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Mode Coupling and Nonlinear 
Resonances of MEMS Arch 
Resonators for Bandpass Filters
Amal Z. Hajjaj1, Md Abdullah Hafiz1 & Mohammad I. Younis1,2

We experimentally demonstrate an exploitation of the nonlinear softening, hardening, and veering 
phenomena (near crossing), where the frequencies of two vibration modes get close to each other, 
to realize a bandpass filter of sharp roll off from the passband to the stopband. The concept is 
demonstrated based on an electrothermally tuned and electrostatically driven MEMS arch resonator 
operated in air. The in-plane resonator is fabricated from a silicon-on-insulator wafer with a deliberate 
curvature to form an arch shape. A DC current is applied through the resonator to induce heat and 
modulate its stiffness, and hence its resonance frequencies. We show that the first resonance frequency 
increases up to twice of the initial value while the third resonance frequency decreases until getting 
very close to the first resonance frequency. This leads to the phenomenon of veering, where both 
modes get coupled and exchange energy. We demonstrate that by driving both modes nonlinearly 
and electrostatically near the veering regime, such that the first and third modes exhibit softening 
and hardening behavior, respectively, sharp roll off from the passband to the stopband is achievable. 
We show a flat, wide, and tunable bandwidth and center frequency by controlling the electrothermal 
actuation voltage.

Microelectromechanical systems (MEMS) resonators have increasingly attracted the attention of researchers for 
applications1, such as filtering2, communications3, mass/gas sensing4,5, logic devices6, signal processing7, energy 
harvesting8, and sensors/actuators9,10.

Coupling of vibration modes has been a subject of increasing interest in recent years11–15. Those modes can be 
coupled mechanically (links) or electrically (external actuation). Also they can be coupled nonlinearly among the 
structure itself12 or through internal resonance13.

Thermal actuation has been used extensively to actuate bistable structures since it provides large displacement 
and a mechanism for resonance frequency tuning by low applied voltages16–19. In a recent work, it was shown 
theoretically and experimentally that large tunability can be achieved for a buckled beam by controlling the elec-
trothermal voltage while exciting the resonator electrostatically20.

The intensive development of MEMS structures has led to a new generation of filters based on MEMS resona-
tors thanks to the high-frequency selectivity and resonance frequency tunability21–24. To this end, electrically and/
or mechanically coupled multiple MEMS/ Nanoelectromechanical systems NEMS resonators to realize bandpass 
filters has been the subject of intensive research25–30. Electrical coupling has an advantage over the mechanical 
coupling due to the ease of post-fabrication tuning of the filter characteristics. Hajhashemi et al.27 presented a 
tunable bandpass filter made of two electrostatically coupled MEMS resonators. They were able to tune the center 
frequency by controlling the DC voltage of the coupling electrode, and controlled the bandwidth by monitoring 
the applied axial stress. Other groups have investigated the ability to use two MEMS resonators that are tuned and 
excited independently and are electrically coupled to realize a bandpass filter. Lopez et al.28 presented a bandpass 
filter based on two clamped-clamped resonators with a resonance frequency around 22 MHz. They showed a 
bandwidth of 100–200 kHz in air, and 17 kHz in vacuum. Zou et al.29 investigated the coupling of four similar 
beams connected in a square ring to be used as tunable bandpass filter by controlling the electrostatic bias voltage. 
Yan et al.30 studied the ability to use four types of MEMS arrays for bandpass filter by internal mechanical and 
electrical phase inversion. Single MEMS resonator was used as notch or single-frequency pass filters with high 
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quality factor in the vacuum condition31. Ouakad and Younis32 studied the dynamic response of an electrostati-
cally excited arch beam resonator and proposed a filter operation based on the snap-through motion.

In this paper, we aim to realize a bandpass filter of sharp transition from the passband to the stopbands by 
utilizing the nonlinear jumps of two modes of vibration, which are coupled through the veering phenomenon. 
This phenomenon refers to the sudden veering of two eigenfrequencies as varying a control parameter instead of 
continuing their path where they cross. After the sudden veering, each frequency continues along the path that 
the other would have taken if they would to cross. The veering phenomenon has firstly reported by Liessa33 and 
then was investigated by several other studies34–36. It has been reported also for slacked CNTs when actuated by 
electrostatic forces37. To activate the veering phenomenon, we tune electrothermally the first and third resonance 
frequencies of a MEMS arch resonator so that they get very close to each other.

Background
The arch beam under electrostatic force is subjected to a cubic nonlinearity, from mid-plane stretching, and a 
quadratic geometric nonlinearity, from curvature and electrostatic force, which can yield hardening and softening 
behavior of the various modes38. The nonlinear frequency response of the arch around the first and third (second 
symmetric) resonance frequencies is known to be dominated by the quadratic (softening behavior) and cubic 
(hardening behavior) nonlinearities, respectively. By changing a control parameter, voltage in this case, it is possi-
ble to bring both frequencies close to each other, veering, thus forming a band of frequency of high amplitude (the 
passband). This band will be sided by the two jumping frequencies, due to the softening and hardening behavior 
of the two modes. These jumps lead to sharp transition from the stopbands to the passband; thereby yielding near 
ideal bandpass filter. The concept is illustrated in Fig. 1.

Materials and Methods
Fabrication. The resonator is fabricated on a highly conductive Si device layer of a silicon-on-insulator wafer 
by a two-mask process using standard photo-lithography, electron beam evaporation for metal layer deposition 
for actuating pad, deep reactive ion etch for silicon device layer etching and vapor hydrofluoric acid etch to 
remove the oxide layer underneath the resonating structure. The clamped–clamped arch beam, under considera-
tion, is sandwiched between two adjacent electrodes, Fig. 2, to induce the vibration by exciting it electrostatically. 
The fabricated arch beam is of length 800 μ m, width 30 μ m, thickness 2 μ m, and 2.6 μ m initial rise.

Experimental Setup. The arch is actuated electrothermally by a DC voltage VTh and electrostatically by 
a DC polarization voltage VDC and an AC harmonic voltage of amplitude VAC, Fig. 3a. The electrothermal volt-
age VTh is applied between the anchors of the arch inducing a current ITh flowing through the microbeam that 

Figure 1. Schematic illustrating the proposed bandpass filter. (a) Shows the nonlinear response of the first 
(softening) and third (hardening) modes. (b) Shows the responses upon increasing the DC electrothermal 
voltage, thus bringing the two modes closer to each other. (c) Shows the two modes brought very close to each 
other (veering) and indicates the realization of the bandpass filter with jumps on the sides of the passband.

Figure 2. (a) A 3D schematic of the clamped-clamped arch beam. (b) Top view SEM picture of the actual 
device.
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generates heat, which causes thermal expansion and controls its internally induced axial stress (compressive 
stress). This compressive force causes an increase in the microbeam curvature, and hence increases its stiffness.

Stroboscopic video microscopy from Polytec39, Fig. 3b, is used to determine the resonance frequencies as well 
as the frequency response of the arch beam. We measured the resonance frequencies of the arch beam using the 
ring down measurement and the fast Fourier transform (FFT) while varying the DC electrothermal voltage. To 
conduct frequency sweeps, we generate an amplified periodical sine signal to excite the in-plane arch. The stro-
boscopic video microscopy generates the frequency response curves in two different scales decibel and linear. It 
provides as well the frequency at − 3 db. All the experiments are conducted in air and at room temperature.

Results
Figure 4a shows the FFT of the arch beam under consideration for a zero electrothermal voltage. The first and 
third resonance frequencies of the unactuated arch beam are found to be around 38 kHz and 104 kHz, respectively.

One should note that the time associated with the electrothermal cooling and heating is much longer than the 
time associated to the vibration of the studied arch40. The associated thermal time coefficient could be calculated 
using the equation τ π ρ ρ= +

−
K c l F K gbc[ / / ]Si s air

2 2 1
. In the above equation l, b and g present the length, width of 

the arch beam and the gap between the arch beam and the substrate, respectively. ρ, c, KSi and Kair are the silicon 
density, the silicon heat capacitance and the thermal conductivity of the silicone and the air, respectively. Fs, the 
beam shape factor, is the correction term calculated based on the geometry of the arch beam using the formula41 
given by = + +( )F 1 1s

b
h

g
b

2 , where h is the thickness of the arch beam. In the studied case, Fs is calculated to be 

equal to 17.995. Then the thermal time constant of the arch beam under consideration is 162.833 μ s.
The variation in the measured resonance frequencies, while changing the electrothermal voltage VTh, is 

depicted in Fig. 4b. It can be observed that the first resonance frequency increases with the increase in the elec-
trothermal voltage and reaches the value as high as twice of the initial value at zero electrothermal voltage. On 
the other hand, the third resonance frequency decreases while increasing the electrothermal voltage until getting 
very close to the first resonance frequency. At this critical electrothermal voltage, the third resonance frequency 
starts to increase while the first resonance frequency starts to become flat. Indeed, each frequency continues along 
the path that the other frequency would have taken. This phenomenon can be explained through the veering 
(avoided-crossing) phenomenon, which occurs when the resonance frequencies of two modes get close to each 
other42,43. Veering can be viewed as a way to mechanically couple the two involved modes.

Next, we excite the arch beam electrostatically by applying VDC =  20 V and VAC =  20 V for a range of electro-
thermal voltages where the first and third resonance frequencies are close to each other. For VTh =  1.6 V, 1.65 V 
and 1.7 V, Fig. 5a, the first and third modes show softening and hardening nonlinear behavior, respectively, as 

Figure 3. (a) Schematic of an electrothermally actuated clamped-clamped shallow arch. (b) Experimental 
setup.

Figure 4. (a) FFT of the in-plane clamped-clamped arches at zero electrothermal voltage. (b) The variation of 
the first and third resonance frequencies of the shallow arch under electrothermal actuation.
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expected of an arch microbeam32. This nonlinear behavior breaks the symmetry of the frequency response curve, 
which becomes no longer Lorentzian. However, for VTh =  1.65 V, and 1.7 V, the third resonance frequency shows 
an amplitude of vibration more than the amplitude of vibration of the first resonance frequency and even more 
than the amplitude of vibration for both resonances for VTh =  1.6 V. These results suggest that both modes start to 
interact with each other, where the third mode takes energy from the first mode, and hence eventually becomes 
of large amplitude.

For VTh =  1.7 V, Fig. 5a, after a small softening jump, characterizing the first resonance frequency, a flat band 
of frequency starts to appear around the third resonance frequency. Upon increasing the electrothermal voltage 
to 1.8 V or 1.9 V, we are able to obtain a flat wide frequency band due to full interaction between the first and the 
third modes of vibration, Fig. 5b.

The flat band is a result of the combination of two resonance modes, the first and the third. We plot the exper-
imentally obtained phase response for VTh =  1.8 V, Fig. 5c. The total phase shift is shown to be around 300°, which 
suggests that there are two vibrational modes, the first and the third, getting close to each other, hence creating 
a flat passband around their corresponding resonance frequencies. This kind of phase response is typical for a 
bandpass filter29,30,44. Therefore, it is inferred that a flat bandpass filter can be realized based on electrothermally 
tuned single arch resonator by coupling the first and third mode of vibration.

Next, we characterize the tunability feature of this bandpass filter by varying the electrothermal voltage cen-
tered around 1.8 V, while keeping the electrostatic excitation force unchanged, Fig. 5d and e. Figure 5e is displayed 
in decibel scale to show the frequency at − 3 db and then to extract accurately the center frequency and the band-
width. It is shown that both the center frequency and the bandwidth can be moderately tuned by varying the 
electrothermal voltage.

Table 1 summarizes the bandpass filter features for different electrothermal voltages presented in Fig. 5d and e.  
We show a tunable center frequency f0 as well as tunable bandwidth Δ f. The bandwidth, Δ f, is wide, flat, and can 
be varied by 22% from 9 kHz at VTh =  1.76 V to 11 kHz at VTh =  1.848 V. The center frequency, f0, can be tuned  
by 3%.

Note that these results can be improved for operation in the megahertz and gigahertz regimes by shrinking 
the dimensions of the arch beam and keeping the same concept of actuation. To demonstrate this, we conduct 
next theoretical simulations21,33 for a case study of smaller dimensions for an arch of length 20 μ m, thickness 

Figure 5. (a,b) Frequency response curves for VDC =  20 V and VAC =  20 V for different electrothermal voltages. 
(c) Frequency and phase response for VDC =  20 V, VAC =  20 V and VTh =  1.8 V. (d) Frequency response for 
VDC =  20 V and VAC =  20 V at various electrothermal voltages. (e) Enlarged view of the bandpass in decibel scale.
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100 nm, width 850 nm, and initial rise 250 nm, Fig. 6. The figure shows the variation of the first two symmetric 
resonance frequencies as varying the electrothermal voltage; using the same thermal and mechanical parameters 
of the device under consideration in this paper. The figure indicates that as tuning the electrothermal voltage, that 
is equivalent to a compressive load, both frequencies get very close to each other with a separation near 80 kHz. 
This demonstrates that the same concept can be applied for smaller devices. One should note here that to enable 
the veering phenomenon, several parameters need to be carefully examined and chosen including the material 
properties, the nonlinearity from stress/strain, curvature, and the electrostatic force.

By increasing the electrothermal voltage for more than 2 V, Fig. 7, both resonance frequencies start to be 
further separated from each other. Figure 7 shows that the bandpass is destructed by the increase in the electro-
thermal voltage. However, the linear behavior is well-kept for the same excitation force.

Conclusions
In this paper, we demonstrated experimentally a bandpass filter by exploiting the nonlinear hardening, softening, 
and veering phenomena in MEMS arches. The arches were electrothermally tuned and electrostatically actuated. 
We showed that the first resonance frequency of the MEMS arch beam increases with the increase in the electro-
thermal voltage until reaching a certain level after which it starts to saturate. Conversely, the third natural fre-
quency decreases with the increase in the electrothermal voltage until getting close the first resonance frequency 

VTh [V] 1.769 1.8322 1.848

f0 [kHz] 86.760 88.125 88.25

Δ f [kHz] 9 10.25 11

Table 1.  Tunability of the center frequency and bandwidth by the electrothermal voltage.

Figure 6. Variation of the first two symmetric resonance frequencies as tuning the electrothermal voltage 
for smaller arch of length 20 μ m.

Figure 7. Frequency responses (a) and phase responses (b) for VDC =  20 V, VAC =  20 V, and various 
electrothermal voltages.
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and after that it starts to increase. At some critical electrothermal voltages, the first and the third resonance fre-
quencies get close to each other and get coupled by veering, which results in a bandpass filter with flat passband 
and wide bandwidth. In conclusion, we demonstrated that a single arch resonator could be potentially used as a 
tunable bandpass filter by a simple electrothermal frequency modulation scheme.
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