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Constructing Robust Cooperative 
Networks using a Multi-Objective 
Evolutionary Algorithm
Shuai Wang & Jing Liu

The design and construction of network structures oriented towards different applications has attracted 
much attention recently. The existing studies indicated that structural heterogeneity plays different 
roles in promoting cooperation and robustness. Compared with rewiring a predefined network, it is 
more flexible and practical to construct new networks that satisfy the desired properties. Therefore, in 
this paper, we study a method for constructing robust cooperative networks where the only constraint 
is that the number of nodes and links is predefined. We model this network construction problem as a 
multi-objective optimization problem and propose a multi-objective evolutionary algorithm, named 
MOEA-Netrc, to generate the desired networks from arbitrary initializations. The performance of 
MOEA-Netrc is validated on several synthetic and real-world networks. The results show that MOEA-
Netrc can construct balanced candidates and is insensitive to the initializations. MOEA-Netrc can find 
the Pareto fronts for networks with different levels of cooperation and robustness. In addition, further 
investigation of the robustness of the constructed networks revealed the impact on other aspects of 
robustness during the construction process.

Existing studies have shown that complex networks are powerful models for depicting the interactions of nat-
ural and social systems1–3. The properties of complex networks have been discovered and studied include the 
scale-free property4, small-world property5, community property6, and so on. These properties have been found 
in many practical systems. For example, the topology of the Internet exhibits the scale-free property7,8 and social 
networks always have the small-world property5. Several related studies have shown the applicable value of com-
plex network theories such as evolutionary dynamics9–12 and multi-scale flow systems13–17.

One important aspect of system performance is that it should maintain its functionality even when attacks or 
errors occur—namely, robustness—an aspect that has attracted much attention in recent decades18–21. The world 
urgently needs robust system designs that are resistant to unknown errors and attacks. Existing studies have 
focused intensively on enhancing the robustness of specific networks. Several techniques have been applied to 
improve the robustness of networks through topological rewiring under structural constraints (such as the degree 
distribution), including the greedy algorithm19, simulated annealing20 and evolutionary algorithms21. These algo-
rithms have been verified as effective in obtaining highly optimized networks that are more resistant to attacks 
and errors.

In the meantime, to model the cooperative phenomena in human society, the emergence of cooperation22–24 
has also been emphasized in recent researches. To express altruism and selfishness in economics and sociology, 
several evolutionary games such as the prisoner’s dilemma22 and the snowdrift game23 have been proposed to 
model the evolution of cooperation. In evolutionary game theory cooperators tend to obtain smaller profits while 
defectors obtain larger profits. Moreover, those with smaller profits are likely to be eliminated in the process of 
evolution. Previous studies have combined evolutionary games together with complex network theory9–12,25 to 
provide flexibility in realistic simulations and found that networks with different structures have different capabil-
ities for preserving cooperators. This fluctuation in cooperation during an evolutionary process under topological 
changes has also attracted great attention in recent studies26–29. Due to its similarity with robustness evaluating 
network integrity, the robustness of cooperation suffers severely when hubs are lost, which provides an explana-
tion for some types of social events. These studies have confirmed that network structure is key for maintaining 
cooperation and have revealed the internal relationship between robustness and cooperation in sociology and 
economics.
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Generally, robustness design focuses on the integrity of entire networks, a property that is crucial for main-
taining the functionality of systems under attacks or errors. On the other hand, cooperation emphasizes the 
behaviour of individuals and exists broadly in social dilemmas and economic activities. A robust structure is cer-
tainly necessary for decision makers; furthermore, considering the behaviours of members, maintaining a balance 
between cooperators and defectors is also important for system stability and harmony. Several realistic examples 
have revealed the significance of constructing robust cooperative systems.

The China West-East Electricity Transfer Project was designed to bring investment and development to 
China’s lagging western regions while satisfying the growing electricity needs of the country’s eastern prov-
inces30,31. This effort requires the western Chinese provinces, where the population is low, to take advantage of 
their resource to generate massive amounts of electricity for the eastern provinces where the population is high. 
The project did improve the robustness of China’s electricity network, effectively solving the shortage of electric-
ity in the densely populated areas in China and enhancing the fault tolerance of the power network. However, 
as indicated by some studies and news sources32–34, taking local economic profits into account, several eastern 
provinces in China have tended to refuse to purchase the electricity generated by the western provinces and, 
instead, have developed local electricity generation facilities. Unfortunately, for the western provinces, which have 
consumed large amounts of natural resources and suffered the effects of environmental pollution, this situation 
means that they cannot achieve sufficient economic benefit, while the eastern provinces have gained considerable 
economic profit from developing their local power industry. This outcome means the whole project is stuck in 
a dilemma that damages the balance of inter-regional development. In this case, if policy makers were provided 
with a set of power network structures with different performances of robustness and cooperation that have the 
potential to help maintain a balance between local profits and regional cooperation, planning power supplies 
between the different districts would be both more reasonable and more convenient.

Similarly, in biological relationship networks, biotic populations are often faced with the dilemma of balanc-
ing cooperation and competition35,36. If individuals in the population cooperate with one another, sharing their 
food, water, territory, and so on, the competitive pressure on the population tends to decrease, which, means 
that the excellence of the population cannot be maintained, eventually, the entire population tends to become 
less resistant to natural enemies or environmental disasters. On the other hand, if the population stresses com-
petition too highly, none of the individuals cooperate with each other, which, although it generally elevates the 
fitness of the population, harms reproductive fitness because many individuals will fail to reproduce because of 
the fierce competition. Cooperation in biotic populations is common in nature, but when populations are rare 
and under-protected, animal wardens must intervene to raise the level of individual cooperation when necessary. 
Under these circumstances, a more rational distribution of individuals is needed to restore the balance between 
cooperation and the population robustness.

Additionally, in economics, different companies can choose to cooperate with each other or to compete. Too 
much cooperation causes a lack of innovation and makes industries less competitive against overseas competition 
and less resistant to financial turbulence, while too little cooperation leads to cutthroat competition, which is also 
not conducive to healthy development36,37. For industry regulators, there is an urgent need to negotiate a balance 
between a fully cooperative situation and cutthroat competition; in this regard, alternative networked structures 
of industrial members can be of help. Meanwhile, companies can adjust their strategies and benefit from more 
moderate structures that balance their performance between robustness and cooperation.

These examples reveal that evolutionary games exist broadly in daily life, and that policy makers are often 
faced with the task of adjusting the self-interested relationships among members while also improving the failure 
tolerance of the entire system. From the perspective of topological reshuffling, we try to construct networked 
systems with different levels of cooperation and robustness that can provide potential solutions to economic and 
social dilemmas. In the following experiments on real networks, we provide possible solutions to these examples 
through our proposed algorithm.

Existing studies on network-based cooperation have focused on modelling different types of evolution-
ary games and on researching the relations between topological features and the ability to maintain coopera-
tion9–12,22–25; however, few have investigated techniques to promote the level of cooperation in networked systems, 
despite the fact that such techniques have potentially broad applications to real life. Based on previous studies, 
we focus on constructing networks that have a desired level of cooperation. Meanwhile, because both robustness 
and cooperation in complex networks are of great significance in real world applications and theoretical analy-
ses, robustness has also been considered in the construction process. However, existing studies have shown that 
robustness and cooperation are in conflict with each other in terms of network structure. For robustness, an 
assortative or low-heterogeneity structure improves attack and error tolerances18,19,38, but such structures also 
constrain the emergence of cooperators10,11. To solve these problems, multi-objective optimization methods 
should be employed in the process of constructing robust cooperative networks. By doing so, we expect to gener-
ate a series of networks with different levels of robustness and cooperation.

In terms of topological reshuffling, structural rewiring methods that start from a given network have been 
shown to be effective in improving robustness18–21. Structural rewiring methods limit the degree distribution of 
optimized networks and must start from a specific initial network. However, these rewiring methods are helpless 
if the detailed connections in networks are unreachable; a method that can construct networks with the desired 
properties from arbitrary inputs is more flexible. Furthermore, considering the way cooperation emerges in the 
real world, it is not difficult to build connections with people we have never known before or to break off con-
nections we already have, freeing from the total contacts we currently have (i.e., degree), as indicated by several 
existing studies9,10,36. Meanwhile, because the resources in a system are limited, the numbers of total cooperative 
relations for each individual and for the whole system are also restricted36,37 (i.e., it is impossible to generate coop-
erative connections between every pair of members). Therefore, in the process of constructing networks with a 
desired robust and cooperative level, we first define the number of nodes, representing that the system is relatively 
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independent that no new members will join. Then, considering that allowing a variable number of links will make 
it difficult to evaluate and compare robustness as well as potentially creating confusing network structures, for 
simplicity, we also restrict the number of links during the construction process.

To sum up, in this paper, we model the issue of constructing robust cooperative networks as a multi-objective 
problem (MOP) and study the correlation between robustness and cooperation. Because evolutionary algorithms 
(EAs), which are optimization methods motivated by biological inheritance and evolution, have been shown 
to be highly efficient in solving MOPs39–43, we propose a multi-objective optimization algorithm based on the 
NSGA-II40 framework named MOEA-Netrc to solve the modelled MOP. The performance of MOEA-Netrc is 
validated on several widely-used network models, including Erdős-Rényi (ER) networks44, scale-free (SF) net-
works and small-world (SW) networks as well as several real-world networks. The results show that MOEA-Netrc 
can construct networks with a balanced performance between robustness and cooperation from different initial 
network states. Furthermore, we conducted some comparative experiments to study the properties of the con-
structed networks on the obtained Pareto fronts.

Results
A network can be represented as a graph G =  (V, E), where V =  {1, 2, … , N} is the set of N nodes and E =  {eij | 
i, j ∈  V} is the set of M edges. In this paper, we focus on studying the robustness and cooperation of undirected 
networks.

Robustness measures and optimization. A robust network tends to maintain functionality when fail-
ures occur on nodes or links. Several measures have been proposed recently to evaluate the robustness of net-
works from different aspects. One type of measures is based on the eigenvalue of Laplacian matrix45. Later, from 
the viewpoint of graph theory, Albert et al.46 proposed the robustness measure in which network disintegration 
was used to evaluate the performance of networks under critical conditions such as removal of some portions of 
the vertices or edges. In 2011, Schneider et al. proposed a novel measure, called R, which considers the largest 
connected component during all possible malicious attacks on nodes19 and is defined as follows:
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where N stands for the number of nodes in a network, Q stands for the number of nodes removed, and s(Q) 
stands for the fraction of the largest connected component after removing Q nodes. The normalization factor 1/N 
ensures that networks with different numbers of nodes are comparable. Because R exhibits good performance, we 
employ R to evaluate network robustness in this paper.

In addition to designing proper measures to evaluate network robustness, investigating how to improve net-
work robustness is also important. Some optimization algorithms have been proposed to enhance the robustness 
of complex networks. Buesser et al. proposed a heuristic method based on simulated annealing to rewire the con-
nections among nodes to obtain robust networks20. Except for local search methods, which are time consuming 
and have difficulty finding global optima, EAs have been employed to improve network robustness. For example, 
Zhou et al. proposed a memetic algorithm to optimize the robustness of networks21.

Additionally, structural measures also impact the robustness of networks. Herrmann et al. showed that net-
works with “onion-like” structures tend to perform better in resisting malicious attacks18. Assortativity (r)47,48 
can evaluate the mixing patterns between connected nodes; networks with higher r tend to present “onion-like” 
structures and to possess high resistance to sustain attacks. Ma et al. indicated that the degree distribution of 
networks also affects their robustness; networks with nodes similar in degree show significantly higher tolerance 
to malicious nodal attacks38. In terms of degree distribution, the heterogeneity index (H)49 describes the level of 
inequality among degrees in networks; networks with smaller H tend to have a homogeneous degree distribution 
and show higher robustness.

Evolutionary games on complex networks. The evolution of cooperation is a metaphor for social and 
biological activities. Several evolutionary games22,23 have been proposed to model the mutual relations involved 
in cooperation. The goal of these games is to reflect the strategies made by players through various resulting pay-
offs. In this paper, we focus mainly on the prisoner’s dilemma (PD) game22. The PD game clearly shows the payoff 
interaction between cooperators and defectors. Players choose their strategies (cooperate or defect) synchro-
nously, and the payoff for each player is based on the choices of all that player’s neighbours. Each pair of players 
receives P for mutual defection and R for mutual cooperation. When the connected players make different 
choices, the defector obtains T and the cooperator obtains S. The order of payoff value is T >  R >  P >  S. After all 
players achieve a payoff in a system, an update operation is conducted. Players with higher payoffs tend to influ-
ence the strategies used by their neighbours. In networking terms, as described in refs 11 and 27, for every node i 
in the network, randomly choose a neighbour j, and denote the payoff of node i as Pi. If Pi <  Pj, node i imitates the 
strategy of node j with the probability − − ×P P T S k( )/[( ) ]j i , where k is the largest degree between nodes i and 
j. The update operation should be performed numerous times until the system reaches a stable state. Then, in this 
paper, the fraction of cooperators remaining in the network, labelled f(c), is used as the measure that evaluates a 
network’s ability to maintain cooperation.

Previous studies have illustrated that disassortative and heterogeneous structures show a high ability to main-
tain cooperation10,11 because fewer connections between hubs and the existence of cooperative hubs reduce the 
possibility of cooperators being invaded. On the other hand, it is also feasible to regulate network structures 
under the guidance of some structural measures to reach different levels of cooperation, which is the approach 
adopted in this paper.
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Correlation between robustness and cooperation. As discussed previously, a network’s structure is 
critical to both its robustness and its level of cooperation. To construct desirable networks, we can model the 
construction task as an optimization problem. In optimization problems, the objectives by which selections are 
made are important. Focusing on constructing robust cooperative networks, we can take robustness and cooper-
ation as two objectives, and model the task as an MOP50. Thus, we first analyse the correlation between these two 
objectives through the following experiment.

In MOPs, contradictions should exist in the optimization objectives; otherwise, the problem could be solved 
as a single optimization problem. In this experiment, we take SF networks as an example to show the correlation 
between the robustness and cooperation. Because calculating the f(c) of a network is time consuming, we use R 
as the tuning target—that is, we generate networks with both high and low R, and then, the R and f(c) of each net-
work are calculated to study their correlation. Similar to the work of Ma et al. in ref. 38, the heuristic optimization 
method is implemented to rewire the connections between nodes to adjust the objective R by changing the degree 
distribution of networks. When evaluating f(c), we set the payoff parameters as T =  2, R =  1, P =  0, and S =  0. The 
details of this method are as follows.

1. Based on the BA model4, generate an SF network G randomly;
2. Take R as the objective function, and use the heuristic optimization method to generate networks with min-

imum R. When the R of the current network does not decrease over 1000 evaluations, assign the current 
network to Gori;

3. Optimize the R of Gori using the heuristic optimization method; when the R of the current network increases 
by 5%, sample this network and continue the optimization process until R remains unchanged for 1000 
evaluations;

4. Conduct the evolutionary game on the obtained networks to calculate the f(c) of each network;
5. Repeat the above steps ten times; the average results are shown in Fig. 1.

As shown in Fig. 1, the Pearson correlation coefficient between R and f(c) shows that these two objectives are 
strongly negatively correlated with each other on SF networks, which indicates that the multi-objective optimiza-
tion model is meaningful in modelling the task of constructing robust cooperative networks.

Furthermore, R and f(c) also show different correlations in different network structures. Here, we use hetero-
geneity (H) and assortativity (r) to evaluate the structural property of networks. As Hu et al. proposed in ref. 49, 
the heterogeneity (H) of networks is defined as follows:
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where N is the number of nodes in a network, ki represents the degree of node i, and 〈 k〉  is the average degree of 
the network. H lies in the range of [0, 1], and larger values imply higher heterogeneity in terms of network degree. 
Newman proposed the assortativity property (r) in ref. 47, which evaluates the propensity with which vertices of 
similar degree are connected to one another. Assortativity is defined as follows:
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Figure 1. The Pearson correlation coefficient between R and f(c). 
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where |E| is the total number of links in a network, ki is the degree of vertex i, and the value of r is equal to the 
Pearson correlation coefficient of the degrees.

We adjust H and r to diversify the structures of specific SF networks with N =  200, a scaling exponent51,52 of 
α =  3 and 〈 k〉  =  4. In the PD game, we set T =  2, R =  1, and P =  S =  0. The correlations between these measures 
and the two objectives can be seen in Supplementary Figs. S1 and S2 where mutual promotion exists between H 
and f(c), but a contradictory relationship exists between H and R, which indicate that the degree distribution of 
networks impact robustness and cooperation separately. Similarly, an increase in r limits the existence of cooper-
ators but promotes the ability of network to resist malicious attacks and vice versa.

From the above experiments, we can see that constructing networks with better robustness and high ability 
in maintaining cooperation are conflicting objectives. Thus, we model this task as an MOP, and take R and f(c) as 
the two objectives.

Experimental results on synthetic networks. In this section, the performance of MOEA-Netrc is val-
idated on synthetic networks. To validate the effect of different initial networks on the performance, three types 
of networks are taken as initial networks: ER networks generated by the Erdős-Rényi model44, SF networks gen-
erated by the BA model4, and SW networks generated by the WS model5. Then, the Pareto fronts obtained by 
MOEA-Netrc are analysed. Moreover, the topology features of networks on the Pareto fronts such as the largest 
number of connected components and other robustness measures are also studied with the goal of investigating 
the changes in functionality from diverse aspects.

Synthetic networks with size N =  200 are used in this experiment. The effect of degree-density on network 
performance is also studied by using networks with different average degrees, 〈 k〉 . In the experiment, we set 
T =  2, R =  1, P =  0, and S =  0 when conducting the evolutionary game. The obtained Pareto fronts from differ-
ent initial networks with 〈 k〉  =  4 are shown in Fig. 2 and the results of networks with 〈 k〉  =  8 are depicted in 
Supplementary Fig. S3.

As shown in Fig. 2 and Supplementary Fig. S3, the obtained Pareto fronts provide networks with balanced R 
and f(c) properties. Decision makers can make choices according to different practical requirements. Focusing 
on the Pareto fronts obtained from the three types of initial networks, their continuities have slight differences—
mainly due to the structural diversity of the initial networks. In general, MOEA-Netrc can construct desired net-
works with different levels of R and f(c) from arbitrary initializations under constraints where the numbers of 
nodes and links are predefined. Previous studies4,5,44 have indicated that most real networks can be modelled as 
ER, SF, or SW networks. MOEA-Netrc is effective on all these models when dealing with the problem of construct-
ing robust cooperative networks that possesses the potential to be used in practical applications. In addition, for 
testing the performance of MOEA-Netrc on different sizes of networks, the obtained Pareto fronts from SF-initial 
(〈 k〉  =  4) networks with large sizes are shown in Supplementary Fig. S4. The results show that MOEA-Netrc is still 
effective for larger-sized networks.

Next, we take SF-initial networks as an example to analyse the ranges of H and r of the networks on the Pareto 
fronts. The results are shown in Supplementary Fig. S5. In the initial stage, we adopt heterogeneity (H) to make 
the network structures diverse; then, in the later stage, assortativity (r) has also been considered to further adjust 
the structure of specific networks. As shown in Supplementary Fig. S5(a) and (b), networks with heterogeneous 
structures (larger H values) tend to promote the emergence of cooperation, while networks with homogeneous 
structures (smaller H values) tend to enhance network robustness. Through this construction process, a series 
of networks possessing different H values are generated. Moreover, the population is initialized with candidates 
that fall into different levels of the two objectives, which accelerates the convergence of the searching process. In 
addition, the results in Supplementary Fig. S5(c) and (d) validate the relation between r and the two optimization 
objectives. Assortative networks with higher values of r tend to show resistance against malicious attacks, but 
disassortative networks with lower values of r support the existence of cooperators in evolutionary games. On 
the other hand, evaluating f(c) is time consuming, but adjusting r provides potential individuals with the desired 
ability to maintain cooperation and also contributes toward improving the convergence speed of the algorithm. 
These results depict the relationship between network properties and the optimization objectives on the networks 

Figure 2. The Pareto fronts obtained by MOEA-Netrc from different initial synthetic networks with 〈k〉 = 4. 
(a) ER-initial, (b) SF-initial, and (c) SW-initial.
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located at Pareto fronts, which conforms to the conclusions in the previous analyses and reveals the properties of 
networks with different levels of R and f(c).

Because adjusting H and r may also obtain networks with desired levels of robustness and cooperation, we 
compared the networks obtained by adjusting only H and r with those on the obtained Pareto fronts. We selected 
networks with a desired level of heterogeneity and adjusted assortativity to obtain the desired networks. The 
results in Supplementary Fig. S6 show that the networks generated by adjusting only H and r are mainly distrib-
uted randomly in the searching space, and they fluctuate within a relatively small range; however, they are much 
worse than the networks on the Pareto fronts found by our algorithm. Thus, simply adjusting H and r cannot 
generate networks with the desired properties, and the multi-objective model is a good solution for this problem.

In terms of PD games, we tested the situation with T =  2, R =  1, P =  0, and S =  0, which is weak PD game10,23. 
For comparison, we also conducted the experiment with T =  2, R =  1.5, P =  0, and S =  0 (here, 2 R >  T) on 
SF-initial networks with N =  200. The results are shown in Supplementary Fig. S7. When compared with the 
results in Fig. 2(b) and Supplementary Fig. S3(b), the Pareto fronts are almost the same, which indicates that the 
cases of 2 R >  T and 2 R =  T in the PD game show similar performance in the construction process.

Because the Pareto Fronts in Fig. 2 provide a set of networks with different performance in terms of the two 
objectives, we extracted networks from different parts of Pareto fronts and analysed their topologies. Following 
Zhou et al.53, three networks are extracted from each Pareto front (for visual effect, we took networks with 〈 k〉  =  4 
as examples here). The network with the largest R is labelled Gr and is located in the right part of the Pareto front; 
the network with the largest f(c) is labelled Gl and is located in the left part of the Pareto front; and the balanced 
network is labelled Gm and is located in the middle of the Pareto front. The topologies of these three networks 
are shown in Supplementary Fig. S8. The networks structural results show that, for these three types of initial 
networks, the algorithm achieves the purpose of adjusting structures to construct the desired networks and the 
degree distributions of Gl, Gm and Gr are significantly different. In addition, the number of links between nodes 
with similar degree has been increased in the process of constructing robust networks. Furthermore, we analysed 
the numeric properties of Gl, Gm and Gr. As listed in Table 1, the results show that networks with higher levels of 
cooperation tend to possess a larger H and a smaller r and always have star-like structures. In contrast, those with 
higher robustness tend to possess a smaller H and a larger r and mostly have an onion-like structure (similar to 
the conclusions in refs 18 and 19). Networks with trade-offs between the two extreme structures show balanced 
performances in terms of R and f(c).

To further investigate the different performances of these networks, we studied the largest connected com-
ponents during the process of attacks on the selected networks shown in Fig. 3, taking both the node-degree and 
the link-degree as indicators. The fraction of the largest connected sub-graphs obtained after nodal attacks and 
edge-based attacks are labelled as s(Q) and s(P), respectively. The numeric results are shown in Fig. 3.

As shown in Fig. 3, during the node-removal process, different initial states of networks show similar perfor-
mances. The results in Figs 2 and 3 and in Supplementary Fig. S3 illustrate that MOEA-Netrc has good generali-
zation ability over different initial networks, and can construct candidate networks with different values of R and 
f(c). However, the results in Fig. 3 also indicate that the constructed networks show few differences with regard 
to the results of link attacks.

To test the stability of MOEA-Netrc, we took the SF-initial networks as an example. The number of nodes is set 
up to 1000, and 〈 k〉  =  4. Gl, Gm and Gr are extracted from each Pareto front. The mean and the variance of R and 
f(c) shown in Fig. 4 indicate that the performance of MOEA-Netrc is stable.

In the above experiments, we focused on solving the MOP over R and f(c) with MOEA-Netrc, obtaining 
a set of networks with different values of R and f(c) on the Pareto fronts. However, there are many measures 
other than R to evaluate the robustness of networks. The networks on the SF-initial Pareto fronts in Fig. 2 are 
evaluated by some of these other robustness measures, and the corresponding numeric results are reported in 
Supplementary Fig. S9. As seen from the results, the optimized networks on the Pareto fronts have correlations 
with other robustness measures that reveal the internal relations between R and these measures.

Type H r R f(c)

Gl

ER 0.5583 ±  0.011 − 0.3324 ±  0.025 0.0371 ±  0.007 0.9925 ±  0.003

SF 0.5061 ±  0.012 − 0.4023 ±  0.033 0.0222 ±  0.003 0.9951 ±  0.002

SW 0.5215 ±  0.009 − 0.3932 ±  0.029 0.0265 ±  0.006 0.9950 ±  0.002

Average 0.5286 − 0.3760 0.0286 0.9942

Gm

ER 0.4075 ±  0.025 − 0.1676 ±  0.053 0.1527 ±  0.011 0.5312 ±  0.047

SF 0.3825 ±  0.067 0.1251 ±  0.025 0.1638 ±  0.015 0.5211 ±  0.095

SW 0.3671 ±  0.045 − 0.1492 ±  0.046 0.1448 ±  0.016 0.5261 ±  0.076

Average 0.3857 − 0.0639 0.1538 0.5261

Gr

ER 0.2155 ±  0.009 0.6533 ±  0.007 0.3122 ±  0.009 0.0562 ±  0.002

SF 0.1713 ±  0.010 0.6131 ±  0.007 0.3159 ±  0.013 0.0142 ±  0.007

SW 0.1573 ±  0.011 0.5190 ±  0.009 0. 3063 ±  0.011 0.0213 ±  0.004

Average 0.1814 0.5951 0.3115 0.0306

Table 1. The numeric properties of Gl, Gm and Gr. The row labelled “Average” shows the mean values of all 
three types of networks.
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Experimental results on real-world networks. In this section, we validate the performance of 
MOEA-Netrc on three real-world networks, namely, the WU-Power grid network, Dolphin social network, and 
Scotland corporate interlock network. (see Supplementary Table S1 for detailed information).

The Pareto fronts obtained by MOEA-Netrc are depicted in Fig. 5, and the R and f(c) values of the original 
networks are depicted as red stars. The results show that the obtained Pareto fronts have good distributions and 
generate a set of networks with different performances in terms of R and f(c). Compared with the results in ref. 53,  
MOEA-Netrc can achieve a wider scope for R, which can provide more useful choices for decision makers in real 
applications.

Similar to the analyses on synthetic networks, Gl, Gm and Gr are extracted from the Pareto fronts in Fig. 5 to 
show the structures of optimized networks, the results are given in Supplementary Fig. S10. In the experiments 
on real networks, we achieve similar structural fluctuations as those in Supplementary Fig. S8. Decision makers 
can select suitable networks from these results based on their needs. For power networks, a structure that exhibits 
both robustness and maintains the potential cooperation may be helpful for solving the dilemma between local 
interests and the overall stability of the power supply system discussed in refs 32–34. For biological relations 
networks, animal wardens can intervene into the relationships between individuals based on the aforementioned 

Figure 3. The fraction of the largest connected sub-graphs obtained during nodal and edge-based attacks. 
(a) ER-initial networks, (b) SF-initial networks, and (c) SW-initial networks.

Figure 4. The mean and variance of R and f(c) of the selected networks on the Pareto fronts. The images in 
(a), (b), and (c) represent the numeric results of R on Gm, Gl, Gr, respectively, while (d), (e), and (f) represent the 
results of f(c) on Gm, Gl, Gr. The results are averaged over 20 independent realizations.
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results to balance the emergence of cooperation and competition of the entire biotic population to facilitate the 
reproduction of protected or rare species. For corporate interlock networks, industry regulators will benefit from 
the construction results by acquiring solutions that address malicious developing situations, meanwhile company 
owners can also adjust their operational strategies by referring to the results to avoid excessive competition and 
develop wiser tactics.

In this section, we tested the performance of MOEA-Netrc on three real-world networks, and the results show 
that MOEA-Netrc can find valuable potential solutions to the multi-objective problem of constructing robust 
cooperative networks, which may be of help in solving real-world dilemmas in sociology and economics.

Discussion
The emergence of cooperation and the ability to withstand attacks are of great significance to networked systems: 
both properties should be taken into consideration in practical applications. Previous studies have indicated 
that networks with dense and homogeneous structure tend to have better robustness, but those with spare and 
heterogeneous structure help guarantee the emergence of cooperators in evolutionary games. Based on these con-
clusions, we illustrate the dilemmas between robustness and cooperation in real world through several realistic 
examples and model the problem of constructing robust cooperative networks as an MOP in this paper. Then, 
we devise a multi-objective EA, named MOEA-Netrc, to find a series of candidates for theoretical and potentially 
practical applications.

The contributions of this paper are summarized as follows: (1) Previous studies have proposed evolutionary 
game models that revealed the relation between network structural features and the ability to maintain cooper-
ation, but designing networks with a specific cooperative level is still an open question. Based on these studies, 
we have achieved a method for building networks with a desired level of cooperation using topological rewiring. 
The constructed networks can facilitate both theoretical analyses and potential applications. (2) Constructing 
networks with high attack tolerances—a property crucial to networked systems—has also been considered in 
this paper. Because several recent examples have revealed a trade-off between the properties of robustness and 
cooperation is of significance, we model the problem for constructing networks with both high robustness and a 
good ability to maintain cooperation maintaining as an MOP. Then, we propose MOEA-Netrc to solve the MOP. 
In addition, considering the large computational cost required to evaluate the level of cooperation in a network, 
we designed an effective initialization operator for MOEA-Netrc that can obtain a broad distribution of individ-
uals in the solution space. This approach both provides potential candidates and accelerates the convergence of 
searching process. (3) Experimental results on synthetic networks—including networks generated from ER, SF 
and SW models—show that MOEA-Netrc has good generalization ability. Finally, we tested the performance of 
MOEA-Netrc on several real-world networks and achieved good solutions that can provide decision makers with 
candidates to help solve real-world dilemmas.

In addition to the single networks studied in this paper, the robustness and the emergence of cooperation 
in interdependent and coupled networks has attracted increasing attention in recent studies54–56. Therefore, our 
future work will involve further studying the construction of robust cooperative interdependent or coupled 
networks.

Methods
We depicted the conflict between R and f(c) and modelled the simultaneous enhancing robustness and cooper-
ation problem as an MOP. Because EAs have been widely employed in dealing with MOPs in the past few dec-
ades40–43, we propose a multi-objective evolutionary algorithm, named MOEA-Netrc, to solve the modelled MOP.

Usually, the initial population for an EA is generated randomly in the search space; however, in network 
construction problems, the search space is very large. If we were to generate the initial population randomly, the 
performance of most individuals in each objective would be very poor. Previous studies have shown that gener-
ating good initial populations by considering the optimization objectives rather than simply generating random 
populations can speed up the convergence of EAs and reduce the computational cost53,57. In ref. 53, Zhou et al. 

Figure 5. The Pareto fronts obtained by MOEA-Netrc on real-world networks. The corresponding R and f(c) 
values of the original networks are represented as red stars. (a) shows the result for the WU-Power grid network, 
(b) shows the Dolphin social network result, and (c) shows the result for the Scotland corporate interlock 
network.
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proposed a two-phase multi-objective EA to solve MOPs. On one hand, this approach generates initial popu-
lations whose individuals have widely distributed values in each objective. On the other hand, it addresses the 
problem that the computational costs of the two objectives are significantly different.

In our MOP, the computational costs for calculating R and f(c) are also significantly different because updat-
ing operations must be performed numerous times on networks to reach a stable state and determine f(c). Thus, 
we borrowed the concept from53 to first generate a well distributed initial population with different structural 
properties to reduce the computational cost and speed up the convergence. The heterogeneity of networks shows 
different correlations with the two objectives, so we took H as the property measure to adjust the structure of 
networks to obtain good initial populations for optimizing both R and f(c) and, thus, reducing the computational 
cost for determining f(c).

Initialization stage. In MOEA-Netrc, graphs are presented as chromosomes. Thus, a population with Ω 
chromosomes represents Ω graphs labelled G1, G2,… , GΩ. We want to generate a widely distributed population by 
adjusting the H value from a specific network to modulate network structure. As shown in Supplementary Fig. S1, 
for a specific network, a heterogeneous structure with a larger H tends to promote f(c) but restrain R and vice 
versa. From this perspective, a population with a wide H distribution can provide balanced initializations for 
solving the MOP.

To modulate H, we employ the heuristic optimization method in ref. 38 by setting H as the optimization objec-
tive. The selections of pairs of edges are random, and the reconnection operation keeps the number of links 
unchanged. The details of the initialization stage are summarized in Algorithm 1. In the experiments, different 
initial states of networks have different ranges of H; the boundaries for H are determined by trial and error.

Algorithm 1: Initialization Stage

Input:

   Ω: The size of the population

   G0: Original network

   Hlower: The desired lower boundary of H

   Hupper: The desired upper boundary of H

   Hstep: Increasing increment of H

Output:

   Result: = … ΩP G G G{ , , , }1
1
1

1
2

1 : Initial population;

1. Hsize ←  1;

2. H ←  Hlower;

3. while (H <  Hupper) do

4. Perform the heuristic optimization method on G0 to get a network GH
Hsize that has the desired H;

5. Hsize ←  Hsize +  1;

6. H ←  H +  Hstep;

7. end while;

8. for i =  1 to Ω do

9. Choose a member, GH
i , from GH

Hsize1: ;

10. Randomly select a pair of edges, ekl and emn, where m, n, k, and l are disparate and ekn and eml do not exist in GH
i ;

11. Remove ekl, emn, and add ekn, eml in GH
i , while keeping the number of links unchanged;

12. ←G Gi
H
i

1 ;

13. end for.

Implementation of MOEA-Netrc. EAs have become popular approaches to solving MOPs39–43 in the 
past few years. Among existing EAs, NSGA-II40 showed an excellent performance; therefore, we implemented 
MOEA-Netrc using the NSGA-II framework. In the basic process of NSGA-II, a fast non-dominated sort is 
employed to divide the population into different ranks. When optimizing R and f(c), it is desirable to obtain the 
maximum solutions in terms of each objective; consequently, if the values of both objectives of an individual i are 
smaller than those of individual j, then i is dominated by j and given a higher rank than j. Individuals with lower 
(better) ranks tend to be selected into the next generation. When both solutions have the same rank, the crowd 
should be compared, as described in ref. 40, using the Crowded-Comparison Operator, in which solutions that are 
located in less crowded regions are preferred in the selection.

In MOEA-Netrc, considering the broad distribution of the degrees of the initial populations, we avoid using the 
crossover operation between chromosomes, which is inefficient and fallible. The results in Supplementary Fig. S2 
show that the assortativity (r) of networks presents correlates differently with R and f(c); thus, we designed differ-
ent strategies for the two objectives. When searching for better solutions in terms of R, the heuristic optimization 
method38 is employed, which takes R as the optimization objective. In contrast, when optimizing f(c), the rewire 
connection strategy (following Buesser et al. in ref. 16) is employed, which rewires the network to adjust the r 
value of the current networks. In addition, to reduce the computational cost, an external population (EP) is used 



www.nature.com/scientificreports/

1 0Scientific RepoRts | 7:41600 | DOI: 10.1038/srep41600

to store the non-dominated solutions found during the searching process (similar to Zhang et al. in ref. 41). In 
each generation of MOEA-Netrc, we update the EP using the current individuals. The details of MOEA-Netrc are 
summarized in Algorithm 2.

Algorithm 2: MOEA-Netrc

Step1. t ←  1, EP ←  ∅, Initialize the population P with chromosomes using Algorithm 1;

Step2. F ←  fast non-dominated sort (P);

Step3. Select chromosomes into Q based on their rank in F and the Crowded-Comparison Operator;

Step4. For each individual in Q, randomly select one of the optimized objectives, R or f(c) at the probability of pm;

Step5.  If R is selected, then conduct the heuristic optimization method to increase or decrease R with the same probability, and add the 
generated network into Q, then go to Step 7;

Step6.  If f(c) is selected, then conduct the rewire connection strategy to increase or decrease r with the same probability, and add the generated 
network into Q;

Step7. Update EP with the individuals in Q. Then, P ←  Q;

Step8. t ←  t +  1;

Step9. If (t >  Maxgen), then output EP; otherwise, go to Step 2.

The parameters used in MOEA-Netrc are described in Supplementary Table S2.
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