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Effects of light on quantum phases 
and topological properties of 
two-dimensional Metal-organic 
frameworks
Yunhua Wang1,2, Yulan Liu3 & Biao Wang1,2

Periodically driven nontrivial quantum states open another door to engineer topological phases in 
solid systems by light. Here we show, based on the Floquet-Bloch theory, that the on-resonant linearly 
and circularly polarized infrared light brings in the exotic Floquet quantum spin Hall state and half-
metal in two-dimensional Metal-organic frameworks (2D MOFs) because of the unbroken and broken 
time-reversal symmetry, respectively. We also observe that the off-resonant light triggers topological 
quantum phase transitions and induces semimetals with pseudospin-1 Dirac-Weyl fermions via the 
photon-dressed topological band structures of 2D MOFs. This work paves a way to design light-
controlled spintronics and optoelectronics based on 2D MOFs.

Once discovered in materials, quantum states, with extra degrees of freedom, unconventional conical bands or 
nontrivial topological features, could yield entirely new physics and device paradigms in nanoelectronics and 
information technology. The first example is the half-metallic state with 100% spin polarization near the Fermi 
energy, where the spin degree of freedom can be used as information carriers in spintronics1. The second example 
is the semimetallic state in graphene with linear electronic band dispersion associated with the Dirac physics2. As 
a counterpart of the electronic spin, the extra valley degree of freedom used as information carriers in graphene, 
silicene or monolayer transition metal dichalcogenides could lead to the exotic valleytronics3,4. The third example 
is the topological insulators (TIs), where fully spin-polarized currents carried by the robust conducting edge or 
surface states inside the insulating bulk gap allow TIs for applications in spintronics and quantum computation5,6. 
In addition, more exotic quantum states have also been explored recently, such as Weyl semimetals7–9, axion insu-
lators and three-dimensional Dirac semimetals10,11. Besides searching for materials with these exotic quantum 
states, engineering these states in condensed matter or nanostructures by external fields also has aroused tremen-
dous attention during the past few years.

Via photon-dressed band structures and properties in Floquet-Bloch picture, light-matter interaction not only 
offers novel experimental and theoretical platforms for engineering Floquet topological insulating phases12–30 
and semimetallic phases31–36 in solid systems, but also sparks the same interest in photonic crystals and optical 
lattices37–42. These Floquet quantum states not only display similar behaviours as their counterparts in static sys-
tem but also exhibit additional features, which require the extension of the classifications13,43–47 and are directly 
manifested by their unique nonequilibrium transport properties16–18,48–53. In general, the Floquet-Bloch theory, 
which describes the interaction of light with Bloch states in solids, can be divided into two classes in view of two 
distinct physical mechanisms. The first is based on the zeroth static Floquet Hamiltonian in the off-resonant 
regime, where the driving frequency ω  is larger than the bandwidth Λ  of the undriven system. In this case, the real 
absorption and emission for a photon with frequency ω between the uncoupled Floquet sidebands are unlikely, 
but the virtual photon absorption and emission17 can incorporate with the Bloch electrons and renormalize the 
electronic structures. The second is governed by the truncated Floquet Hamiltonian in the on-resonant regime 
(ω <  Λ ), where the overlapped Floquet sidebands and the photon resonances are responsible for these exotic 
Floquet quantum states15,20,24,43.
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In this work, we focus on the coherent interaction of light with the recently discovered two-dimensional 
Metal-organic frameworks (2D MOFs)54–57, in both of the off-resonant and on-resonant Floquet-Bloch pictures. 
Owing to the numerous combinations of different metal ions and organic ligands, 2D MOFs have various chem-
ical structures and versatile physical and chemical functionalities58, such as topological electronic properties59–66, 
Dirac semimetals67, half-metallicity68 and chemiresistive response69. The dominant nearest-neighbor hopping 
(0.01 eV <  t1 <  0.1 eV)59–68 in 2D MOFs is much less than that in graphene (t1 ~ 2.8 eV)2, and hence only needs 
the coupling light with a lower frequency (ω  <  1.2 ×  1014 Hz) in infrared, which is experimentally accessible19. 
Consequently, the infrared sensitivity opens a door to engineer quantum states in 2D MOFs by light. Herein, 
we report the effects of infrared light on the quantum phases and topological properties of M3C12S12 (M is a 
metal ion, such as Ni, Cu, Pt, Au and others)58, a kind of 2D MOFs with kagome lattice (Fig. 1a and b), within 
the framework of the Floquet-Bloch physics. It is shown that photoinduced quantum phases in M3C12S12 can be 
attributed to the Floquet-Peierls (FP) substitutions, which allow the effective lattices to be engineered through the 
renormalized hoppings as well as the spin-orbit couplings (SOC) and permit the Floquet quantum phases to be 
customized by the photon-dressed band structures and topological properties. Under the off-resonant light irra-
diation, the nonzero FP substitutions maintain the kagome lattice but with modified strengths, which can reverse 
three energy bands of M3C12S12 with different spin chern numbers and hence trigger a topological quantum phase 
transition. Single zero FP substitution transforms the kagome lattice into the topologically equivalent Lieb lattice, 
which supports the semimetals with the Pseudospin-1 Dirac-Weyl fermions. Under the on-resonant light irra-
diation, the circularly polarized light with frequency (Λ /2 <  ω <  Λ ) induces robust Floquet half-metal by virtue 
of the broken time-reversal symmetry, but the linearly polarized light with lower frequency (t1 <  ω <  Λ /2) brings 
in the exotic Floquet quantum spin Hall state with the gapless helical edge states protected by the time-reversal 
symmetry. These results demonstrate that Dirac semimetals, Floquet half-metal and Floquet topological insulat-
ing states can be engineered in the same 2D MOFs by tuning the driving parameters (frequency, amplitudes and 
polarization) of light, and therefore open a new way to design light-controlled spintronics and optoelectronics 
based on 2D MOFs.

Results
The zeroth static Floquet Hamiltonian. First, let us consider the effects of light on M3C12S12 (Fig. 1a) in 
the off-resonant regime (ω >  Λ ). In this case, the Floquet sidebands are uncoupled, and the photon-dressed band 
structures can be captured by the zeroth static Floquet Hamiltonian (see Methods in details)
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where α
†ci  and ciα are the creation/annihilation operators for an electron with the spin α on site ri, S is the spin 

Pauli matrix, and dkj is the nearest-neighbor (denoted by 〈 i, j〉 ) vector pointing from site rj to rk (see Fig. 1b). The 
constant on-site energy E0 just shifts the whole energy spectrum, and hence is usually set to the zero energy2. The 
nearest-neighbor hopping energy t1 and the intrinsic SOC strength λ1 are modified by these FP substitutions

Figure 1. Photon-dressed topological band structures of M3C12S12. (a) Schematic of light-irradiated M3C12S12 
on a back gate controlling the Fermi energy EF. Infrared light with the incident wave vector kω travels along the 
negative z axis (perpendicular to the M3C12S12 plane) and induces the time-dependent vector potential 
A(t) =  (Axsin(ωt), Aysin(ωt +  φ), 0) with the frequency ω. (b) 2D kagome lattice of M3C12S12. Here, a1 =  (1, 0)a, 

=a (1/2, 3 /2)a2 , and a3 =  a2− a1 are the lattice vectors with the lattice constant a, dij (i, j =  A, B or C, i.e., the 
sublattices) is the nearest-neighbor vector, and Dij is the next-nearest-neighbor vector. (c) The photon-dressed 
topological band structures of M3C12S12 with a group of spin chern numbers (− 1, 0, 1) from bottom up, for 
Axa =  1.5, Aya =  1.5, φ =  0, and λ1 =  0.14t1.
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where Ax and Ay are the amplitudes, φ is the phase difference reflecting the polarization of light, and J0(x) is the 
zeroth Bessel function of the first kind. The zeroth static Floquet Hamiltonian in equation (1) shows that the 
effects of the off-resonant light on the electronic properties of M3C12S12 are decided by the FP substitutions, which 
allow us to design effective lattices by tuning the driving parameters (Ax, Ay and φ) of light: (1) If ≠f 0i j,

0,0 , the 
hopping lattice of the irradiated M3C12S12 remains the kagome lattice but with modified real hoppings that keep 
the time-reversal invariant, and hence M3C12S12 maintains the topological insulating phases (Fig. 1c) because of 
the SOC; (2) If single FP substitution is zero, the hopping framework will become topologically equivalent to the 
Lieb lattice, which directly supports the semimetals with the pseudospin-1 Dirac-Weyl fermions near the Dirac 
points70–74; (3) If two or three FP substitutions are zero, the driven hopping lattice will be correspondingly equiv-
alent to a quantum wire or some discrete lattice points such that 2D MOFs are always semimetals because of the 
touched conduction and valence bands with zero band gap.

Phase diagram and topological quantum phase transitions. We consider the phase diagrams of 
M3C12S12 subjected to the light irradiation with linear, circular and elliptical (arbitrary) polarizations, respectively. 
In Fig. 2 we construct the phase diagrams in the (Ax, Ay) plane for linearly and circularly polarized light and in the 
(φ, Ax) plane for elliptically polarized light. In the case of the off-resonance that keeps the time-reversal symmetry, 
the topological insulating phases can still be characterized by a group of spin Chern numbers (Cs)47,75,76 or 
Kane-Mele invariants77 for the three distinct energy bands. From these phase diagrams, we can see that the 
off-resonant light induces two different topological insulating phases with the spin Chern numbers (− 1, 0, 1) and 
(1, 0, − 1), respectively. The topological phase transition occurs at the boundaries between the two different top-
ological insulating phases, where the band gap is closed and the semimetal appears. In addition, the phase distri-
butions are symmetrical owing to the symmetries of f i j,

0,0 with respect to the amplitudes Ax and Ay as well as the 
phase difference φ (see equation (2)). On the other hand, the edge state is a powerful tool to reveal the topological 
features of energy bands and search for the topological phase transitions, because of the bulk-edge correspond-
ence. For TIs, fully spin-polarized gapless helical edge states protected by time-reversal symmetry are directly 
responsible for the spin Hall conductance (σxy

s ). Therefore, the change of the spin Hall conductance can provide a 
signature of topological phase transitions. We calculate the edge state spectrum, the density of state and the spin 
Hall conductance for the two distinct TIs with λ1 =  0.14t1 (Fig. 3), on a cylindrical geometry, i.e., a 34-unit-cell 
open boundary condition in the y direction and a periodic boundary condition in the x direction. As expected, 
the three bands of M3C12S12 for the two different topological insulating phases are reversed, and a pair of robust 
spin-filtered gapless states inside each bulk gap leads to the contrary values of the quantized spin Hall conduct-
ance. As a result, the off-resonant light triggers the topological quantum phase transition between the two phases 
(− 1, 0, 1) and (1, 0, − 1).

Pseudospin-1 Dirac-Weyl fermions and flat band. In the above section, we concentrate on the topolog-
ical insulating phases and phase transitions. Here we focus on the semimetals induced by the three cases: (i) 
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the semimetal phases in the three cases (see Supplementary Note 1). The obtained energy band structures of the 

Figure 2. Phase diagram of light-irradiated M3C12S12. (a) Phase diagram in the (Ax, Ay) plane for linearly 
polarized light (φ =  0 or π ). (b) Phase diagram in the (Ax, Ay) plane for circularly polarized light (φ =  π/2).  
(c,d) Phase diagrams in the (φ, Ax) plane for elliptically polarized light with =A A3x y and Ax =  Ay, 
respectively.
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semimetals for the three cases with λ1 =  0.2t1 are shown in Fig. 4. Distinct from the light-induced extra Dirac 
cones at the surface of a topological insulator21 or in graphene23, two conical bands touch at the Dirac points, and 
an additional flat band exists. This band structure is the typical energy spectrum of the pseudospin-1 Dirac-Weyl 
fermions70–74. In this case, the spin degeneracy of the energy band is not lifted because of the time-reversal sym-
metry for the off-resonant light and the space-inversion symmetry of the light-engineered Lieb lattice in M3C12S12 
(Supplementary Note 1). The obtained effective Hamiltonians near the Dirac points (Dx, Dy) in the three cases can 
be rewritten as the general form of the pseudospin-1 Dirac-Weyl fermions: = +± ± ±v p v pH S Seff x x x y y y, , ,  (see 
Supplementary Note 2) with the anisotropic group velocities vx and vy, a new wave vector p =  (px, py, 0) and the 
pseudospin vectors S± =  (Sx,±, Sy,±, Sz,±), which satisfies ε=± ± ±S S i S[ , ]m n mnl l, , ,  with the Levi-Civita symbol 
εmnl. The expressions of these quantities are given in Supplementary Table 1, where p =  Aq with A, as a corre-
sponding deformation operator similar to the manipulation of the in-plain strain78. Recently, searching for flat 
band has been particularly interesting, because the dispersionless state in the presence of Coulomb interactions 
can induce correlated quantum states, including ferromagnetism, superconductivity and fractional quantum Hall 
effect79–82. Recent experiments have shown that the localized flat band occurs in a photonic Lieb lattice that con-
sists of an array of optical waveguides83,84. However, the flat band in real material has not been observed, since few 
2D materials have the desired Lieb lattice. Here we predict the localized flat band that results from the destructive 
interference of electron hoppings rather than disorders or impurities by means of the light-engineered Lieb lattice 
in 2D MOFs.

Truncated Floquet Hamiltonian, Floquet half-metal and Floquet quantum spin Hall insulator.  
In the above sections, the zeroth static Floquet Hamiltonian predicts the light-induced topological phase transi-
tions and the pseudospin-1 Dirac-Weyl fermions in 2D MOFs, but with the decrease of driving frequency 
(t1 <  ω <  Λ ) the Floquet sidebands overlap such that the resonant absorptions or emissions of photons cannot be 
captured by the zeroth Floquet Hamiltonian. In this case, the Floquet Hamiltonian with infinite dimensions 

Figure 3. Edge state spectra of light-irradiated M3C12S12 on a cylindrical geometry. For topological 
insulating phases (− 1, 0, 1) with light parameters (Axa =  2, Aya =  2, and φ =  π/2) and (1, 0, − 1) with light 
parameters (Axa =  6, Aya =  6, and φ =  π/2), respectively: The spin-up (green) and spin-down (cyan) edge state 
spectra in (a,d), the density of state in (b,e) and the spin Hall conductance in (c,f).

Figure 4. Light-induced semimetals with pseudospin-1 Dirac-Weyl fermions in M3C12S12. (a) The photon-
dressed band structure for case (i): =f 0A B,

0,0 , ≠f 0B C,
0,0 , and ≠f 0A C,

0,0  with light parameters Axa =  2, Aya =  4.4, 
and φ =  0. (b) The photon-dressed band structure for case (ii): ≠f 0A B,

0,0 , =f 0B C,
0,0 , and ≠f 0A C,

0,0  with light 
parameters Axa =  4.81, Aya =  2, and φ =  π/2. (c) The photon-dressed band structure for case (iii): ≠f 0A B,

0,0 , 
≠f 0B C,

0,0 , and =f 0A C,
0,0  with light parameters Axa =  2, Aya =  6.71, and φ =  0.
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(− ∞  <  m, n <  +  ∞ ) should be considered in principle. However, the Floquet indexes m and n can be truncated 
to a finite order M, because the FP substitution f i j

M M
,

,  vanishes with the Bessel function of the first kind Jn >M(x) ~ 0 
(where M is a positive integer greater than x)85 and makes the Floquet states φn,m decay rapidly if m and n are 
beyond the finite range M in frequency domain. The truncated Floquet Hamiltonian of 2D MOFs, with 3M ×  3M 
dimensions in the Sambe space86, includes the resonant processes of few and multiple photons beyond the weak 
intensity limit, which only takes the single-photon absorption or emission into account. Based on the truncated 
Floquet Hamiltonian, we calculate the quasienergy spectra (Fig. 5) of M3C12S12 irradiated by the on-resonant light 
with λ1 =  0.2t1, on the same cylindrical geometry as in Fig. 3. Unlike the harmonic driving of electric field always 
with the time-reversal symmetry87, the on-resonant light driving keeps the time-reversal invariant for the linear 
polarization, i.e., ε+ (kxa)= ε−(− kxa)88 but breaks the time-reversal symmetry for the circular polarization, i.e., ε+ 
(kxa) ≠  ε−(− kxa)14–19,25. As a consequence, the on-resonant linearly polarized light only induces the dynamical 
gap near ± ω/2, and has few influences on the spin-polarized gapless helical edge states inside the two native bulk 
gaps of the undriven M3C12S12 (Fig. 5a and c). However, the on-resonant circularly polarized light induces a 
dynamical gap for one spin but metals for the other spin (Fig. 5b and d), which results in the 100% 
spin-polarization, i.e., the typical half-metallicity, owing to the broken time-reversal symmetry. The driven 
half-metal near the boundary (± ω/2) of the quasienergy Brillouin zone is without an analog in the undriven 
system, and hence is here named as Floquet half-metal. In addition, no matter the driving intensity is strong or 
weak, the Floquet half-metal can remain inside a limited frequency range (Λ /2 <  ω <  Λ ) before the dynamical gap 
for both spins closes. Therefore, the Floquet half-metal is robust against the deviations of the optical parameters 
and the SOC intensity (see Supplementary Fig. 1). On the other hand, when the driving frequency of the linearly 
polarized light decreases further and becomes lower than Λ /2, some new gapless helical edge states protected by 
the time-reversal symmetry appear in the dynamical gap, which first closes and then reopens (Fig. 5e–h). In this 
case, M3C12S12 is converted into the Floquet quantum spin Hall insulator47,87 if the Fermi level is inside the 
dynamical gap. These new and initial gapless helical edge states exhibit well localizations at the two open 

Figure 5. Quasienergy spectra of truncated Floquet Hamiltonian for light-irradiated M3C12S12 on a 
cylindrical geometry. Quasienergy spectrum for linearly (a) and circularly (b) polarized light with Axa =  2.5, 
Aya =  2.5, and ω =  3t1. Quasienergy spectrum for linearly (c) and circularly (d) polarized light with Axa =  6.5, 
Aya =  6.5, and ω =  2t1. Quasienergy spectrum for linearly polarized light: (e) Axa =  1.5, Aya =  1.5, and ω =  2.4t1; 
(f) Axa =  0.5, Aya =  2.5, and ω =  2t1; (g) Axa =  6, Aya =  0, and ω =  2t1; and (h) Axa =  8, Aya =  2, and ω =  2t1. Here 
E0 = 0, the spin-up and spin-down quasienergy spectra are denoted by green and cyan lines, respectively, and 
the electron densities for the edge states 1, 2, 3 and 4 in Fig. 5e are shown in Supplementary Fig. 2.
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boundaries of the ribbon, and can coexist inside the same system with few couplings because of the big energy 
difference between each other (Supplementary Fig. 2).

Discussion
In this section, we first comment on the experimental feasibility to probe the predicted pseudospin-1 Dirac-Weyl 
fermions and the light-induced novel topological quantum phases in 2D MOFs. The Angle-resolved photoemis-
sion spectroscopy (ARPES) is a useful tool to map the electronic band dispersions of topological materials5,6, 
by virtue of its important information on the kinetic energy and the emission angle of emitted photoelectrons. 
Recently, ARPES not only has been applied to acquire the Floquet-Bloch bands of TIs (Bi2Se3) irradiated by 
the monochromatic infra light with tunable intensity, frequency and polarization19, but also has been used to 
distinguish the Floquet-Bloch states from the Volkov states, i.e., the photon-dressed free-electron states near 
the surface of TIs89. Besides, both of the occupied and unoccupied energy bands near and far away the Fermi 
level can be resolved by the one-photon and two-photon ARPES90. Other methods are also proposed to check 
the Floquet-Bloch states in Floquet TIs. For instance, the mean orbital magnetization, as a result of the Floquet 
topological edge currents, has been suggested as a hallmark signature of the light-induced Floquet topological 
quantum states91. In addition, various 2D MOFs have been synthesized in recent experiments by the bottom-up 
method54–57, and the Fermi level of the single-atom-layer material can be well controlled by the back gate92. 
Therefore, we believe that the predicted light-induced pseudospin-1 Dirac-Weyl energy spectrum and the 
Floquet-Bloch topological band dispersions in 2D MOFs can be probed by a combination of the ARPES and the 
gate-controllable Fermi level.

Next, we summarize our results and present an outlook for future investigations. We explore the effects of light 
on the quantum phases and the topological properties of 2D MOFs with kagome lattice (M3C12S12) within the 
framework of the off-resonant and on-resonant Floquet-Bloch physics. It is shown that unusual Floquet quan-
tum states can be engineered in the same 2D MOFs by virtue of highly tunable parameters of light. For instance, 
the claimed nontrivial Floquet quantum spin Hall states in the driven 2D lattice system47 as well as the cold 
atom system87 and the theoretically predictable70–74 and experimentally observable83,84 pseudospin-1 Dirac-Weyl 
fermions with flat bands in the photonic Lieb lattice are realized in the light-irradiated 2D MOFs. Moreover, 
we also observe that a new Floquet half-metallic state can be engineered in 2D MOFs by the on-resonant circu-
larly polarized light that breaks the time-reversal symmetry. These results not only facilitate the developments of 
Floquet-Bloch physics in condensed matter, but also open a new path towards light-controlled spintronics and 
optoelectronics based on 2D MOFs. On the other hand, as a starting point, light-irradiated 2D MOFs also raise 
many interesting subjects, which deserve further explorations in future. Firstly, in the presence of interactions, 
periodically driven system exhibits novel Floquet many-body states28,93–97, such as the fractional Chern insulator 
states28, which generically support the fractional quantum Hall states79–82. Our results has demonstrated that the 
expected topological flat band with a large flatness ratio, which is a crucial condition for the occurrence of the 
fractional quantum Hall effect79–82, can be engineered by the off-resonant light in 2D MOFs (see Figs 3a,d and 4).  
In addition, the strong electronic correlations can be introduced by choosing the different combinations of 
metal ions and organic ligands. Therefore, the light-irradiated 2D MOFs may offer theoretical and experimen-
tal platforms to realize the fractional Chern insulator states in real materials. Secondly, a spatial modulation of 
light allows for remarkably tuning the Floquet topological properties of semiconductor quantum wells22 and 
the surface states of three-dimensional topological insulators98. However, how about the situation in 2D crystal 
materials, i.e., the 2D MOFs with the kagome lattice under the spatially nonuniform irradiations? Thirdly, the 
temperature-dependent 2D topological phases have been characterized by the Uhlmann geometric phase99,100. It 
remains unclear, however, how to characterize the Floquet topological phases at finite temperature in 2D MOFs 
and other materials. Finally, after the above question of the temperature-dependent Floquet topological phases 
is addressed, and the experimental measurements on the Floquet topological quantum states in light-irradiated 
2D materials are completed, Further experiments are required to explore the coupling mechanism between the 
Floquet TIs and the external reservoirs52, the electron occupations of the nonequilibrium Floquet states101,102 and 
the dc Hall conductance of the driven Floquet TIs48.

Methods
Tight-binding (TB) model on the kagome lattice in 2D MOFs. The equivalent single-orbital TB 
Hamiltonian of the kagome lattice79,103, describing the interactions between the π orbitals of the ligands and the 
d orbitals of the metal ions in 2D MOFs58–66, should in principle involve the nearest-neighbor and next-near-
est-neighbor interactions, and can be written as
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Here the first term is the on-site energy. The second and third terms are the nearest-neighbor (denoted by 〈 i, j〉 ) 
hopping and intrinsic SOC with energy parameters t1 and λ1, respectively. The last two terms are the 
next-nearest-neighbor (denoted by i j, ) hopping and intrinsic SOC with energy parameters t2 and λ2, respec-
tively. S is the spin Pauli matrix. dkj and Dkj are the nearest-neighbor and next-nearest-neighbor vectors pointing 
from site rj to rk, respectively (Fig. 1b). The factors 8/ 3 and 8/3 3 correspondingly ensure the vectors dkj and Dkj 
normalized to the unite vectors, similar to that in graphene75 or silicene26. In fact, owing to t1 ≫  t2 and λ1 ≫  λ2

59–66, 
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the nearest-neighbor interactions are the main components, and hence the quite weak next-nearest-neighbor 
interactions are usually not considered in 2D MOFs59–61.

Floquet-Bloch theory in the light-irradiated M3C12S12. In the presence of monochromatic infrared 
light with its spatially slowly varying electromagnetic potential A(t) =  (Axsin(ωt), Aysin(ωt +  φ), 0) (Fig. 1a), the 
time-dependent TB Hamiltonian as a result of the Peierls substitution has the following form:
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We further perform the following Fourier transforms20
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where N is the number of sites with periodic boundary conditions, T denotes the transpose operation, k is the 
wave vector defined in the Brillouin zone, and A, B and C are the three sublattices of a unit cell in kagome lattice 
(Fig. 1b). Then we can rewrite the time-dependent Hamiltonian in momentum space as
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T
, , ,  are the creation/annihilation operators for an 

electron with the spin α (↑  and ↓  denote spin up and down, respectively) in momentum space. Due to  
[Sz, H(t)] =  0, the 6 ×  6 matrix H (k, t) can be decoupled into two 3 ×  3 spin-dependent Hamiltonians:
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where ki =  k · ai, I is the 3 ×  3 unite matrix, + (− ) refers to spin-up (spin-down), and the time-dependent Peierls 
substitutions are
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Employing the Floquet theorem, we can write Floquet-Bloch ansatz as
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with the period T, the spin-dependent quasienergy ε±(k) and the Floquet-Bloch states Φ± tk( , ) . The Floquet 
operator = − ∂± ±

ˆH t H t ik k( , ) ( , )F t,  yields the time-independent Floquet energy eigenvalue equation in the 
Sambe space as
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where the time-independent Hamiltonian ∼±H k( )
m n,

 with the Floquet indexes (m, n) includes the emissions or 
absorptions of q photons (q =  m −  n) and takes the form:
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Substituting equations (6) and (7) into equation (10), we find that ∼±H k( )
m n,

 takes the same forms as the undriven 
static Hamiltonian but with new hopping integrals and SOC strengths modified by the time-averaged Peierls 
(Floquet-Peierls) substitutions:
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Spin chern number and spin Hall conductance. The absence of Rashba SOC in M3C12S12 conserves the 
spin rotational symmetry, and hence the spin-dependent chern number ±C i  of the energy band i can be directly 
calculated using the Kubo formula
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where + (− ) refers to spin-up (spin-down), ε±
i  (ε±

j) is the spin-dependent eigenvalue of the energy band i (j), and 
v̂x y( ) is the velocity operator. The chern number of band i is = ++ −C C Ci i i  and the spin chern number of band i 
is = −+ −C C C( )/2s

i i i . From the spin Chern number, we can further write the spin Hall conductance as 
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