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On the Fractality of Complex 
Networks: Covering Problem, 
Algorithms and Ahlfors Regularity
Lihong Wang1,2, Qin Wang3, Lifeng Xi2, Jin Chen4, Songjing Wang2, Liulu Bao1, Zhouyu Yu5  
& Luming Zhao2

In this paper, we revisit the fractality of complex network by investigating three dimensions with 
respect to minimum box-covering, minimum ball-covering and average volume of balls. The first two 
dimensions are calculated through the minimum box-covering problem and minimum ball-covering 
problem. For minimum ball-covering problem, we prove its NP-completeness and propose several 
heuristic algorithms on its feasible solution, and we also compare the performance of these algorithms. 
For the third dimension, we introduce the random ball-volume algorithm. We introduce the notion of 
Ahlfors regularity of networks and prove that above three dimensions are the same if networks are 
Ahlfors regular. We also provide a class of networks satisfying Ahlfors regularity.

Complex networks arise from natural and social phenomena such as the Internet, the protein interactions, the 
collaborations in research, and the social relationships. Readers are referred to Watts-Strogatz’s1 small-world net-
work model and Barabási-Albert’s2 scale-free network model, and Newman’s review3 and book4, etc.

In this paper, we revisit the fractality of complex network by investigating three dimensions dB
5, dball

6 and df
7 

with respect to minimum box-covering, minimum ball-covering and average volume of balls. The compact box 
burning algorithm (CBB)8,9 and random ball-covering algorithm6 are proposed to calculate dB and dball respec-
tively. However the minimum box-covering problem and minimum ball-covering problem are NP-complete, 
which are proved rigorously in Theorem 1 and Proposition 2 respectively. The NP-completeness implies that the 
CBB algorithm and the random ball-covering algorithm do not have high performance, then we suggest some 
algorithms to improve the random ball-covering algorithm. For the third dimension df, we obtain an efficient 
algorithm: the random ball-volume algorithm. When do the three dimensions coincide? To answer this question, 
we introduce the notion of Ahlfors regularity of networks and prove that dB =  dball =  df (Theorem 2) if networks 
are Ahlfors regular. Then for Ahlfors regular networks, the random ball-volume algorithm is efficient to obtain 
the above three fractal dimensions.

Fractal dimensions and covering problems
Song, Havlin and Makse5 reveal that many real networks have self-similarity and fractality, and Gallos, Song, 
Havlin and Makse give a review of fractality of complex networks10. The algorithms to numerically calculate 
the fractal dimension of complex networks have been proposed: For example, the CBB algorithm8,9 is applied 
to calculate the fractal dimension of complex networks through the minimum box-covering; Kim, Goh, Kahng 
and Kim11 improve the CBB algorithm to investigate the fractal scaling property in scale-free networks; Zhou, 
Jing and Sornette12 propose the edge-covering box algorithm; Gao, Hu and Di6 give the minimum ball-covering 
approach to calculate the fractal dimension of complex networks.

Recall some notation. Considering a network as a graph G =  (V, E) equipped with geodesic distance d, we let 
an l-box A denote a subset of V such that the geodesic distance of any two points in the subset is less than l, an 
l-ball centered at x0 the subset <y y x l{ : d( , ) }0 . Let Nl be the smallest number of l-boxes needed to cover V, and 
Bl the smallest number of l-balls needed to cover V. Suppose that
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∼ ∼V N l V B l# / and # / ,l
d

l
dB ball

where dB is the fractal dimension defined by Song, Havlin and Makse5, and dball is defined by Gao, Hu and Di6.
For box-covering, Song, Gallos, Havlin and Makse9 point out that the minimum l-box-covering problem is 

NP-complete for any l ≥  2. On the other hand, for ball-covering, which is far from box-covering in graph theory, 
we have

Theorem 1. The minimum l-ball covering problem is NP-complete for any l ≥  2.

Ball-covering algorithms
Due to the NP-completeness, for finding the feasible solution of minimum ball-covering problem, we can apply 
the usual random ball-covering algorithm (RBC)6: when l is fixed, in each time t, we randomly choose one node xt 
in the vertex set Vt−1 remained in time (t −  1), and obtain Vt by cutting all nodes in = <B x l y y x l( , ) { : d( , ) }t t .

In the RBC algorithm we give a random sorting for nodes in Vt−1 and take the first node. Moreover, given 
some function →f V: , we can sort these nodes according to the values of function f.

Given a function →f V: , suppose we sort nodes according to values of f in nondecreasing order: If f is the 
degree function, we can obtain degree-order ball-covering algorithm (DOBC); If =f x B x l( ) # ( , ) and, we obtain 
volume-order ball-covering algorithm (VOBC).

For a function →g V: , assume we sort nodes according to values of g in nonincreasing order, we propose 
the following greedy algorithm:

(1) Assume that = …− − −V x x{ , , }t t t1 1
1

1
2  such that ≥ ≥− − g x g x( ) ( )t t1

1
1

2 .
(2) Set = − −V V B x l\ ( , )t t t1 1

1  and the sorting of nodes in Vt inherits from V0 =  V.

When =g x B x l( ) # ( , ), we obtain the volume-greedy ball-covering algorithm (VGBC). Let g(x) =  deg(x), we 
have the degree-greedy ball-covering algorithm (DGBC).

In the point of view on fractal geometry, the box dimension is independent of the geometric shapes of cover-
ing, such as ball or box. It is easy to check that Bl ≤  Nl ≤  Bl/2, hence −d dB ball  ≤  −N

l
B
l

log
log

log
log

l l  ≤  −B
l

B
l
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l l/2  ≈   

−
+

B
l
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l

log
log 2 log( /2)

log
log( /2)

l l/2 /2  ≈  ⋅ d
l ball

log 2
log

. By the above estimate, when the diameter of network is large enough to 
insure that l can be taken large enough, we have

Proposition 1. The fractal dimensions dB and dball w.r.t. the box covering and ball covering respectively are the same.
However, for real networks with small-world effect, we can not take l large enough, and the upper bound 
⋅ d

l ball
log 2
log

 of error is not small enough. On the other hand, we only find the feasible solutions of minimum cov-
ering problems due to their NP-completeness. See the following example.

Example 1. Through above 5 algorithms (Fig. 1), we calculate dball for the WWW network (Table 1).
In Table 1, the value of the RBC algorithm is exactly the value dball =  4.2 by Gao, Hu and Di6. Note that Song, 

Havlin, and Makse5 obtain that dB =  4.1.
For the WWW network, we also compare the above 5 algorithms (Fig. 2). It seems that the VGBC algorithm is the 

best and the performance of the RBC is the worst and close to the VOBC.

Random ball-volume algorithm
Based on Shanker’s work13, Guo and Cai7 investigate the power law between the average volume of balls and the 
their radii. Given a network, let p(l) be the average cardinality of nodes in a ball with radius l, suppose that

∼ .p l l( ) d f

We call df the volume dimension. Please also see generalized volume dimension14 by Wei et al.
We will discuss the volume dimension df related to average ball-volume and propose the random ball-volume 

algorithm for networks. Compared with the minimum box-covering algorithm and the minimum ball-covering 
algorithm, we have the following algorithm to calculate the average volume of ball with size l approximately.

Random ball-volume algorithm (RBV) (for fixed size l):

Step2. Randomly take a node x in the network.
Step2. Calculate the volume ν(B(x, l)).
Step3. Repeat the steps 1–2 and obtain average volume of random l-balls.

For the WWW network, using the RBV algorithm we obtain df =  5.833 (Fig. 3).

Ahlfors regularity of networks
Fractal geometry and fractal network have deep connection. We can generate complex network models from 
self-similar fractals. For example Andrade et al.15 and Zhou et al.16 discuss Apollonian networks generated from 
Apollonian fractal, Zhang et al.17–19 construct evolving networks modeled from Sierpinski gasket by taking the 
line segments as nodes. Besides Zhang et al.20 construct the networks produced from Vicsek fractals, Liu et al.21 
and Chen et al.22 explore some Koch networks related to Koch curves, Song et al.23 study complex networks mod-
eled on Platonic solids, Chen et al.24 investigate networks generated by Sierpinski tetrahedron.
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Figure 1. Slopes exist w.r.t. 5 algorithms for the WWW network: (a) RBC, (b) DGBC, (c) DOBC, (d) 
VGBC, (e) VOBC.

Algorithm RBC DGBC DOBC VGBC VOBC

dball 4.1811 4.5693 5.0805 5.0950 4.2680

Table 1.  dball w.r.t. 5 algorithms for the WWW network.

Figure 2. Comparison of 5 algorithms for the WWW network. 
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In this paper, we try to find out the farther connection between the fractal networks and fractal geometry. 
Recall some classical result on fractal dimension. We find out that many dimension results have measure versions. 
Suppose μ is a Borel (finite) measure supported on a compact subset E, denoted by spt µ ⊂ E. For any ∈x E, let 
the lower local dimension of μ at point x be defined by µ = µ

→xdim ( ) limloc r
B x r

r0
log ( ( , ) )

log
. A classical result25,26 on 

Hausdorff dimension dimH (·) is

µ µ
µ µ

= ⊂
≥ ∈ .‑

E s E
x s x E

dim sup{ : there exists a Borel measure with spt
such that dim ( ) for almost all }

H

loc

That means for Hausdorff dimension, we have the corresponding measure version. When replacing µ xdim ( )loc   
by µ = µ

→xdim ( ) limloc r
B x r

r0
log ( ( , ) )

log
,  we obtain packing dimension dimP ( ·)25,26.  We always have 

≤ ≤E E Edim dim dimH P B ,  w h e r e  dimB  i s  u p p e r  b o x  d i m e n s i o n .  A  r e a s o n a b l e  c a s e  i s 
= = =E E E sdim dim dimH P B  and there is a suitable measure μ such that =µ

→ slimr
B x r

r0
log ( ( , ) )

log
, or we can pose 

the Ahlfors regularity assumption on the measure

µ≤ ≤ ∈ <−c r B x r cr x E r E( ( , )) for all and diam( ),s s1

where c is an independent constant.
We give a natural measure on a graph G =  (V, E). For Ω ⊂ V , we let ν(Ω) be the cardinality of Ω, which is 

called the volume of Ω. We say that {Gt}t is a family of growing networks, i.e., ⊂ +G Gt t 1, which means the node 
set of Gt+1 contains node set of Gt, and neighbors of Gt are still neighbors of Gt+1. When {Gt}t is growing, we let 
νt(Ω) denote cardinality of ∩Ω V t, where Vt is the node set of Gt.

Remark 1. When taking ν Ω( ) as the sum of degrees of nodes in Ω, Wei et al.14 obtain the generalized volume 
dimension.

Definition 1. Given s >  0, if ν ∼B x r r( ( , )) s, we call the network an Ahlfors s-regular network. When {Gt}t is grow-
ing, we call {Gt}t Ahlfors s-regular networks, if there is an independent constant c such that for all ∈x V t, 
r <  diam(Vt) and t,

ν≤ ≤ .−c r B x r cr( ( , ))s
t

s1

When the diameter of network is large enough, we have

Theorem 2. df =  dball =  dB =  s if the network or growing networks are Ahlfors s-regular.
When the networks are regular, we can use RBV algorithm to obtain their fractal dimensions efficiently.

Figure 3. RBV for the WWW network. 

Figure 4. Rule 1. 
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Ahlfors regular trees
Now, we obtain a rule (rule 1) of generating Ahlfors s-regular networks and growing trees in Figs 4 and 5. We have 

= = = . d d d 1 4B ball f  in Fig. 6. By embedding the self-similar tree into the self-similar fractal in 2, we find 
that the volume of ball in the tree is comparable with the (self-similar) measure of ball in plane, then we can obtain

Theorem 3. The growing self-similar trees defined above are Ahlfors s-regular with s =  log 5/log 3. Therefore, we have

= = = = . .d d d log 5/log 3 1 4649B ball f

We also have rule 2 and growing trees in Figs 7 and 8. For this self-similar tree with respect to rule 2, we have 
= = =d d d log 4/log 3B ball f .
Fix an infinite sequence x x1 2  of 1 and 2 such that =→∞

= ≤ plim :t
x i t

t
# { 1 : }i  exists. We can construct a family of 

growing networks as follows by induction: for time t, we take rule 1 if xt =  1, else take rule 2. For example, if the sequence 
is 211 , we obtain our growing networks G1, G2, G3 as in Fig. 9. This is a family of deterministic growing networks.

Then we can generate a Moran tree with mixed rules. For this Moran tree without self-similarity, we have 
= = = + −d d dB ball f

p plog 5 (1 ) log 4
log 3

. We also obtain random growing networks, for each time t, we can choose 
rule 1 in probability p and rule 2 in probability 1 −  p.

The rest of paper is organized as follows. Section 2 is devoted to the rigourous proofs on the NP-completeness 
of minimum ball-covering problem (Theorem 2) and minimum box-covering problem (Proposition 2). Section 
3 is the preliminary on the Ahlfors regularity of fractal geometry, including covering inequality and self-similar 
fractal. In this section, we also recall the fact that the open set condition of self-similar fractal implies the Ahlfors 
regularity of fractal measure. Replacing the fractal measures by the cardinalities of subsets of networks, we obtain 
the Ahlfors regularity of networks. In Section 4, we prove Theorem 2 by using covering inequality shown in 
Section 2, and obtain Ahlfors regularity of a class of self-similar network (Theorem 3) by constructing bilipschitz 
mappings from a self-similar fractal, satisfying the open set condition, to self-similar networks, and estimating 
the cardinalities of balls of graph from the Ahlfors regularity of the fractal measure.

NP-completeness of minimum covering problems
Recall some notation of computer science. For an alphabet Σ, let Σ⁎ be the set of finite strings of elements of 
Σ, and Π the class of functions from Σ⁎ into Σ⁎ defined by one-tape Turing machine which operate in polyno-
mial time.

Definition 2. Let L and M be languages. Then ∝L M  (L is reduced to M) if there is a function ∈ Πf  such that 
∈ ⇔ ∈f x M x L( ) . We say that some language ∈M NP is NP-complete, if ∝L M for all ∈L NP.

The concept of NP-completeness was introduced in 1971 by Cook27. In Cook’s theorem, he proved that the 
Boolean satisfiability problem is NP-complete.

In 1972, Karp28 proved that several other problems were also NP-complete. For example, we give the following 
two in Karp’s 21 NP-complete problems.

(1)  Clique covering problem
Input: graph G =  (V, E), positive integer k
Property: V is the union of k or fewer cliques, where a clique is a subset of vertices of G such that its induced 
subgraph is complete.

(2) Set covering problem
Input: universe U and a family S of subsets of U, positive integer k
Property: there is a set covering of size k or less, where a set covering is a subfamily ⊆C S of sets whose union is U.
In 1992, Kann29 proved that the set covering problem, which is NP-complete, can be reduced to the following 
dominating set problem (hence it’s also NP-complete).

(3) Dominating set problem
Input: graph G =  (V, E), positive integer k
Property: there is a dominating set of k or fewer nodes, where a dominating set is a subset D of V such that 
every vertex not in D is adjacent to at least one member of D.
In this section, we will show the following two problems are NP-completes.

(4) l-ball-covering problem
Input: graph G =  (V, E), positive integer k
Property: V is the union of k or fewer l-balls.

Figure 5. G1, G2, G3 of growing trees w.r.t. rule 1. 
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Figure 6. Fractal dimensions of G5: (a) CBB, (b) RBC, (c) DGBC, (d) DOBC, (e) RBV.
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(5) l-box-covering problem

Input: graph G =  (V, E), positive integer k
Property: V is the union of k or fewer l-boxes.

Proof of Theorem 1. If l =  2, then l-ball-covering problem is exactly the dominating set problem, which is 
NP-complete. If l =  3, given a undirected graph G =  (V, E) as in Fig. 10, we construct a new graph =G V E( , ) in 
polynomial time w.r.t. the size of G.

Step I.  For any ∼ ∈x y V , we insert a median point z (in red) in the edge ∈x y E( , )  with degree 2 in G, i.e., in 
G we have x ~ z, z ~ y and x, y are not neighbors in G.

Figure 7. Rule 2. 

Figure 8. G1, G2 of growing trees w.r.t. rule 2. 

Figure 9. The first three steps according to an infinite sequence 211 .

Figure 10. The reduction process for l = 3. 
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   Step II. We add a Hub (in blue) to connect all median points.
Step III. Insert sub-median-point (in yellow) for every edge between one median point (in Step I) and Hub.
  Step IV. We construct a leaf node (in pink) and the median point (in green) between leaf node and the Hub.

We have the following

Claim 1. There is a dominating set of k or fewer nodes in G if and only if  V  is the union of (k +  1) or fewer 3-balls.

To verify this claim, we notice the following facts.

(a) For any nodes ∼ ∈x y V , in G their geodesic distance =x yd ( , ) 2G .
(b) The subset of all nodes not in V is a 3-ball centered at the Hub.
(c)  The geodesic distance between the pink node and any node in V is 5, that means any 3-ball can not contain 

the pink node and any node of V simultaneously.
(d) For any 3-ball D with ∩ ≠D V /0, we can find a node u in ∩D V  such that

∩ ⊂ ∈ ≤ .D V v V u v{ : d ( , ) 1}G

Suppose =x{ }i i
s

1 is the minimum dominating set of G and there is a minimum 3-ball covering =D{ }i i
t

1 of G. We 
only need to show that

= + .t s 1 (1)

In fact, we have ∪⊂ ∈ ≤=V y V x y{ : d ( , ) 1}i
s

G i1 . It follows from the fact (a) that

∈ ≤ ⊂ ∈ ≤y V x y u V x u{ : d ( , ) 1} { : d ( , ) 2}G i G i

for any i ≤  s. Applying the fact (b), we see that there exists a 3-ball covering with (s +  1) balls. Hence

≤ + .t s 1 (2)

On the other hand, considering the minimum 3-ball covering =D{ }i i
t

1, by fact (d), we obtain a dominating set 

∈Λu{ }i i
 of G, where ∩Λ = ≠i D V{ : /0}i . Therefore, Λ ≥ s# . Since the pink point must belong to some ball Di0

, 
by fact (c), we have ∉ Λi0 . Therefore we have

≥ Λ + ≥ + .t s# 1 1 (3)

Then (1) follows from (2) and (3). Then Theorem 1 is proved for l =  3.
For l ≥  4, we have the similar construction during reduction. In fact, we insert (l −  2) median points into each 

edge of G, add a Hub to connect all median points, insert (l −  2) sub-median-point for every edge between one 
median point and Hub. Finally, we construct the leaf node and connect it to the Hub, insert (l −  2) the median 
point between leaf node and the Hub. See Fig. 11 for l =  4.

Remark 2. To prove one problem is NP-complete, we always find a reduction from a known NP-complete prob-
lem to our problem. On the other hand, we can always construct a reduction from our (NP) problem to a known 
NP-complete problem due to the definition of NP-completeness.

We give a proof of the following fact which is pointed out by Song, Gallos, Havlin and Makse9.

Proposition 2. For any fixed size l, the l-box-covering problem is NP-complete.

Figure 11. The reduction process for l = 4. 
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Proof. If l =  2, l-box-covering problem is exactly the clique covering problem, which is NP-complete.
If l =  3, given a undirected graph G =  (V, E), as in Fig. 12, we construct a new graph G′  =  (V′ , E′ ) in polynomial 

time with respect to the size of G.

Step 1.  For any ∼ ∈x y V , we insert a median point z (in red) in the edge (x, y) with degree 2, i.e., x ~ z, z ~ y 
and x, y are not neighbors in G′ .

Step 2. We add a Hub (in blue) to connect all median points.
Step 3. We construct a leaf node (in pink) adjacent to the Hub.

We have the following

Claim 2. V is the union of k or fewer cliques if and only if V′  is the union of (k +  1) or fewer 3-boxes.
To verify this claim, we notice the following facts.

1. For any nodes ∼ ∈x y V , in G′  their geodesic distance =′ x yd ( , ) 2G .
2. The subset of nodes not in V is a 3-box.
3. The geodesic distance between leaf node (in pink) and any node in V is 3.

Suppose =A{ }i i
s

1 is a family of cliques of G such that s is minimal one. Suppose there is a minimum 3-box cov-
ering =B{ }i i

t
1 of G′ . We only need to show that

= + .t s 1 (4)

In fact, we have ∪⊂ =V Ai
s

i1 . It follows from the fact (i) that Ai is a 3-box in G′  for any i ≤  s. Applying the fact 
(ii), we see that there exists a 3-box covering with (s +  1) boxes. Hence

≤ + .t s 1 (5)

Figure 12. The reduction process for l = 3. 

Figure 13. The reduction process for l = 4. 
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On the other hand, it follows from fact (i) that ∩ ∈ΛB V{ }i i
 is a family of cliques in G where 

∩Λ = ≠i B V{ : /0}i . Therefore, Λ ≥ s# . We also notice that if the pink point belongs to some Bi0
, by fact (iii), we 

have ∉ Λi0 . Therefore we have

≥ Λ + ≥ + .t s# 1 1 (6)

Then (4) follows from (5) and (6).
For l ≥  4, we have the similar construction during reduction. See Fig. 13 for l =  4. □

Covering inequality, self-similar fractal and Moran fractal
Covering and packing on metric space. Given a compact metric space (X, d), let a δ-ball centered at x0 
be an open ball δ δ= <B x y y x( , ) { : d( , ) }0 , and a δ-cube a cube of Euclidean space with side length δ, a δ-box B 
is a subspace of X such that its diameter less than δ, i.e., d(x, y) <  δ for all x, ∈y B. Denote



δ
δ
δ
δ

⊂

δ

δ

δ

δ

‑
‑
‑
‑

B X
N X
M X
P

: the smallest number of balls needed to cover ,
: the smallest number of boxes needed to cover ,
: the smallest number of cubes needed to cover ( ),
: the maximal number of balls pairwise disjoint,

n

We recall an elementary inequality26 which is important in this paper. We give the proof for the 
self-containedness of this paper.

Lemma 1. ≤ ≤δ δ δB P B2 /2.

Proof. Suppose δ =
δB x{ ( , )}i i

P
1 is a packing family of δ-balls, we conclude that ∪ δ⊂  =

δX B x( , 2 )i
P

i1 . Otherwise, sup-
pose ∪ δ∉  =

δy B x( , 2 )i
P

i1 , for any δ∈y B x( , )i i , we have d(y, yi) ≥  d(y, xi) −  d(yi, xi) ≥  2δ −  δ =  δ. That means 
∩δ δB y B x( , ) ( , )i  is empty for any i. Now, we obtain a new packing family of ∪δ δ =

δB y B x{ ( , )} { ( , )}i i
P

1, which is 
a contradiction. Therefore, we have ∪ δ⊂  =

δX B x( , 2 )i
P

i1 , and thus we have Pδ ≥  B2δ.
Assume δ =

δB x{ ( , )}i i
P

1 is a packing family of δ-balls, then d(xi, xj) ≥  δ for all ≠i j. Notice that on Euclidean space, 
we have d(xi, xj) ≥  2δ for all ≠i j. Suppose there is a minimum covering of δ/2-balls δ =

δB y{ ( , /2){j j
B

1
/2. Now, every 

δ/2-ball contains at most one points in =
δx{ }i i

P
1 since the diameter of a δ/2-ball is less than δand d(xi, xj) ≥  δ for all 

≠i j. On the other hand, every xi must be contained in some δ/2-ball. Therefore, we obtain Pδ ≤  Bδ/2. □
We also have

≤ ≤ ≥ ≥ .δ δ δ δ δ δB N B M B Mand (on )n n
n

/2 2

By the above inequalities, the classical result25,26 on box dimension is that


δ δ δ δ

=
−

=
−

=
−

=
−

.
δ

δ

δ

δ

δ

δ

δ

δ

→ → → →
X N P B Mdim lim log

log
lim log

log
lim log

log
lim log

log
(on )B

n

0 0 0 0

In fact, in the above formula, we take upper box dimension dim or lower box dimension dim when the limit 
does not exist.

Self-similar set on Euclidean space. Let ∪= =K S K( )i
m

i1  be a self-similar set30 on a Euclidean space n, 
where Si is a similarity with ratio ri, i.e., − = −S x S y r x yi i i  for all x, ∈y n. In fact, = +S x r R x b( )i i i i where 

∈r (0, 1)i , ∈b n and Ri is orthogonal. That means any similarity is the compositions of homothety, translation 
and orthogonal transformation.

We say that the open set condition (OSC) holds if there exists a non-empty open set V such that

∪ ∩⊂ = ≠ .= S V V S V S V i j( ) and ( ) ( ) /0 for all (7)i
m

i i j1

Let + + =r r( ) ( ) 1s
m

s
1  and the probability vector = p p r r( , , ) ( , , )m

s
m
s

1 1 . According to ref. 30, there 
is a unique Borel measure μ (self-similar measure) satisfying µ µ= ∑ =

−
p S( )i

m
i i1

1 . When the OSC holds, 
Hutchinson30 obtained that dimH K =  dimB K =  s, and there is a constant C ≥  1 such that for all ∈x K  and r ≤  |K| 
(the diameter of K),

Figure 14. The first two steps of self-similar fractal (model 1). 
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µ≤ ≤ .−C r B x r Cr( ( , )) (8)s s1

A compact set E is said to be Ahlfors s-regular26, if there is a Borel measure μ supported on E satisfying (8). 
That means the self-similar set satisfying the OSC is Ahlfors regular.

Self-similar fractals. We introduce a special self-similar fractal on 2 (Figs 14 and 15). Let

Figure 15. Step 4 of self-similar fractal (model 1). 

Figure 16. OSC holds. 

Figure 17. The first two steps of self-similar fractal of model 2. 

Figure 18. Step 4 of self-similar fractal of model 2. 
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where orthogonal. matrixes =
−( )T 1 0

0 12 , =
−( )T 0 1

1 04 , = −( )T 0 1
1 05 .

Let V be the interior of polygon with vertexes (0, 0), (1/3, 1/3), (2/3, 1/3), (1, 0), (4/9, − 1/9) and (5/9, − 1/9). 
Then (7) holds for m =  5 (Fig. 16).

Taking =S{ }i i 1
4 , we give a self-similar fractal of model 2 (Figs 17 and 18).
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Then the OSC also holds. Let E1, E2 be the self-tree of models 1 and 2 respectively. Then

= =
= = .

E E
E E

dim dim log 5/log 3,
dim dim log 4/log 3

H B

H B

1 1

2 2

Moran fractal and random fractal. Fix an infinite sequence x x1 2  of 1 and 2, we can generate a Moran 
fractal with mixed model. If xt =  1 then we take model 1, else we take model 2. Let

=
= ≤

.p x i t
t

#{ 1 : }
t

i

If =→∞p plim :t t  exists, then the corresponding fractal has fractal dimension

+ −
.

p plog5 (1 ) log 4
log 3

An interesting fact is that this is a deterministic fractal without self-similarity. This is a Moran fractals31.
An alternative is a random fractal such that for each time t, we can choose model 1 in probability p and model 

2 in probability 1 −  p. Then we obtain the above dimension almost surely.

Ahlfors regularity of networks
Proof of Theorem 2. By the definition of Ahlfors regularity, we have df =  s.

Suppose ν≤ ≤−c r B x r cr( ( , ))s s1 . Since the network is covered by Bl balls of radius l, that means

∑ν≤ ≤ ⋅ .
=

V B x l c B l# ( ( , )) ( )
i

B

i l
s

1

l

On the other hand, we have Pl/2 packing balls of radius l/2, which implies

∑ν≥ ≥





⋅












.

=

−V B y l c P l# ( ( , /2))
2i

P

i l

s

1

1
/2

l/2

That means

≥ ≤ ≤− − −B c V l B P c V l( # ) and (2 # ) ,l
s

l l
s s1

/2

here we use the inequality B2δ ≤  Pδ ≤  Bδ/2 in Lemma 1. Therefore,

≤ ≤− − −c V l B c V l( # ) (2 # ) ,s
l

s s1

which implies ∼V B l# / l
s, i.e., dball =  dB =  s.

Proof of Theorem 3. Let A =  (0, 0) and B =  (1, 0). Let = ≤ ≤V S S S x i{ ( ): 1 5t i i i jt1 2
 and ∈x A B{ , }}.

Remark 3. One node may have distinct codings i i x( , )t1  and ′j j x( , )t1  if = ′ S S S x S S S x( ) ( )i i i j j jt t1 2 1 2
. We also 

notice that each node has three codings at most.
Two different nodes x, ∈y V t are neighbors if and only if there exists a word i it1  such that



www.nature.com/scientificreports/

13Scientific RepoRts | 7:41385 | DOI: 10.1038/srep41385

= = = . x S S S a y S S S b a b A B( ) and ( ) with { , } { , }i i i i i it t1 2 1 2

Let dt be the geodesic distance on Gt.
We denote ≈a bi i if there is a constant d >  0 independent of the index i such that d−1bi ≤  ai ≤  dbi.
Now, we will prove the following important

Lemma 2. There is a constant c >  0 independent of t such that

− ≤ ≤ − ∈ .−c y y
y y

c y y y y V
d ( , )

3
for all , (9)

t
t t

1
1 2

1 2
1 2 1 2

Proof. Suppose

= = ′′ ′+ +
   y S S S S S a y S S S S S a( ) and ( )i i i i i i i i i i1 2k k t k k t1 2 1 1 2 1

where ≠ ′+ +i ik k1 1. Notice that

= ′ ′−y y y yd ( , ) d ( , )t t k1 2 1 2

where ′ = −
y S S S y( ) ( )i i i i i

1
k1 2

. Without loss of generality, we assume that ≠ ′i i1 1.

Case 1. If ∩ ′S E S E( ) ( )i i1 1
 is empty, then − ≤ ≤y y Ediam( ) 21 2  and − ≥y y 1/91 2 , and

=    ≤ ≤ .y y3
3

d ((1/3, 0), (2/3, 0)) d ( , ) 3
t

t t
t

1 2

Then (9) follows in this case. □

Case 2. If ∩ ′S E S E( ) ( )i i1 1
 is non-empty, we may assume that ∩ =  ′S E S E( ) ( ) (1/3, 0)i i1 1

 without loss of 
generality.

For D =  (1/3, 0), let θ = ∠y Dy1 2. Then there exists θ π=  ∈arc sin (0, /2)0
3
34

 (Fig. 16) such that θ ≥  θ0 (> 0). 
Now,

θ

θ

θ θ

θ

− = − + − − − ⋅ −

≥ − + − − − ⋅ −

≥ − − − + − − + −

≥




− 

 − + −

=
−

− + −

y y y D y D y D y D

y D y D y D y D

y D y D y D y D

y D y D
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2 cos ( )

2 cos ( )

cos ( ) (1 cos )( )
1 cos
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1

2 ( ) ,

1 2
2

1
2

2
2

1 2

1
2

2
2

0 1 2

0 1 2
2

0 1
2

2
2

0
1 2

2

5
34

1 2
2

which implies

− ≥ . − + − .y y y D y D0 26( )1 2 1 2

We also have − ≤ − + −y y y D y D1 2 1 2 . Therefore, we have

− ≈ − + − .y y y D y D (10)1 2 1 2

On the other hand,

= +y y y D y Dd ( , ) d ( , ) d ( , ) (11)t t t1 2 1 2

by the tree structure. It follows from (10) and (11) that we only need to verify (9) for the pairs (y1, D) and (D, y2). 
By the self-similarity, now we only need to prove the case when ∈y A B{ , }1 .

Without loss of generality, let y1 =  A and =  y S S S S a( )i i2 1 1 k t
 where ≠i 1k . Then

≤ ≤− − +A y3 d ( , ) 3t k
t

t k
2

1

and

≤ − ≤− − −A y E3 3 diam( ),k k
2

( 1)

then (9) follows.
Since the OSC holds, then the self-similar measure μ with respect to the vector (1/5, 1/5, 1/5, 1/5, 1/5) is 

Ahlfors s-regular for s =  log 5/log 3.
It follows from the above lemma and Remark 3 that
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µ
′ ∈ ′ <

≈





∈ − <





≈{ }y G y y l
V

z z y l l#{ : d ( , ) }
#

:
3 5

,t t

t
t

s

t
2

where #Vt =  5t +  1. Therefore, we have

′ ∈ ′ < ≈ .y G y y l l#{ : d ( , ) } (12)t t
s

Notice that the constant in (12) is independent of t. Now, the growing networks {Gt}t are Ahlfors s-regular.

Conclusion
We focus on the NP-completeness of minimum ball-covering problem, propose some heuristic ball-covering 
algorithms such as GOBC, GDBC, VOBC and VGBC, and compare these algorithms with usual RBC algorithm. 
Inspired by the notion of measure on fractal, a natural measure on the finite graph is obtained such that the meas-
ure of every subset is the cardinality of subset. Based on this measure, we revisit the volume dimension df and 
propose the random ball-volume algorithm, which has performance better than the above five minimum cover-
ing algorithms due to the NP-completeness. Applying the notion of Ahlfors regularity from fractal geometry, we 
prove that dB =  dball =  df =  s if the network is Ahlfors s-regular. Finally, we investigate the Ahlfors regularity of a 
class of self-similar trees and random trees which come from the self-similar fractals and Moran fractals respec-
tively. Although we only prove Theorem 3 for self-similar tree of model 1, but our approach can be applied to 
many self-similar trees, Moran tree and random trees. Essentially, our approach is to embed our networks into a 
self-similar (or Moran) fractal (on Euclidean space) satisfying the open set condition, using the Ahlfors regularity 
of corresponding self-similar (or Moran) measure, we can estimate the volume of balls in networks.

References
1. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).
2. Barabási, A. L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).
3. Newman, M. E. J. The structure and function of complex networks. Siam Review 45, 167–256 (2003).
4. Newman, M. E. J. Networks: An Introduction. Oxford, Oxford University Press (2010).
5. Song, C., Havlin, S. & Makse, H. A. Self-similarity of complex networks. Nature 433, 392–395 (2005).
6. Gao, L., Hu, Y. Q. & Di, Z. R. Accuracy of the ball-covering approach for fractal dimensions of complex networks and a rank-driven 

algorithm. Physical Review E 78, 046109 (2008).
7. Guo, L. & Cai, X. The fractal dimensions of complex networks. Chin. Phys. Lett. 26, 088901 (2009).
8. Song, C., Havlin, S. & Makse, H. A. Origins of fractality in the growth of complex networks. Nature Physics 2, 275–281 (2006).
9. Song, C., Gallos, L. K., Havlin, S. & Makse, H. A. How to calculate the fractal dimension of a complex network: the box covering 

algorithm. J. Stat. Mech.: Theor. Exp. 3, 4673–4680 (2007).
10. Gallos, L. K., Song, C. M., Havlin, S. & Makse, H. A. A review of fractality and self-similarity in complex networks. Physica A 386, 

686–691 (2007).
11. Kim, J. S., Goh, K. I., Kahng, B. & Kim, D. A box-covering algorithm for fractal scaling in scale-free networks. Chaos 17, 026116 

(2007).
12. Zhou, W. X., Jing, Z. Q. & Sornette, D. Exploring self-similarity of complex cellular networks: The edge-covering method with 

simulated annealing and log-periodic sampling. Physica A 375, 741–752 (2007).
13. Shanker, O. Defining dimension on a complex network. Mod. Phys. Lett. B 21, 321–326 (2007).
14. Wei, D., Wei, B., Zhang, H., Gao, C. & Deng, Y. A generalized volume dimension of complex networks. J. Stat. Mech.: Theor. Exp. 10, 

P10039 (2014).
15. Andrade, J. S. Jr., Herrmann, H. J., Andrade, R. F. & Da Silva, L. R. Apollonian networks: Simultaneously scale-free, small world, 

Euclidean, space filling, and with matching graphs. Phys. Rev. Lett. 94, 018702 (2005).
16. Zhou, T., Yan, G. & Wang, B. Maximal planar networks with large clustering coe cient and power-law degree distribution. Phys. Rev. 

E 71, 046141 (2005).
17. Zhang, Z., Zhou, S., Fang, L., Guan, J. & Zhang, Y. Maximal planar scale-free Sierpinski networks with small-world effect and power 

law strength-degree correlation. Europhysics Letters 79, 38007 (2007).
18. Zhang, Z., Zhou, S., Su, Z., Zou, T. & Guan, J. Random Sierpinski network with scale-free small-world and modular structure. Eur. 

Phys. J. B 65, 141–147 (2008).
19. Guan, J., Wu, Y., Zhang, Z., Zhou, S. & Wu, Y. A unified model for Sierpinski networks with scale-free scaling and small-world effect. 

Physica A 388, 2571–2578 (2009).
20. Zhang, Z., Zhou, S., Chen, L., Yin, M. & Guan, J. The exact solution of the mean geodesic distance for Vicsek fractals. J. Phys. A: 

Math. Theor. 41, 485102 (2008).
21. Liu, J. & Kong, X. Establishment and structure properties of the scale-free Koch network. Acta Phys. Sinica 59, 2244–2249 (2010).
22. Chen, R., Fu, X. & Wu, Q. On topological properties of the octahedral Koch network. Physica A 391, 880–886 (2012).
23. Song, W. M., Di Matteo, T. & Aste, T. Building complex networks with Platonic solids. Phys. Rev. E 85, 046115 (2012).
24. Chen, J., Gao, F., Le, A., Xi, L. & Yin, S. A small-world and scale-free network generated by Sierpinski tetrahedron. Fractals 24, 

1650001 (2016).
25. Falconer, K. J. Fractal geometry: mathematical foundations and applications. Chichester, John Wiley & Sons Ltd. (1990).
26. Mattila, P. Geometry of sets and measures in Euclidean spaces. Cambridge, Cambridge University Press (1995).
27. Cook, S. A. The complexity of theorem proving procedures. In: Proceedings, Third Annual ACM Symposium on the Theory of 

Computing (Eds), ACM (1971).
28. Karp, R. M. Reducibility among combinatorial problems. In: Complexity of Computer Computations (Eds), Plenum (1972).
29. Kann, V. On the approximability of NP-complete optimization problems. PhD thesis, Department of Numerical Analysis and Computing 

Science. Stockholm, Royal Institute of Technology (1992).
30. Hutchinson, J. E. Fractals and self-similarity. Indiana University Mathematics Journal 30, 714–747 (1981).
31. Wen, Z. Y. Moran sets and Moran classes. Chinese Sci. Bull. 46, 1849–1856 (2001).



www.nature.com/scientificreports/

1 5Scientific RepoRts | 7:41385 | DOI: 10.1038/srep41385

Acknowledgements
The authors wish to express their thanks to the anonymous referee for his/her patience and carefulness to improve 
the quality of the manuscript. The work is supported by National Natural Science Foundation of China (Nos 
11371329, 11471124), NSF of Zhejiang Province (No. LR13A010001) and Scientific Research Fund of Zhejiang 
Provincial Education Department (No. Y201326678) and Philosophical and Social Science Planning of Zhejiang 
Province (No. 17NDJC108YB). The work is also supported by K.C. Wong Magna Fund in Ningbo University.

Author Contributions
L.X. designed the research. L.X., Qin W. and Lihong W. wrote the manuscript. Lihong W., J.C., Songjing W., L.B., 
Z.Y. and L.Z. collected the data, L.X. and Qin W. provided the proofs, Liong W. prepared Figs 1, 2, 3 and 6. All 
authors discussed the results and reviewed the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Wang, L. et al. On the Fractality of Complex Networks: Covering Problem, Algorithms 
and Ahlfors Regularity. Sci. Rep. 7, 41385; doi: 10.1038/srep41385 (2017).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	On the Fractality of Complex Networks: Covering Problem, Algorithms and Ahlfors Regularity
	Introduction
	Fractal dimensions and covering problems
	Ball-covering algorithms
	Random ball-volume algorithm
	Ahlfors regularity of networks
	Ahlfors regular trees
	NP-completeness of minimum covering problems
	Proof of Theorem 1

	Covering inequality, self-similar fractal and Moran fractal
	Covering and packing on metric space
	Self-similar set on Euclidean space
	Self-similar fractals
	Moran fractal and random fractal

	Ahlfors regularity of networks
	Proof of Theorem 2
	Proof of Theorem 3

	Conclusion
	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                On the Fractality of Complex Networks: Covering Problem, Algorithms and Ahlfors Regularity
            
         
          
             
                srep ,  (2017). doi:10.1038/srep41385
            
         
          
             
                Lihong Wang
                Qin Wang
                Lifeng Xi
                Jin Chen
                Songjing Wang
                Liulu Bao
                Zhouyu Yu
                Luming Zhao
            
         
          doi:10.1038/srep41385
          
             
                Nature Publishing Group
            
         
          
             
                © 2017 Nature Publishing Group
            
         
      
       
          
      
       
          © 2017 The Author(s)
          10.1038/srep41385
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep41385
            
         
      
       
          
          
          
             
                doi:10.1038/srep41385
            
         
          
             
                srep ,  (2017). doi:10.1038/srep41385
            
         
          
          
      
       
       
          True
      
   




