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Dynamic-Sensitive centrality of 
nodes in temporal networks
Da-Wen Huang1 & Zu-Guo Yu1,2

Locating influential nodes in temporal networks has attracted a lot of attention as data driven and 
diverse applications. Classic works either looked at analysing static networks or placed too much 
emphasis on the topological information but rarely highlighted the dynamics. In this paper, we take 
account the network dynamics and extend the concept of Dynamic-Sensitive centrality to temporal 
network. According to the empirical results on three real-world temporal networks and a theoretical 
temporal network for susceptible-infected-recovered (SIR) models, the temporal Dynamic-Sensitive 
centrality (TDC) is more accurate than both static versions and temporal versions of degree, closeness 
and betweenness centrality. As an application, we also use TDC to analyse the impact of time-order on 
spreading dynamics, we find that both topological structure and dynamics contribute the impact on 
the spreading influence of nodes, and the impact of time-order on spreading influence will be stronger 
when spreading rate b deviated from the epidemic threshold bc, especially for the temporal scale-free 
networks.

Centrality is a fundamental concept in network analysis, and how to measure the centrality of nodes has become 
an essential part of analysing and understanding networked systems including social networks1–3, biology net-
works4–6, Internet7,8, ecological networks9, traffic networks10. In networked system, some significant nodes are 
responsible for broadcasting information and therefore locating and protecting them are crucial for the whole 
information processing system11,12. The definition of centrality fails to reach an agreement, it leads to existing 
many methods to evaluate node importance. Most of conventional methods combine the definition of centrality 
closely with the networks topological structure13–16, these methods emphasize that the importance of nodes is 
related to the topological parameters, such as degree, closeness, betweenness, k-shell15, H-index16. Sometime 
these methods perform well while we are considering the structural importance of nodes, such as the path length 
and the number of paths. But they may not perform well in the processes like spreading which consider more 
about the dynamics of nodes17. As an extensive process, spreading can describe many important activities in the 
real-world, including the outbreak of epidemics18–20, the spread of news and ideas21,22, the rise of political move-
ments23,24. The early method of describing the spreading process starts in the fields of epidemiology18,25. This 
years, at the core of all data-driven modeling approaches lies the structure of human interactions, mobility, and 
contact patterns that finds its best representation in the form of networks26–28, but the key problems that general 
solution of the master equation of the networked system is hardly achievable even for very simple dynamical pro-
cesses29. The numerical simulation has been a good reference tool to find the approximate solutions of the spread-
ing process, but when the scale of networks become large, numerical simulation may be ineffective. Recently, 
Morone and Makse developed the theory of influence maximization in complex networks and introduced a new 
method to find influencers via optimal percolation11, they found that some weakly connected nodes can become 
top influencers in large networks when they act as bridges among node clusters, the new method and its improved 
version make it possible to find influencers in large social media30.

Beside the topological features, recent studies indicate that the dynamics also play an important role in spread-
ing process17,31–33. For example, if we change the spread rate in epidemic process, although the networks topologi-
cal structure remain the same but the results of spreading may be totally different. There are few works taking into 
account the properties of the underlying spreading dynamics17,34,35. Klemm et al. suggested that the eigenvector cen-
trality can be used in estimating dynamical influences of nodes in the susceptible-infected-recovered (SIR) spread-
ing model34, and theoretical proof had been given to show that there exist a closed relation between the infection 
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scale and eigenvector centrality in susceptible-infected-susceptible (SIS) model of the networks35. Liu et al.17  
gave a definition of centrality (Dynamics-Sensitive centrality) of static networks while only use three parameters 
to describe the spreading influence, the numerical simulation shows that the new centrality performs much bet-
ter than some topological structural centralities like degree, k-shell and also is of comparable with eigenvector 
centrality.

However, all above mentioned methods are restricted to static networks. In real life many networks are tem-
poral36–43, namely the networks topological structure evolving with time, and many studies have shown that 
time-order have great influence not only on the topological structure but also the spreading dynamics of this 
kind of general networks41,44,45. There are many temporal versions of centrality which have been used to describe 
the structural importance of nodes44,46–48, but these methods only take into account the topological features. 
Since the dynamics are much more complicated in the networks with the variety of the topological structure, and 
more attention should be paid for this kind of general networks. It should be a significant work to investigate the 
dynamics on temporal networks.

In the past a few years, our group investigated the multifractal scaling properties of unweighted and weighted 
networks49–52. In this paper, we consider more about the spreading dynamics of nodes and extend the work of Liu 
et al.17 to a more general and more realistic model. According to the empirical results on three real-world tem-
poral networks and a theoretical temporal network, the extended method performs much better than other six 
methods. As an application, we use it to analyse the influence of time-order in temporal networks.

Visualization model
A temporal network with N nodes and time length T is defined as a sequence of L time snapshots of equal size 
δ =  T/L, we can use multilayer network structure53 to represent temporal networks, where each time snapshot can 
be treated as networks interaction inter-layer, and all nodes naturally connect themselves between layers. Fig. 1 is 
an example of temporal network represented by using a multilayer network structure, there are four nodes A, B, 
C, D with T =  3, L =  3,δ =  1. If node i has a connection with node j at time snapshots t, where t ∈  [1, … , L], then i 
and j are connected by undirected line at time layer t. In a temporal network with N nodes, the topological struc-
ture at time layer t can be described by the adjacency matrix A(t) =  {a(t)}ij. As shown in Fig. 1:
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As a tool to measure the influence of nodes, dynamics-sensitive centrality17 performs well in static networks. 
But for more general dynamical networked system, the use of it has been restricted. Now we use the above visual-
ization model and extend dynamics-sensitive centrality to more general situation.

Temporal dynamics-sensitive centrality
We consider the susceptible-infected-recovered (SIR) model in discrete time, where individuals (i.e., the nodes 
of the network) can only be in one of three mutually exclusive states: susceptible (S), infectious (I), recovered 
(R). At each time step, a node in the state S will get infected with infection probability β when contacting one of 
its infected neighbors. And an infected node can be recovered with a probability μ. When we set μ =  0, the SIR 
model reduces to a standard SI model: nodes can only be susceptible or infected. We consider the temporal net-
work forming the substrate of the spreading process to be a sequence of undirected and unweighted temporal net-
works, which has been described above. We used a Markov chain for the epidemic model and derive the analytical 
result of node influence. Denote x(t)(t ≥  0) as an n ×  1 vector whose components are the probabilities of nodes to 
be ever infected no later then the time step t, then P(t) =  x(t) −  x(t−1)(t ≥  1) is the probabilities of nodes to be 
infected at time step t, and we denote P(0) =  x(0) to represent the initial condition. If i is the only initially infected 
node, then xi(0) =  1. Notice that, x(t) is the cumulative probability that can be large than 1, and we use the term 
probability just for simplicity. In the first time step, x(1) =  βA(1)x(0), and in the Methods Section, we prove that 
for t >  1 the following equation can be obtained:

Figure 1. An example temporal network represented by using a multilayer network structure and its static 
integrated networks. 
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The probabilities of nodes to be ever infected no later than the time step t in temporal networks can be 
expressed by
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where β α µ= ∏ + −α=H A I[ ( ) (1 ) ]r r( )
1 , and we denote H(0) =  1. Aral and Walker54 showed that the attributes of 

nodes are highly correlated with influence of nodes and tendencies to be influenced, which indicates that we can 
use the sum of infected probabilities of all nodes to express the the spreading influence of nodes. Denote Si(t) to 
be the sum of infected probabilities of node i at time step t, then

β β β= + + + −
S t A A H A t H V( ) [( (1) (2) ( ) ) ] , (4)i

t T
i
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where XT means the transpose of matrix X, V =  (1, 1, … . 1)T is n ×  1 vector whose components are all equal to 1. 
Obviously, A(t)T =  A(t), so
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then the spreading influence of all nodes can be described by the vector

∑β= + .
=

−

⁎S t H A r V( ) ( 1)
(6)r

t
r

0

1
( )

If we let A =  A(1) =  A(2) =  …  =  A(t), then the temporal networks are static. In this particular case, 
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in accordance with the result obtained by Liu et al.17.
Now we have established the method to measure the spreading influence of nodes in temporal networks. 

But there are three assumptions need to be explained. First, we follow Refs 17 and 55 and use a linear coupling 
instead of nonlinear coupling to calculate the probabilities of the nodes to be infected at time step t, namely, if a 
susceptible node has m infected neighbors, then the probability of the node to be infected is approximated as mβ, 
instead of 1 −  (1 −  β)m. Second, the cumulative probability x(t) can be larger than 1, which is not mathematically 
rigorous. As infected probability of every node is overestimated, here we take the cumulative probability x(t) just 
as a measure of influence. And we assume that x(t) is meaningful and has a closed relation with the spreading 
influence. The performance of the operation need to be tested in real networks, and this will be extended in the 
following section. Third, we assume periodic boundary conditions for the network dynamics, here we regard L as 
the total number of network time snapshots. i.e. A(L +  1) =  A(1), where L is arbitrary and finite, this processing 
method causes no loss in generality and has been used by Valdano et al.56. With different recovery rate μ, the 
time-varying structure of temporal networks is able to alter the value of the epidemic threshold βc. We think the 
assumption is meaningful because when L →  ∞  and β >  βc, all nodes in the networks would be infected no matter 
which node is the source of the disease, in this special condition we could not distinguish the spreading influence 
between nodes. For a given recovery rate μ, Valdano et al.56 also tested that it would affect the epidemic threshold 
βc estimation only for rather small values of L, the asymptotic solutions of epidemic process are periodic of period 
L. From Eq. (2) and the same processing method56, we have the spectral radius of M meets:

ρ < .M( ) 1 (7)

Eq. (7) makes sure that =→∞P tlim ( ) 0t , this yields the threshold condition ρ(M) =  1, then the epidemic thresh-
old βc can be calculated56,57.

Results
Evaluating the spreading performance. In the following experimental results, we demonstrate the effec-
tiveness of the method by comparing with the SIR model of varying spreading rate β. Three real-world tempo-
ral networks, including Email networks (EMA)58, High school friendship relations networks (FRI)59, University 
of California messages networks (UCM)60, and a theoretical temporal scale-free network (TSF) generated by 
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Barabasi-Albert (BA) model61, are used in our empirical analysis, the data description can be found in Methods 
section. We calculated the spreading influence by both our method and SIR spreading model (see Methods sec-
tion for the description of SIR spreading model). As shown in Fig. 2, we perform the method with β =  0.01, 
μ =  0.1, and the time step is set by t =  10 (t ≤  L, L has been given in Table 1), and a normalization can be per-
formed without a loss of precision:

=
−
−

S S min S
max S min S

( )
( ) ( )normal

In order to compare between the results of the method and the results of SIR simulation but without a loss 
of precision, the simulation results use translation transform of S′  =  normal(S) +  1 after the normalization. the 
Kendall’s Tau coefficients62 between the results of the method and the standard SIR model are 0.9265, 0.9443, 
0.7866, 0.8514 respectively of the EMA, FRI, TSF, UCM which show a high effectiveness of the method.

In addition, three well-known centrality measure methods degree centrality, closeness centrality, betweenness 
centrality, and their temporal version methods introduced by Kim et al.48 are considered, the details of these 
methods can be seen in the Methods section. We applied these six methods to the four temporal networks, both 
the results of above six methods and ours are compared with the simulation results of the standard SIR model. 
In the standard SIR model, the spreading rate β varies from 0.01 to 0.10 with a step of 0.01, the recovery rate μ 
is set by 0.1, and the time step is set as t =  10. As shown in Fig. 3, each data point is obtained by averaging over 
104 independent runs, here SD, TD, SC, TC, SB, TB, TDC, SIR represent static degree, temporal degree, static 
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Figure 2. The infection probability β = 0.01, and the recovered probability μ = 0.1, the time step of the four 
networks are set by t = 10. Numerical simulation point is obtained by averaging over 104 independent runs, and 
the Kendall’s Tau coefficients between the results of the method and the standard SIR model are 0.9265, 0.9443, 
0.7866, 0.8514 respectively of the EMA, FRI, TSF, UCM.

Network N E L δ

EMA 167 82927 272 1day

FRI 327 188508 101 1hour

TSF 500 36684 100 N/A

UCM 1899 59835 39 per 5 days

Table 1.  Statistical properties of the networks used in our analyses, where N, E, L, δ denoted by the number 
of nodes, the number of links, temporal length, and maximum snapshots size respectively for the networks.
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closeness, temporal closeness, static betweenness, temporal betweenness, temporal dynamics-sensitive centrality, 
and simulation results of SIR model respectively. Temporal dynamics-sensitive centrality (TDC) proposed in this 
paper obtains much higher accuracy than other six methods through the Kendall’s Tau coefficient τ.

Moreover, we compare the consumed CPU time of the above eight methods in Table 2. All experiments are 
tested on a computer: Intel Core i3 2.53 G Hz with RAM DDR3 4 GB and 1.6 GHz. From Table 2, we can see 
that local centrality methods like static degree (SD) and temporal degree (TD) consumed least time, temporal 
dynamics-sensitive centrality (TDC) also performed well, and global centrality methods like static closeness (SC), 
temporal closeness (TC), static betweenness (SB), temporal betweenness (TB) consumed a substantial amount 
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Figure 3. The accuracy of seven centrality measures in evaluating the spreading influence of nodes 
according to the SIR model in the four networks, quantified by the Kendall’s Tau coefficients. The spreading 
rate β varies from 0.01 to 0.10, recovery rate μ =  0.1, and the time step is set as t =  10. Each data point is 
obtained by averaging over 104 independent runs.

EMA FRI TSF UCM

SD 0.009 0.01 0.022 0.2

TD 0.005 0.007 0.018 0.19

SC 0.07 0.49 2.24 255

TC 3.0 10.7 29.2 6097

SB 0.024 0.11 0.26 2.81

TB 6.3 22.9 69.9 1275

TDC 1.0 0.6 1.3 34

SIR 1113 2762 5039 42302

Table 2.  The CPU time of the eight algorithms for the four networks (unit: s).
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of computation time and memory resources. Although numerical simulation of SIR did not take a substantial 
amount of memory resources, it consumed too much time and sometime it was unbearable.

Dynamics of spreading analysis on null models. In the study of statistical properties of networks, it’s 
not enough to assess the importance, unexpectedness, or underrepresentation of topological features of empirical 
networks only by calculating the value of some topological statistics, a common way to deal with the problem is 
by comparing the features against some reference model where the network is randomized, and these randomized 
network models are called null models. More about null models, readers can refer to Refs 41 and 45.

Whether or not taking into consideration of the influence of time is the difference between statics networks 
and temporal networks. In temporal networks, time-order of the event sequences between nodes not only have 
influence on the networks topology structure, but also the spreading dynamics41,44,45. Tang et al.44 pointed out that 
a path is not reachable in temporal networks, but may be reachable when turning temporal networks into static 
networks. Karsai et al.45 showed that randomizing the time-order will slow down the spreading. In this paper, we 
care more about the effects of time-order on the spreading influence of nodes, we apply the above analysis to null 
models where the time-order of original event sequences are randomized. Algorithmically, the method of the 
model is defined as follows:

 Step 1 Go over all edges sequentially.
 Step 2 For every edge i j( , )t1

 at time t1, randomly pick another time t2.
 Step 3  Replace the edge i j( , )t1

 and i j( , )t2
, namely only change the time-order of the events happen between the 

same two nodes.
 Step 4 Repeat the above processes until the time orders are completely randomized.

Denoted E(i, j)t =  1 if i and j is connected at time t, or E(i, j)t =  0 means disconnected otherwise. It is easy to 
find that if ≠E i j E i j( , ) ( , )t t1 2

, then above randomly replace process between time t1 and t2 will be valid. This 
random method ensemble conserves the set of times of the original contact sequence, but destroys burstiness of 
events on individual vertices and edges as well as correlations between events such as triggered chains, the aggre-
gated rate of events in the network is unchanged and will still follow the typical circadian and weekly patterns of 
human activity41,45. In the experiment, the temporal length of the four networks were chosen by t =  L, we apply 
the null model to the spreading process while the recovery rate μ is set by 0.01, 0.04, 0.07, 0.10, and infection rate 
β is set by a range from 0.0025 to 0.1 with a step of 0.0025 respectively for each recovery rate μ. For every pair of 
(μ,β), the original networks are randomly reset 1000 times by using the null model algorithm, denoted S′ (t) the 
mean of spreading influence of 1000 random networks, the Kendall’s Tau coefficients between the S(t) of the 
original networks and S′ (t) are used to measure the the impact of the time-order, and larger the value of Kendall’s 
Tau coefficients, the impact of time-order is small. The epidemic threshold βc respectively for the four networks 
are shown in Table 3. As shown in Fig. 4, we are surprised to find that the impact of time-order on spreading 
influence will be stronger when β deviated from the epidemic threshold βc, especially for the temporal scale-free 
networks. When β is set by the epidemic threshold condition βc of the four networks, the Kendall’s Tau coeffi-
cients between S(t) of the original networks and S′ (t) of the random networks can be larger than 0.84, which 
shows a small impact of time-order on spreading influence. The detailed results of Kendall’s Tau coefficients can 
be found in Supplementary Information.

Discussion
Centrality is a important topic with many diverse applications, and how to measure the centrality of nodes has 
become an essential part of analysing and understanding networked systems. As summarized in papers14,63,64, 
most of previous work concentrate on the topological information but rarely highlight the dynamics17. Liu et al.17 
showed that dynamics-sensitive centrality in static networks performed much better than some topological struc-
tural centrality in spreading process, this inspire us to consider the problem in a more general dynamics networks, 
where networks topological structure evolving with time. In this paper, in addition to the topological information, 
we take the time into consideration and propose temporal centrality metrics based on the time-ordered graph. 
According to the empirical results on three real-world temporal networks and a theoretical temporal network, the 
extended method (TDC) perform much better than other six methods in the early stage of spreading. Although 
it is unfair to directly compare TDC with other six methods because TDC takes account more parameters, the 
method enables us to investigate the dynamics in spreading process while only use three parameters, we can use it 
to detect the potential super-spreaders for epidemic control in temporal networks. The method in this paper has 
advantage over the method proposed by Liu et al.17, it not only can be applied to static networks, but also can be 
used in more general networks.

Network μ = 0.01 μ = 0.04 μ = 0.07 μ = 0.10

EMA 0.008327 0.01494 0.02179 0.02878

FRI 0.024551 0.04190 0.06100 0.08093

TSF 0.016572 0.02664 0.03726 0.04824

UCM 0.051286 0.06223 0.07220 0.08152

Table 3.  The epidemic threshold βc respectively for the four networks.
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The dynamics are much more complicated in temporal networks for the variety of the topological structure. 
To the best of our knowledge, there are few works had ever investigated the impact of time-order on the spreading 
influence of nodes. As an application, TDC enable us to analyse the impact of time-order on spreading dynamics, 
we are surprised to find that both topological structure and dynamics contribute the impact on the spreading 
influence of nodes, but the impact of time-order on spreading influence will be stronger when β deviated from the 
epidemic threshold βc. A direct application of this conclusion can be that when dynamics parameter β approach 
epidemic threshold βc, we can still find the super-spreaders for epidemic only rely on the static integrated net-
works and the number of each edge links. We think our method can be extend to more dynamics analyses such 
as the impact of edge sequences on spreading dynamics. All in all, there are many problem remain to be solved 
since we conclude that both topological structure and dynamics contribute the impact on the spreading influence 
of nodes, but the specific mechanisms involved remain to be explored.

Methods
Derivation of Eq. (1). 
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Figure 4. Kendall’s Tau coefficients between original networks and randomly reset networks. Here, black 
dotted line represent the epidemic threshold βc. The recovery rate μ was set by 0.01, 0.04, 0.07, 0.10, for each 
recovery rate, the spreading rate β varies from 0.0025 to 0.10 with a step of 0.0025, and the time step is set as 
t =  L. Each data point is obtained by averaging over 103 independent runs. Each error bar covers two standard 
deviations for all the results.
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β β µ β β µ− = + − = + −A A A A Ix 2 x 1 x 1 x 0 x 0( ) ( ) (2) ( ) (2)(1 ) ( ) (2)[ (1) (1 ) ] ( ) (8)

We assume that when t ≤  p, the following equation can be established
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which completes the proof.

Benchmark methods. We consider two kinds of benchmark methods here, one type are static networks 
methods which have been widely used over last years, such as degree centrality, closeness centrality, and between-
ness centrality. The other are temporal networks methods which have been developed these years, the representa-
tive are temporal type of degree centrality, closeness centrality, and betweenness centrality.

The degree centrality of node i is defined as the number of links incident upon it, namely

∑=
∈

k a
(9)

i
j u i

ij
( )

where aij is the element of matrix A. u(i) is the neighbor nodes of node i. Degree centrality is a local centrality, and 
works especially well in evaluating the spreading influence of nodes when the spreading rate β is small.

Closeness centrality65 of node i is defined by the reciprocal of sum of its distances from all other nodes.

=
−

∑ ∈
c N

d
1

(10)
i

j u i ij( )

where N is the total number of nodes, dij is the shortest path length between node i and node j. Closeness cen-
trality is a global centrality and performs better in evaluating nodes’ spreading inflences when the spreading rate 
β is high.

Betweenness centrality65 of node i is defined by the number of shortest paths from all vertices to all others that 
pass through node i.

∑
σ

σ
=
≠ ≠

b
i( )

(11)
i

j i k

jk

jk

where σjk is the total number of shortest paths from node j to node k, and σjk(i) is the number of those paths that 
pass through node i. Betweenness centrality is also a global centrality and has been attached with wide applica-
tion, including computer and social networks, biology, transport and scientific cooperation.

Tang et al.44 proposed a method to identify important nodes using temporal versions of conventional cen-
trality metrics, Kim et al.48 extend Tang’s work to a more general and more realistic model. Readers can refer to 
Tang et al.44 or Kim et al.48 for the details of the temporal versions of conventional centrality. In this paper, we 
applied the above three conventional centrality metrics and the temporal version of these three centrality metrics 
proposed by Kim et al.48.

In fact the static networks can be regarded as a integrated process of temporal networks regardless of the influ-
ence of time-order42, and conventional centrality methods are no more suitable for this kind of general networks, 
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in order to solve the problem and compare the performance of the conventional static methods with our meth-
ods, we first convert the temporal networks into static integrated networks (see Fig. 1), and then calculating the 
centrality by using the three conventional centrality methods. We also calculate the temporal versions of conven-
tional centrality by using Kim’s methods, both of these results are considered as benchmark to be compared with 
the results of our method, and the results are shown in Results section.

SIR Spreading Model. Initially, we set one node to be in the initial infected state I, this node corresponds to 
our single spreader (in general, the initial node can be any node of the graph, here in the simulation we run over 
all nodes of networks; the same procedure is also performed for the baseline methods). The rest of the nodes are 
assigned to the susceptible state S. At each time step, the infected nodes can infect their susceptible neighbors with 
probability β (infection rate). Furthermore, the nodes that have been previously infected can recover from the 
disease with probability μ (recovery rate). The process is repeated within the given time step t(t ≤  L). We calculate 
the number of infected nodes Ni(t) after t steps the disease firstly spreads from the initial node i, and use Ni(t) to 
represent the simulation spreading influence of node i.

Data Sets. In order to demonstrate the effectiveness of the method, we performed the numerical analysis 
mainly using the following empirical networks.

•	 Email networks(EMA)58. This network represented the history of internal e-mail communication between 
employees of a small-sized manufacturing.

•	 High school friendship relations networks(FRI)59. This network was a medium-sized data set correspond to the 
contacts and friendship relations between students in a high school.

•	 Temporal scale-free networks(TSF). This network was a combination of 100 snapshots, and each snapshots was 
generated by Barabasi-Albert BA model61.

•	 University of California messages networks(UCM)60. This network contains sent messages between the users 
of an online community of students from the University of California, Irvine.

In Table 1, we provide some detailed statistical properties of the above networks. For our analyses, if not stated 
otherwise, these networks are both undirected and unweighted networks. EMA, FRI, UCM are real-world net-
works which represent human interactions in diverse social contexts and have different topological and temporal 
characteristics, TSF is a theoretical network generated by BA scale-free model.
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