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Remote cooling by a novel thermal 
lens with anisotropic positive 
thermal conductivity
Fei Sun1 & Sailing He1,2

A novel thermal lens that can achieve a remote cooling effect is designed by transformation 
thermodynamics. The effective distance between the separate hot source and cold source is shortened 
by our shelled thermal lens without any negative thermal conductivity. Numerical simulations verify 
the performance of our thermal lens. Based on the effective medium theory, we also propose a practical 
way to realize our lens using two-layered isotropic thermal media that are both found in nature. The 
proposed thermal lens will have potential applications in remote temperature control and in creating 
other thermal illusions.

Transformation Optics (TO) can be utilized to design special electromagnetic media with pre-designed functions 
by using a coordinate transformation from the virtual space to the real space1–3. Many novel optical/electromag-
netic devices have been designed by TO, including invisibility cloakings4–6, novel lenses7,8, field rotators9–11, con-
centrators12, illusion optical devices13,14, and others. Based on the heat equation’s form-invariant property under 
coordinate transformations, transformation thermodynamics (TT) was first proposed by Guenneau, S. et al.15.  
In recent years, manipulating heat flux by a coordinate transformation method has attracted much attention and 
developed many novel thermal devices, e.g. thermal cloakings16–18, concentrators for heat collections19,20, heat 
hyper-lenses for heat focusing21, heat hoses22, heat flux rotators23, thermal diodes24, heat illusion devices25–29, 
novel thermal lenses30,31, devices for a heat directional transmission32, etc.

In 2016, our group proposed a novel thermal lens based on spatial translations and folding coordinate trans-
formations together to achieve a remote heating/cooling operation on temperature distribution31. However, it is 
still challenging to realize the proposed thermal lens due to the negative thermal conductivity introduced from 
the spatial folding transformation. In some applications, we need a remote cooling technique. In some applica-
tions, we want to achieve a very high temperature in an given region (the target region) while not influencing 
its neighboring area (i.e. the temperature is low around the target region). We need to use a remote cooling 
technique to cool down the temperature around the target region but not influencing the hot target region. For 
example, in laser tumor therapy, we hope normal cells around the targeted tumor cell are not killed by the high 
temperature produced by the laser. In this case, we need a cooling technique to keep the temperature in normal 
cells relatively low. The cooling source cannot be set inside the human body, which means that a remote cooling 
technique is required. Such a remote cooling can also be applied to cool down the neighboring area around an 
inevitable hot site through a remote cold source. In this study, we use the spatial translation and compression 
transformations together to achieve a remote cooling effect using a thermal lens with homogeneous positive 
anisotropic thermal conductivity.

Methods
Figure 1(a) shows the basic function of our thermal lens. The whole lens is composed of five different regions of 
media with homogenous anisotropic thermal conductivity (indicated by different labels). The hot source (a red 
star) and cool source (blue star) are set in the left and right sides of the region V, respectively, within the shelled 
structure (i.e. our lens). The function of this shelled lens is to reduce the effective spatial distance between the hot 
source and the cool source, which makes the cool source effectively much closer to the hot source than their real 
distance. The effective cooling region is the region outside the shelled structure ABCD.
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We now show how to design the proposed lens using TT. Figure 1(b) and (c) show the corresponding rela-
tion between the reference space and the real space. The quantities with and without primes are those in the real 
space and the reference space, respectively, throughout the paper. Two triangular regions, B1A1D1 and B1′​C1D1′​,  
in real space are spatially translated from B0A0D0 and B0′​C0D0′​, respectively, in the reference space. The ther-
mal materials in these two regions are still the same as the background medium due to the spatial translational 
transformation. The middle region (i.e. Region V) and the shelled regions (i.e. regions I–IV) are compressed and 
stretched, respectively, from the real space to the reference space. The whole coordinate transformation can be 
summarized as:
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0 . As shown in Fig. 1(c), a, b and d determine 
the geometrical size of our shell in the real space. Note that sgn is the sign function, which is defined by:
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The thermal conductivity in each region can be calculated with the help of TT15. Only the regions I–V in 
Fig. 1(a) or (c) have thermal conductivity different from the background medium (i.e. other regions without 
labels) with a constant isotropic thermal conductivity κ0. The required thermal conductivity in the region V is 
given by:

Figure 1.  (a) The basic structure of our thermal lens. Five regions (labeled by I, II, III, IV and V) comprise 
our thermal lens with homogenous anisotropic thermal media. All other regions are the background medium. 
The hot source (red star) and cool source (blue star) are set in the background medium. The coordinate 
transformation between the reference space (b) and the real space (c). In (c), quadrangles BB1A1A, BB1′​C1C, 
DD1′​C1C, and DD1A1A correspond to regions I, II, III and IV. The polygon BB1D1DD1′​B1′​ corresponds to  
region V.
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The required thermal conductivity in the other four regions I–IV can be summarized by:
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. The distance between the two triangular regions B1A1D1 and B1′​
C1D1′​ in the real space is d, which is also the thickness of the region V. The function of the whole coordinate trans-
formation (i.e. the effect of the transformation medium) is to shorten the effective distance between these two 
regions. Actually, the effective distance between these two regions is d0 if the other regions I–V are filled by our 
lens described by Eqs (3) and (4). Since the effective distance between the two triangular regions is shortened (e.g. 
d0 « d), the cooling effect would be improved if we set a hot source and a cold source at any position in these two 
triangular regions, separately.

We use Dr to indicate the real distance between the hot and cold sources, which includes the distance from the 
two sources to the edge of region V and the physical thickness of region V (see Fig. 1(a)). Since the function of our 
lens is to shorten the effective distance between the two triangular regions B1A1D1 and B1′​C1D1′​ (i.e. the thickness 
of region V), the effective distance between the hot and cold sources are De =​ Dr −​ d +​ d0.

Results
Numerical simulations are given for a hot point source (375 K) and a cold point source (275 K) separated by a 
fixed distance Dr =​ 12 cm with and without our lens, respectively, in Fig. 2(a) and (d). The temperature distribu-
tion outside our lens is much lower than the case in which the lens is removed, which means that the cooling 
effect is greatly improved by introducing our lens.

We could expect that if d0 is smaller, the effective spatial distance between the hot source and the cold 
source is smaller (De =​ Dr −​ d +​ d0), which indicates a better cooling effect. As shown in Fig. 2, the cooling effect 
improves as d0 becomes smaller while keeping the physical distance between the hot source and the cold source 
Dr unchanged.

Another interesting aspect is that, if the real distance between the hot source and the cold source is unchanged, 
and only the parameter d in Eq. (4), which determines the thermal media of our thermal lens, is changed (other 
parameters a, b, d0 do not change), the performance of our thermal lens also changes. Considering the effective 
distance between the hot and cold sources are De =​ Dr −​ d +​ d0, and thus the larger d, the better cooling effect 
(see Fig. 3). Note that d cannot be too much larger, given that the geometrical size of the whole lens is fixed (i.e. 
d/2 +​ a <​ b).

Experiment design.  Since thermal conductivity in each region of the whole lens is positive, it can be realized 
by naturally-available materials. We design a feasible thermal lens with layered isotropic thermal materials based 
on the effective medium theory. The background medium is chosen to be thermal epoxy with a constant thermal 
conductivity of 3.4 W/(m·K). The size of the lens is chosen as d =​ 20 cm, d0 =​ 1 cm, a =​ 5 cm, b =​ 20 cm. We use two 
layered isotropic thermal media to achieve an effective anisotropic thermal conductivity:
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where κA and κB are thermal conductivities of two isotropic media. κ\\ and κ⊥ are the effective anisotropic ther-
mal conductivities along and orthogonal to the direction of interface between two isotropic media, respectively. fA 
and fB are the filling factor of the medium A and the medium B, respectively, which satisfy fA +​ fB =​ 1.

For the region V in the middle of our device, we choose copper with thermal conductivity of 394 W/(m·K) 
as the medium A. κ\\ and κ⊥ are determined by parameters d and d0 (i.e. the real distance and the effective dis-
tance between the hot source and the cold source, respectively), and calculated by Eq. (3): κ\\ =​ 68 and κ⊥ =​ 0.17. 
The required filling factor of the medium A and the thermal conductivity of the medium B are two unknown 
quantities which can be solved from Eq. (5): fA =​ 17.2% and κB =​ 0.141 W/(m·K). We can use PVC with thermal 
conductivity of 0.14 W/(m·K) as the medium B.

For the Regions I, II, III and IV, we only need to design two layered-media in Region I, and media in other 
regions can be obtained by the symmetry transformation due to the symmetry of the whole lens with respect to 
the x′​ and y′​ axes (see the structure in Fig. 4(a)). The direction of the principal axis of the anisotropic medium in 
Region I can be obtained by diagonalizing the matrix in Eq. (4) 33:
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Figure 2.  The finite element method (FEM) simulation results. We plot the temperature distribution outside 
our thermal lens (colored white): (a)–(c) with our thermal lens, and (d) without our thermal lens. The outer 
boundary is set by the room temperature (295 K). We set one hot point source with fixed temperature 375 K 
and a cold point source with fixed temperature 275 K inside our thermal lens (marked by red and blue stars, 
respectively). The background medium is chosen as a thermal epoxy with a conductivity of 3.4 W/(m·K), a 
mass density of 3.1e3 kg/m3, and a thermal capacity of 550 J/(kg·K). The conductivity of our thermal lens is 
given by Eqs (3) and (4) with d =​ 10 cm, a =​ 10 cm, and b =​ 20 cm. From (a) to (c), d0 changes from 0.1 cm to 
5 cm, as marked below each figure. The real distance between the hot source and the cold source is fixed at 
Dr =​ 12 cm. (e) The relation between the temperature at a fixed point outside the lens (i.e. 20 cm away from the 
hot source) and the parameter d0. As d0 becomes smaller, the temperature of the fixed point becomes lower (i.e. 
it approaches 295 K, the fixed temperature of the boundary of the whole calculation domain), which indicates a 
better cooling effect with the lens.
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χ-γ system is the local principal axis system, in which the anisotropic thermal conductivity in Eq. (4) can be 
expressed by a diagonal matrix. For the thermal lens with the same parameters as in Fig. 2, the angle between 

Figure 3.  The finite element method (FEM) simulation results. We plot the temperature distribution outside 
our thermal lens (colored white): (a)–(c), d changes from 10 cm to 18 cm as marked below each figure. We keep 
other parameters unchanged d0 =​ 1 cm, a =​ 10 cm, and b =​ 20 cm. The real distance between the hot source and 
the cold source is unchanged (i.e. Dr =​ 12 cm). Other settings are the same as in Fig. 2.

Figure 4.  (a) The structure of the thermal lens composed of layered media. In the middle region, two media 
are copper (colored red) and PVC (colored green). In other four regions, the two media are bismuth (colored 
yellow) and fused silica (colored purple). (b)–(d) are numerical simulation results by finite element method. 
We plot the temperature distribution outside our lens. (c) the theoretical lens without layering and (d) the lens 
composed of the layered media in (a). (b) is the case in which the lens is removed. The red star and blue star 
indicate the locations of the hot source and the cold source, respectively. All other settings are consistent with 
Fig. 2.
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the x′​-axis and χ-axis is θ =​ 71[deg], and the two principal values of thermal conductivity are 1.6 W/(m·K) and 
2.9 W/(m·K) (i.e. κ\\ =​ 2.9 and κ⊥ =​ 1.6). We choose bismuth, with thermal conductivity of nearly 8 W/mK, as 
medium A. By solving Eq. (5), we can obtain the required thermal conductivity of the medium B and the filling 
factor: κB =​ 1.275 W/(m·K) and fA =​ 24.2%. Thus, fused silica with thermal conductivity of 1.32 W/(m·K) can 
be used as medium B34. The structure of the lens is shown in Fig. 4(a). Numerical simulation results of the lens 
composed of a two-layered medium are given in Fig. 4(d), which shows good cooling effect compared to the case 
where the lens is removed in Fig. 4(b).

We should note that the purpose of our design is to cool down the region outside the shell ABCD in Fig. 1(c) by 
our lens. We only plot the temperature distribution outside the shell in all our simulations (e.g. in Figs 2, 3 and 4).  
If we add the temperature distribution of other regions (e.g. inside our lens), we have to rescale the colorbar of the 
figures and consequently it will be hard to see the difference of the temperature distribution outside the shell for 
the cases with and without the lens from the figures.

Conclusion
By combining spatial translations and compression transformations, we designed a novel thermal lens for a 
remote cooling function. The hot source and the cold source can be separated by a certain distance while keeping 
a good cooling effect by applying our thermal lens around them. Based on the effective medium theory, we also 
design a specific lens composed of a layered isotropic thermal medium that is available in nature. Numerical sim-
ulations verify the function of the proposed lens.
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