
1Scientific Reports | 7:40982 | DOI: 10.1038/srep40982

www.nature.com/scientificreports

Center of mass in complex 
networks
Chuanji Fu1, Yachun Gao1, Shimin Cai2, Hongchun Yang1 & Chun Yang3

Network dynamics is always a big challenge in nonlinear dynamics. Although great advancements 
have been made in various types of complex systems, an universal theoretical framework is required. In 
this paper, we introduce the concept of center of ‘mass’ of complex networks, where ‘mass’ stands for 
node importance or centrality in contrast to that of particle systems, and further prove that the phase 
transition and evolutionary state of the system can be characterized by the activity of center of ‘mass’. 
The steady states of several complex networks (gene regulatory networks and epidemic spreading 
systems) are then studied by analytically calculating the decoupled equation of the dynamic activity of 
center of ‘mass’, which is derived from the dynamic equation of the complex networks. The limitations 
of this method are also pointed out, such as the dynamical problems that related with the relative 
activities among components, and those systems that consist of oscillatory or chaotic motions.

There is growing fascination with behaviors of the high-dimensional complex system1–6, particularly the phase 
transitions in these systems with huge components interacting, which usually described by the coupled dynami-
cal units on the complex network, for example, epidemic spreading7, neuronal networks8, the Kuramoto model9, 
systems of self-driven particles10, percolation or cascading procedure11–17, Ising model18–23 and ecosystems24–26 
etc. These dynamical systems are usually in different states under different environmental conditions, such as the 
healthy and endemic states in epidemic spreading model, free flow and congestion states in transportation sys-
tems or communication networks, non-coherence and coherence states in synchronization systems, survival and 
extinction states in ecosystems. Therefore, a large number research effort has been devoted to understanding the 
dynamic behaviors of these systems, and obtaining the ways to foresee the universal existence critical transitions 
phenomenon27–37.

One significant issue is the interplay between phase transition and network topology, and current theoretical 
achievements are mainly obtained based on mean-field theory and renormalization group theory3–5,7,27. However, 
these theories are still too complicated to give accurate approximation in heterogeneous coupled systems, in 
which the interacting complex networks are usually highly heterogenous, i.e., degree distribution is very inho-
mogeneous among the components(nodes), although a few achievements are obtained to deal with these heter-
ogeneous structure28.

Recently, Gao et al.1 proposed an elaborate method, coding the microcosmic interactions information 
between components into a single parameter, therefore the multi-dimensional coupled nonlinear equations are 
simply reduced into an 1D equation, which could be easily used to predict the universal phase transitions of the 
complex system. This method provides an analytical framework to study dynamic behaviors and phase transitions 
of the complex system. Nevertheless, although the validity is verified by amount of experiments, it still remains to 
be given a clear physical interpretation. Moreover, in order to promote this method to generalized dynamical pro-
cesses on networks other than resilience, it should be to figure out the applicability and limitation of the reduced 
1D dynamical equation.

Here we give a clear physical interpretation by introducing the concept of center of ‘mass’ in complex systems. 
And it is easy to find that the reduced 1D dynamical equation is actually the equation of the motion of the center 
of ‘mass’. This method captures the whole translational behavior of the dynamical system, which is the origin of 
universality. Therefore, it is no longer applicable to the dynamical problems that related with the relative activities 
among components such as coherence and synchronization of complex systems. Also, it is valid only in the case 
that the interaction functions between nodes have symmetric component.
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Results
Center of ‘mass’ in complex network.  For a system with N components(nodes), the dynamic process can 
be expressed by differential equation of activity xi of node i as
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where Aij denotes the weighted adjacent matrix, representing the direction and strength of the interaction. 
Accordingly, si

in and si
out, the ingoing and outgoing weighted degree of node i, are defined as = ∑s Ai

in
j ij and 

= ∑s Ai
out

j ji, respectively. G(·,·) is the pairwise interaction, which is determined by fundamental interaction 
rule of the specified system and usually has the same form for any pairs of nodes as in this paper. The first term 
F(xi) on the right-side hand represents self-dynamics of node i without influences from other nodes, while the 
second term comes from interactions between i and its neighbours.

We treat the dynamical system on the network as a system of particles, where the nodes and edges of complex 
networks are regarded as particles and interactions of the system, respectively. In heterogenous complex net-
works, centrality and properties of nodes usually varies from each other since permutation symmetry breaks, we 
therefore could introduce a parameter to characterize this distinctiveness of node i, denoted as wi, which reflects 
the difficulty of its activity xi converted by other nodes, resembling the concept of mass in Newtonian mechan-
ics as intrinsic properties of a particle. The specific definition of wi is not unique, depending on the topological 
structural of studied networks. Generally speaking, it characterize the node’s centrality(i.e., node importance) in 
complex networks, such as degree centrality, betweenness centrality, eigenvector centrality, etc.

The wi and activity xi can be regarded as the ‘mass’ and ‘velocity’ of the ith node(particle), respectively. Thus, 
the equation of motion for the ith particle can be written as
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where wiF(xi) stands for the external force, and the second term is the total internal force acting on the ith par-
ticle due to the other particles of the system. It is noted that the internal force fij =​ wi Aij G(xi, xj) has slightly 
different from actual physical system, which usually does not obey Newton’s Third law, but it can be divided into 
anti-symmetrical and symmetrical parts as,
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Following the research framework of Newtonian mechanics, it is convenient to study dynamics of the center of 
mass when describing the translational movement of the whole system. The equation of the motion for the center 
of mass can be obtained by summing over all particles,
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where = ∑ =M wi
N

i1  is the ‘mass’ for the center of ‘mass’ (thus also the entire ‘mass’ of the system), whose velocity is 
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. The ‘position’ of center of ‘mass’ is not concerned, but one can always get the position by integration 
of velocity x, thus the center of mass is actually in the state space. In contrast to the anti-symmetrical part of internal 
forces, the symmetrical part of internal forces, which does not obey Newton’s Third Law, has effect on the motion 
of center of mass.

The steady state of the center of ‘mass’, which captures the whole translational behavior of the dynamical sys-
tem, can be changed by the coupling strength or structure precisely because of the symmetrical part of internal 
forces. Therefore, it can universally describe the change of the system’s state with the various environment. On 
the other hand, relative motion between any two particles cannot be reflected by the motion of center of ‘mass’, 
thus such method is not valid for the problems related with relative motion like coherence and synchronization 
phenomena. For example, it can not describe the phase transition between non-coherence and synchronization 
states of the Kuramoto model, as discussed in ref. 9.

In general, any relevant translational properties in complex systems can be described by the motion of center 
of ‘mass’, including oscillating and chaotic motion. However, it is very difficult to get any analytical results from 
equation (4), since it depend on the state of motion of all particles. To obtain certain analytical results, it can 
be decoupled in the following procedure. With Taylor series expansion, the two terms in the right-side hand of 
equation (4) can be expressed as
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Based on the definition of xc, the first-order term of equation (5) ∑ ′ −= w F x x x( )( )i
N

i c i c1  equals zero. Define 
β = ∑ = w sc M i

N
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in1
1 . Then the zero-order approximation of equation (4) yields,
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This equation is the generalized version of the equation (7) in ref. 1, where xef f is a special case of xc with wi 
being chosen as the outgoing weighted degree si

out, the most commonly used characterization of node impor-
tance. We show here this equation has an accuracy of zero-order approximation, but it has merits of brief descrip-
tion by mapping multi-dimensional complex system into one-dimension description.

Center of ‘mass’ in gene regulatory systems.  Directly from this equation, one can describe the whole 
motion of the global system, i.e., the common evolutionary component of all nodes, by the state of center of ‘mass’. 
However, this method is an zero-order Taylor approximation, to test and verify the above deduction and idea, we 
take the same example studied in ref. 1, of the dynamics of gene regulatory networks which evolves following the 
Michaelis-Menten equation
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Here we set B =​ 1, f =​ 1 and h =​ 2, and Aij is directed and weighted, including the influence of both pro-
moters and inhibitors. In order to investigate the influence of network topology, both Erdös-Rényi(ER)38 and 
Barabási-Albert(BA)39 scale-free networks with uniform weights are studied. The steady state of center of ‘mass’ 
xc of the gene regulatory network versus various value of βc can be obtained by solving equation (8) with different 
values of the weight, as the dots shown in Fig. 1. The results indicate that for ER random networks with various 
average degrees, all transition curves almost collapse into the theoretical results (see the left two graphs in Fig. 1), 
and the results are valid regardless of the network size from Fig. 1(a) and (c).While for BA scale-free network, 
the theoretical transition points are inconsistent with experimental results, and offset also exists in networks with 
different average degrees or different sizes(see the right two graphs in Fig. 1). The difference between theoretical 
and simulated results for BA network comes from the zero-order approximation in equation (7), due to the large 
variance of {xi, i =​ 1, 2, …​, N}. Therefore, one should be very cautious with the accuracy of the theoretical result, 

Figure 1.  Phase transition in gene regulatory networks, with (a) ER random networks with size of N =​ 1000,  
(b) BA scale-free networks with size of N =​ 1000, (c) ER random networks with size of N =​ 2000 and (d) BA scale-
free networks with size of N =​ 2000. The mass wi is the outgoing weighted degree si

out of node i in this figure.



www.nature.com/scientificreports/

4Scientific Reports | 7:40982 | DOI: 10.1038/srep40982

which is highly contingent on the network topology. Most recently, Tu et al.40 give a mathematical condition when 
the method may be applied from error analysis.

In order to find out how average degrees 〈​k〉​ effect on the results, we study the threshold value βc
T of phase 

transition as a function of 〈​k〉​ in three classes of networks with different structures. In Fig. 2(a), ER and BA net-
works are compared. It is shown that the phase transition threshold almost keeps constant in ER network, 
although a slightly rising at small 〈​k〉​ exists, which is in accordance with Fig. 1(a). In contrast, βc

T of BA scale-free 
network first increase significantly at 〈​k〉​ =​ 10, after which it decrease slowly when the average degree 〈​k〉​ 
increases. Moreover, the threshold value βc

T of the BA network are higher than ER network for all 〈​k〉​, because of 
the higher heterogeneity of the topology of BA network.

We further investigate the effect of heterogeneity on the precision of equation (7) by constructing scale-free 
network with tunable degree exponent γ. Figure 2(b) gives the threshold value βc

T of phase transition with differ-
ent power law exponent of the degree distribution versus various average degrees. As we can see, the threshold 
value βc

T all increase monotonically to a constant value for various exponents with the increase of the average 
degree, and has higher value with the more heterogeneous network. It stems from the heterogeneity of the 
scale-free network, thus the zero-order approximation of the analytical result is insufficient for the actual system. 
It is also noted that the value of βc

T for networks with 〈​k〉​ 〉​ 15 are almost the same, indicating that although the 
precision of zero-order approximation of equation (7) is not enough, xc can be selected as a good order parameter. 
All these results indicate that the phase transition of the complex system depends on more than one parameter βc. 
And in most cases, it is even difficult to determine the dimension of the control parameter space, which makes it 
an challenging but attractive work.

It is important to highlight that the selection of wi is non-exclusive, hence other centrality should also be 
available, and the optimal centrality could vary in different complex systems, depending on the specific dynamical 
problem. In Fig. 3, similar experiments are carried out for wi representing betweenness centrality. It shows that 
universality also holds for ER random networks, but there is a deviation of predicted results from experimental 
results, indicating that outgoing weighted degree is more efficient in the gene regulatory networks.

Center of ‘mass’ in epidemic spreading dynamics.  In fact, the approximation equation (7) has 
more general application in other dynamical systems than the problem of resilience. As another example, the 
susceptible-infected-susceptible(SIS) model, which describe the spread of the disease among populations, can 
also certify the effectiveness of the this method. SIS model has been extensively studied with several theoretical 
approaches ranging from approximate mean-field theories to exact methods, yet as we will see, the same epidemic 
threshold of SIS model can be easily obtained based on the approximation method. The dynamical equation for 
the SIS model, under the approximation of individual-based mean-field theory, can be written as following,

∑λ= − + −
=

dx
dt
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(9)
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where xi(t) indicates the probability that a node is infected at time t, and λ is the effective transmission rate. Let 
=w si i

out, and in unweighted network si
out is equivalent to ki, the node degree, thus the equation (9) can be 

reduced as following,

Figure 2.  The threshold value βc
T of the phase transition versus various average degrees in gene regulatory 

networks, with (a) ER random and BA scale-free networks and (b) scale-free networks with various degree 
exponent γ. The mass wi is the outgoing weighted degree si

out of node i in this figure. All the network size is 
N =​ 1000, and the simulations are averaged over 50 repetitions in each case.
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Hence a transcritical bifurcation occurs at λ = 1k
k

2
, which gives the same epidemic threshold λ =c

k

k2
 as 

obtained according to heterogeneous mean-field theory41.
Notice that recent works42,43 having improves the precision of epidemic threshold values, which is not surpris-

ing, since these results are obtained by considering the factors that is not included in zero-order approximation 
but in high-order terms.

Center of ‘mass’ in chaotic systems.  According to above examples, we have proved the suitability of 
approximate analytical expression of center of ‘mass’ in dynamic systems, however, this method should be 
inspected very carefully when extended to other dynamic processes because they may have particular evolutional 
properties. The equation (7) is a first-order autonomous dynamic system. The behaviors of the first-order auton-
omous system are very limited. All trajectories either monotonically approached a fixed point, or diverged to ±​
∞​. Therefore, the approximate equation (7) can not describe those systems that consist of oscillatory or chaotic 
solutions.

Nevertheless, the motion of center of ‘mass’ can be arbitrary, since it can monotonically tend to the steady 
state, periodic, and even chaotic motion. Therefore, center of ‘mass’ can be selected as a good order parameter in 
these systems. As an instance, we study the chaotic Rössler system44
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This is a 3-Dimensional system, which could be mapped into a simple network with only 3 nodes, as seen in 
Fig. 4(a). We examine this model for parameter values a =​ b =​ 0.2 and a series values of c, in order to reveal the 
phase transition of orbits. Let = ∑

∑
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=
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w
i i i

i i
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3

 with =w ki i
out, we plot all the local maxima xc on the attractor above 

each values of c, where the number of different maxima xc tells us the period of the attractor, as shown in Fig. 4(b). 
The bifurcation diagram perfectly captures the phase transition of the orbits. We can clearly see the 
period-doubling bifurcation route to chaos and the large period-3 window with increasing c, verifying the effec-
tiveness of mass of center as an order parameter in the characterization of phase transition in chaotic systems.

Discussion
In this paper, we introduce the concept of center of ‘mass’ for system on complex network, where ‘mass’ stands 
for node importance or centrality. Consequently, the dynamics and phase transition of the system can be char-
acterized by the activity of center of ‘mass’, which describes the co-movement part of the whole complex system, 
instead of the dynamical problems that related with the relative activities among components such as coherence 

Figure 3.  Phase transition in gene regulatory networks, with (a) ER random networks and (b) BA scale-free 
networks. The mass wi is betweenness of node i in this figure, and all the network size is N =​ 1000.
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and synchronization of complex networks. We also show that only symmetrical component of the interactions 
has effect on the dynamics of center of mass.

By zero-order Taylor approximation, the nonlinear dynamic equation of center of mass is reduced to a 1D 
first-order autonomous system, from which the steady state and evolutionary dynamics of center of mass can be 
solved out. This equation is the generalized version to the effective 1D equation in Gao’s paper, and we give a clear 
physical interpretation, also further point out the limitations of this method. The result indicate that the precise 
is good for the homogeneous networks, but not sufficient for the heterogeneous networks. In addition, we found 
that in different topology of networks, there are other alternatives than degree when choosing centrality. It may 
shed light on establishing a bridge between classical mechanics and complex systems.
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