER iterations of the Error Reduction algorithm. In this work the global 
optimization target, i.e., the fitness of MPR, coincides with the local optimization target of ER and HIO algorithms 
just shown in (14). This is not to be taken for granted because, in general, we can define any arbitrary global opti-
mization target different from the local one (13). We are testing different fitness definitions for the global optimi-
zation, like the Csiszar’s Information Divergence37, and different local optimization algorithms.

The choice of the initial guess. The phase retrieval process can be divided into two main steps. The first 
one concerns the choice of the initial population of densities ρ

= …
x{ ( )}i i N1 p

. In the second step, we have to choose 

the parameters both of the genetic and the local optimization algorithms.
Standard approaches like Hybrid Input Output and Error Reduction need a single initial guess, which repre-

sent the first estimation of the solution.
MPR approach requires, instead, a set of initial guesses. This set is produced from a single guess, simply ran-

domly shifting every phase. This means that, given an initial guess ρinit(x), every ρi(x) in ρ
= …

x{ ( )}i i N1 p
 is created 

via the relation

ρ φ φ ρ π π= − = + ⋅ − .
 ( )I Rq q q( ) ( ) exp 1 with arg[ ( )] rand[ , ] (15)i j j j j j cinit

The parameter Rc, which has values between 0 and 1, depends on the accuracy of the initial guess ρinit(x). If 
ρinit(x) is already a good estimation of the solution, it will be useful to set a low value (usually near to 0) for coeffi-
cient Rc in order to well explore the space near ρinit(x). If, instead, ρinit(x) is considered to be far from the solution, 
it is useful to set a value of Rc near to 1, in order to explore also areas of the space far from ρinit(x).
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KEDI experiment. A KEDI experiment was performed following the procedure reported in ref. 10, which 
enables one to deliver a low dose of electrons to the specimen. The experiment requires the acquisition of an 
HRTEM image and a diffraction pattern by using the same electron optical set up. The experiments were per-
formed by using a JEOL JEM 2010 F UHR operated at 200 kV. The cathode is a high coherence Shottky type. The 
microscope has an objective lens with low spherical aberration coefficient Cs =  0.47 ±  0.01 mm and a relevant 
resolution at optimum defocus in HRTEM of 190 pm. The environment around the microscope is thermally 
and mechanically very stable allowing us to achieve in the scanning TEM (STEM) high angle annular dark field 
(HAADF) mode a resolution of 126 pm, which is the theoretical limit for the used electron optical set up38.

In a KEDI experiment the optical setup produces an electron nano-beam. The latter defines the mathemat-
ical support of the scattering function for the illuminated nanometric region of the extended crystal. As in a 
microscope the field of view is proportional to the inverse of magnification, the size of the illumination function 
(beam size) is somehow related to the spatial resolution. The electron beam size S (which defines the support) is 
directly related to the final resolution to be achieved and to the size of the detector used to record HRTEM image 
and n-ED pattern. In fact, if the highest frequency of the diffraction signal recorded in the reciprocal space is 
ρ−1 pm−1, we should have ρ at least two or three times the pixel size Δ map of the phased map to have an electron 
projected potential two-dimensional map calculated with a sufficient number of points to be plotted continuously.

For example, if we reached a final resolution – after the phase retrieval process – of ρ =  70 pm we should have 
Δ map ~ 25 ÷  30 pm which, multiplied by the detector pixel number along a line, N =  1024 in our experimental 
case, would lead to a spatial region O (scattering region plus non-illuminated surrounding region) of ~25 ÷  30 nm 
in size. Moreover, for the Nyquist theorem’s requirement, the illuminated beam size S (the support) has to be less 
than −2 O

1
2 , i.e., at maximum ~17 ÷  20 nm in size. Hence, in order to properly run the phase retrieval algorithms, 

the illuminated region of the sample in the direct HRTEM image has to be properly chosen with respect to the 
whole detector area to satisfy the above KEDI oversampling condition.

Here, the cathode emission condition and the electron optical illumination system of the microscope has 
been experimentally set up to increase the probe coherence on the smallest illuminated area achievable10. The 
microscope has an illumination system composed by three magneto-static lenses. These lenses were operated 
independently, together with the electrostatic lens of the emitter, to produce the smallest-sized probe on the focal 
plane of the pre-field of the objective lens and hence the smallest-sized coherent parallel beam on the specimen. 
The emission conditions of the microscope cathode were chosen to increase the coherence of the electron probe 
by decreasing the temperature of the emitting tip. We used a heating current for the filament that halves the emis-
sion current with respect to the standard operation, decreasing at the same time the electron dose delivered to the 
specimen. The current density on the specimen was below the detection limit of the amperometer connected to 
the phosphorus screen of the microscope (< 0.1 pA cm−1), allowing us to acquire the relevant diffraction pattern 
on the 1024 ×  1024 Charge-Coupled Device (CCD) camera without using the beam stopper for the direct beam. 
Thus all the diffracted intensities were available for the phasing process and a very small dose is delivered to the 
specimen. The small electron probe, without any changes, was used to acquire both HRTEM image and diffrac-
tion from the same area of the specimen. Figure 6a shows the HRTEM image. The illuminated area is 10 ±  2 nm. 
The interference pattern of the phase contrast HRTEM image formed in the image plane of the objective lens is 
shown at a higher magnification in Fig. 6b. In Fig. 6c the diffraction pattern formed in the back focal plane of the 
objective lens is shown. The central part of the pattern has been replaced, after proper scaling and rotation, by the 
FFT of the HRTEM image in Fig. 6a, as established in EDI method3–5. The highest Miller’s index spot measurable 
in the pattern is the (5, 5, 0), which corresponds to a spacing of 55 pm. Thus, the expected gain in resolution of the 
maximum spatial frequency contained in the diffraction pattern (~NAdiff

−1) with respect to that corresponding to 
the FT of the HRTEM image is about four times.
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