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Susceptible-infected (SI) and susceptible-infected-susceptible (SIS) are simple agent-based models 
often employed in epidemic studies. Both models describe the time evolution of infectious diseases 
in networks whose vertices are either susceptible (S) or infected (I) agents. Precise estimation 
for disease spreading is one of the major goals in epidemic studies but often restricted to heavy 
numerical simulations. Analytic methods using operatorial content are subject to the asymmetric 
eigenvalue problem, limiting the use of perturbative methods. Numerical methods are limited to small 
populations, since the vector space increases exponentially with population size N. Here, we propose 
the use of the squared norm of the probability vector to obtain an algebraic equation, which permits 
the evaluation of stationary states in Markov processes. The equation requires the eigenvalues of 
symmetrized time generators and takes full advantage of symmetries, reducing the time evolution to 
an O(N) sparse problem. The calculation of eigenvalues employs quantum many-body techniques, while 
the standard perturbation theory accounts for small modifications to the network topology.

One of the main goals in epidemics studies is to correctly predict the time evolution of a given disease within a 
population1. The forecasting procedure, which may take numerical or analytical formulations, often encounters 
obstacles due to heterogeneous populations and the limited knowledge of the disease spreading dynamics. For 
instance, ambiguous symptoms among distinct diseases may under or overestimate total reported infections, 
leading to incorrect estimates of transmission rates. Several epidemic models have been tailored to better grasp 
general behaviours in disease spreading2,3. Among them, the simplest one is the susceptible-infected-susceptible 
(SIS) model. The SIS model is a Markov process and describes the time evolution of a single infectious disease in 
a population formed by susceptible (S) and infected agents (I). The infected agents carry the disease pathogens 
and may transmit them to susceptible agents with constant transmission rate β. The model also contemplates cure 
events for infected agents with constant cure rate γ, introducing competition between cure and infection events.

There are two approaches often employed to mimic the disease spreading dynamic in populations with fixed 
size N: compartmental and stochastic ones4. In the compartmental approach, relevant properties derived from 
either infected or susceptible agents are well-described by averages, a direct result from the random-mixing 
hypothesis5,6. This enables one to derive non-linear differential equations to match the evolution of disease 
throughout the population. For instance, the number of infected agents in the compartmental SIS model, n(t), 
satisfies the following differential equation:

β γ= − −
dn
dt N

k
N

n N n n( ) , (1)

with 〈 k〉  =  N −  1 and R0 =  β/γ is the basic reproduction number7. For homogeneous populations this is the 
expected behaviour. However, real agents differ from each other, leading to a heterogeneous population, in 
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disagreement with the random-mixing hypothesis8. Stochastic approaches may also be further classified accord-
ing to their descriptive variable. Similar to the compartmental model, the mesoscopic interpretation usually 
describes the time evolution of global variables9,10; in addition, it allows for time fluctuations. Adding another 
layer of detail, the microscopic approach describes disease evolution of individual agents depending on their 
connections, introducing time fluctuations at the agent level.

Central to the microscopic stochastic approach is the underlying network used to reproduce the heterogeneity 
typically found within populations5. In the network scheme, agents are represented by vertices and their connec-
tions are distributed according to the adjacency matrix A for the assigned network configuration11. In this case, it 
is well-accepted that the mean degree 〈 k〉  in Eq. (1) describes the averaged process3. Different from the 
random-mixing hypothesis, non-trivial topological aspects of A may be incorporated in the effective transmission 
and cure rates, producing complex patterns in epidemics3. The time evolution is dictated by a transition matrix T̂ , 
whose matrix elements Tμν are transition probabilities from network configuration ν to μ12. Typically, one 
assumes Markovian behaviour to describe disease transmission and cure events, in accordance with the 
Poissonian assumption3. The difference between the compartmental and stochastic schemes leads to distinct 
evolution patterns for the statistics as well. For instance, Eq. (1) displays stable infected population for γ <  β, 
power-law behaviour for γ =  β and exponential decay of the infected population otherwise. While all three behav-
iours are also observed in stochastic approaches, fluctuations become much more relevant when the number of 
infected agents, 〈 n(t)〉 , is small compared to total population, N. Incidentally, this is the relevant regime to sani-
tary measures and health policies to contain real epidemics in early stages.

The Markovian approach produces accurate results if the infection transmission mechanism is known ref. 3. 
Its usability has been restricted insofar to numerical simulations with small N since the number of available states 
is 2N and T̂  is generally asymmetric12. Therefore, left- and right-eigenvectors are not related by transpositions, 
limiting the exact diagonalization to small values of N or special transition matrices. However, recent advances in 
the area by Van Mieghem et al.13,14 have shown that, in addition to spectral results, adequate local mean-field 
approximations (N-intertwined mean-field approximation) still carry over the heterogeneity of the contact net-
work of agents. In ref. 13, the authors demonstrate the stationary state of SIS model is disease free if R0 is greater 
than the largest eigenvalue of A. Subsequent studies addressed the effects of network perturbations to the epi-
demic threshold15–18. One of the goals in epidemic studies is the ability to correctly predict how small parameter 
or topological changes in the network affect disease spreading. If such predictions are robust, preemptive actions 
to lessen the epidemic are expected to achieve better results19. Small changes are exactly the subject of perturba-
tion techniques, which make extensive use of scalar product between left- and right-eigenvectors. In epidemic 
models, however, one must deal with asymmetric transitions, prohibiting perturbative schemes based on normed 
scalar products.

Here, we devise a method to avoid difficulties related to the asymmetry of T̂  using the squared norm of the 
probability vector, |P(t)|2, that can be physically interpreted as the exponential decay of the quadratic Rényi 
entropy. We discuss the mathematical aspects concerning the agent-based SIS model, with emphasis on the oper-
atorial content and symmetries. The time evolution equation for |P(t)|2 is obtained, and it is shown to depend only 
on eigenvalues and eigenvectors of the symmetric time generator ̂. As occurs in Quantum Mechanics, symme-
tries bring the matrix representation of ̂ to block diagonal form, with each block labeled by equivalents of quan-
tum numbers, thus reducing the complexity of the spectral analysis. Furthermore, the differential equation for 
|P(t)|2 simplifies to an algebraic equation for stationary states or transient states with maximum Rényi entropy. 
The solutions obtained in this way are valid for general Markov processes and preserve agent-agent correlations, 
usually neglected under mean-field approximations. In addition, the proposed method allows for seamless repro-
duction of traditional perturbative results, shedding light on the role played by perturbations in epidemics. 
Results obtained using perturbative methods for epidemics in agent-based networks for SIS model are shown and 
the main conclusions are stated.

Transition matrix
The transition matrix T̂  evolves the health states of N agents along time. Since the time evolution deals with the 
transmission of pathogens among agents, the construction of T̂  must carry information about the network of 
contacts between them. This is done by employing graphs, which are mathematical realizations of networks11,20. 
They are formed by a set of interconnected vertices Vk (k =  1, … , N). The connections are described by the adja-
cency matrix A (N ×  N), whose matrix elements are either 0 or 1. Vertex k is connected to vertex k′  if Akk′ =  1 and 
0 otherwise. Within our framework, each vertex Vk holds a single agent, whose current status is identified by σk. 
The variable σk may acquire two values, namely, σk =  ↓  (susceptible) or σk =  ↑  (infected), fulfilling the two-state 
requirement. The configuration σ σ σ| 〉 ≡ | 〉µ C N1 2 , with μ =  0, 1, … , 2N −  1, describes any agent state in the 
graph. As illustrated in Fig. 1, we follow16 and enumerate the configurations using binary arithmetic: 
µ δ δ δ= + + +σ σ σ↑ ↑ ↑

−
2 2 2N0 1 1

N1 2
, where the Kronecker delta δ =σ ↑ 1

k
 if σk =  ↑  and null otherwise. The set 

{|Cμ〉 } spans a discrete Hilbert space . For clarity’s sake, we use the following notation: Latin indices run over 
vertices 1, … , N, while Greek indices enumerate 2N configurations in .

The next step required to build the transition matrix is the definition of operators and their actions on vectors 
in . For that purpose, the transitions described in epidemic models must first be broken down into simpler 
operators, whose actions over the configurations |Cμ〉  possess equally simple interpretation. These operators 
express the most basic transitions among different health states for each agent as well as measure their current 
health state. For this task the 1/2-spin lowering and raising operators serve as inspiration since they also describe 
transitions among different quantum numbers of quantized angular momentum21. For instance, the operator σ̂k

z 
is set to probe whether the agent located at vertex k is infected (↑ ) or not (↓ ):
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σ σ σ σ δ δ σ σ σ= −σ σ↑ ↓ ˆ ( ) , (2)k
z

N N1 2 1 2k k

while the operator σ= +ˆ ˆn ( 1)/2k k
z  extracts the number of infected at vertex k. Accordingly, the operator 

= ∑ˆ ˆn nk k extracts the total number of infected agents in the population. The k-th agent health status is reversed 
by action of operators σ+ˆ k  and σ−ˆ k :

σ σ σ σ σ↓ = ↑+
   ˆ , (3)k N N1 1

σ σ σ σ σ↑ = ↓−
   ˆ , (4)k N N1 1

null otherwise. The localized operators σ±ˆ k  and σ̂k
z satisfy additional algebraic properties. For each k, the set σ±ˆ k

z,  
forms a local su(2) algebra, σ σ σ σ σ σ σ= − = ±± ± ± ±ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] 2k

z
k k

z
k k k

z
k , σ σ σ=+ −ˆ ˆ ˆ[ , ]k k k

z. Note that according to this defi-
nition, the operators σ±ˆ k

z,  produce local fermionic anticommutation relations σ σ σ σ σ σ= + =+ − + − − +ˆ ˆ ˆ ˆ ˆ ˆ{ , } 1k k k k k k , 
σ σ =± ±ˆ ˆ[ , ] 0k k , i.e., they behave like fermions at same vertex. However, their non-local algebraic commutation 
relations are bosonic: σ σ =′ˆ ˆ[ , ] 0k

a
k
b , for k ≠  k′  and a, b =  ± , z. This means the action of two localized operators, 

from different vertices, independs on the order of operators themselves, σ σ σ σ=′ ′ˆ ˆ ˆ ˆk
a

k
b

k
b

k
a. Although outside the 

scope of this paper, for completeness’ sake, we add that the mixed operatorial nature of σ±ˆ k
z,  must be taken into 

account if solutions by Fourier transforms are pursued, as learned from condensed matter problems22–24.
For any Markov process, the transition matrix T̂  holds the probabilities of allowed transitions among configu-

rations |Cμ〉 , for a fixed time interval δt. Let Pμ(t) be the probability to find the system in the configuration |Cμ〉  at 
time t. The collection of all Pμ(t) forms the probability vector,

∑= | 〉
µ
µ µP t P t C( ) ( ) ,

(5)

with ∑ =µ µP t( ) 1. In short, |P(t)〉  is the description of the system with N agents and the time evolution is 
simply

δ+ = .ˆP t t T P t( ) ( ) (6)

Notice, however, that T̂  depends intrinsically on the value of δt: for a very large δt, the transition matrix must 
contemplate both simple and complex transitions. By simple transition we mean a transition that details a single 
change in the health state of a single agent, whereas complex transitions may express several changes in health 
states for one or more agents. As a result, simple transitions are modelled after one- or two-agent operators 
whereas complex transitions require multiplicative composition of one- and two-agent operators. For instance, 
σ σ− +ˆ ˆ ˆA n( )k kj k j  outlines the disease spreading from the j-th agent to the k-th agent, followed by its recovery. As δt 
increases, the number of distinct transitions also increases and, hence, one would have to evaluate the likelihood 
corresponding to each transition.

A much easier approach takes small δ −
t N 1, ensuring that only one- and two-agent transitions are relevant, 

with transition rates γ and β/N, respectively. The reason behind this statement lies in the way the transition prob-
abilities are evaluated in general: by hypothesis, the transitions between individual states are assumed to be 
well-described by independent Poisson processes with constant rates3. One transition is observed in a time inter-
val δt for a system with N agents, on average, if δt[N(β +  γ)] =  1. Hence, if δ −

t N 1, two or more transition 
events become less likely, and one- and two-agent operators are the only relevant ones. It is important to remark 
the discussion above concerns the time evolution expressed by the Markov process with real time evolution. In 

Figure 1. Notation for agent configurations in epidemic process. In (a) agent at vertex k =  1 is infected. The 
graph configuration is ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ≡ C1 . In (b) a second agent is infected at k =  3, leading to the 
configuration = ↑ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓C5 .
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numerical simulations of epidemic spreading, time steps that (not) scale as O(N−1) lead to contact-processes 
(reaction-processes)25. If T̂  as a contact-process is known, then ≡ˆ ˆT TR

m
 is the transition matrix in the 

reaction-process with time interval δ δ≡t m tR . Thus, the reaction-process evolves faster over time than the 
contact-process. Here, we explicitly assume the Poisson hypothesis to estimate the transition probabilities β and 
γ, considering either a single cure or single infection event during a time interval δt.

In the SIS model, any previously infected agent at vertex k evolves to one of three distinct outcomes during the 
time interval δt: infection of one connected susceptible agent; cure of agent at vertex k; or nothing happens and 
the system remains unchanged. The operator σ−ˆ n̂k k produces the desired cure action, while σ+ˆ ˆA nkm m k transmits the 
disease from the k-th agent to m-th agent, given the k-th agent is currently infected and the other is susceptible, 
as exemplified for the complete graph depicted in Fig. 2 (top and bottom processes); otherwise the states of the 
agents remain unchanged. Setting γ βΓ = N / , the corresponding transition matrix reads

∑β σ δ σ= − − − + Γ − .+ −ˆ ˆ ˆ ˆ ˆT
N

A n n1 [ (1 ) (1 )]
(7)kj

jk j j kj j k

Brief inspection reveals T̂  is asymmetric, implying the existence of distinct left and right eigenvectors. An example 
of the matrix representation of T̂  is shown in Supplementary Information: Appendix A. Even though T̂  in Eq. (7) 
is valid only for SIS model, generalizations for more realistic epidemic models such as SIRS and SEIRS are availa-
ble using the Weyl matrices26 (see Supplementary Information: Appendix B). Once the explicit action of T̂  is 
known, Pμ(t) are readily evaluated. Figure 3 exhibits numerical results for Pμ(t) for μ =  0, 5, 2N −  1, parameter 
Γ = . . . . .N/ 0 0, 0 1, 0 3, 0 5, 1 2, P1(0) =  1 as initial condition and N =  12, in a complete network. For increasing 
Γ N/ , the probability P0(t) to find the system without infected agents also increases, while the opposite holds true 
for −P t( )2 1N , where all agents are infected. The probability for the intermediate configuration |C5〉  is also displayed 
to illustrate transient effects. Despite its simplicity, Eq. (7) produces a power-law behaviour, exemplified in Fig. 3 
with Γ = .N/ 0 3, 0.5, in which the time interval to reach the stationary state |C0〉  is much larger than the total 
number of agents, τ δ∆  N t.

Derivation of Eq. (7) considers a single network realization. If an ensemble containing M graphs is considered, 
properly sampling the network, the only modification required is the following: → = ∑− =A A M Ajk jk l

M
jk
l1

1
( ). The 

reason is the following: networks only assign distribution rules for connections, leaving the vertex distribution 
and, therefore, the Hilbert space unchanged. For each graph l =  1, … , M in the ensemble, one applies the associ-
ated transition matrix T̂

l( )
 on the initial configuration |P(l)(0)〉  producing the probability vector |P(l)(δt)〉 . In this 

way, one must also consider the ensemble averages. In particular, the average probability to find the system in 
configuration |Cμ〉  is = ∑µ µ

−
=P M P t( )l

M l1
1

( ) . Since the procedure is equivalent to the average of T̂  over the graph 
ensemble – the network sample – one needs only to consider the network distribution of A. For clarity, we drop 
the bar symbol and always assume the average over graph ensemble.

Squared Norm
Any transition matrix T̂  carries two operatorial contributions: the diagonal part tell us the likelihood the system 
remains unchanged after a time interval δt, whereas the off-diagonal part reveals the available outcomes and their 
corresponding probabilities. In our assumptions, δt is small enough to enforce that at most one local change may 

Figure 2. Markov process for N = 4 in a complete graph. At time t, the probability to find the system in the 
configuration = ↑ ↓ ↑ ↓C5  is P5(t). Configuration |C5〉  may evolve into five distinct configurations, after the 
time interval δt, due to disease transmission and recovery processes in the SIS model. If the infected agent at 
k =  1 recovers, then the resulting configuration is |C4〉 . Similarly, if the infected agent at k =  3 recovers, then the 
resulting configuration is |C1〉 . Both events occur with transition rate γ. Concerning disease transmission 
events, the infected agent at k =  1 (k =  3) may either transmit the pathogen to the susceptible agent at k =  2 or 
k =  4, resulting in the configuration |C7〉  or |C13〉 . Since both infected agents produce the same resulting 
configurations, in the complete graph, the transition rate is 2β/N. The remaining transition contemplates the 
event in which agents neither recover or transmission the pathogen. In this case, the resulting configuration is 
|C5〉 , with transition rate 1 −  2γ −  4β/N.
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occur during the time interval δt. This assumption allows us to rewrite the transition matrix in a more convenient way: 
δ= −ˆ ˆT tH1 . By substituting this expression for T̂  in Eq. (6), one arrives at δ δ+ − = − ˆP t t P t tH P t( ) ( ) ( ) . 

Now, if all Pμ(t) are continuous functions in time, then the following power series converges: 
δ δ δ+ = + + + P t t t d dt t d dt P t( ) [1 ( / ) ( /2!)( / ) ] ( )2 2 2 , in the continuous-time Markov process. Therefore, 

up to O(δt2), the time evolution is given by = − ˆd dt P t H P t( / ) ( ) ( ) . In general, the probabilities Pμ(t) obey the 
following system of differential equations,

∑= −µ

ν
µν ν

dP
dt

H P t( ),
(8)

where the matrix elements = 〈 | | 〉µν µ ν
ˆH C H C  are either negative for allowed off-diagonal transition rates or neg-

ative for diagonal positive rates. The compartmental equation3,5,27 is derived from Eq. (8) by neglecting disper-
sions among agents, whereas the N–intertwined mean-field approximation14,18 for SIS model is also a result from 
Eq. (8) with the assumption the local averages 〈 nk(t)〉  are independent variables (see Supplementary Information: 
Appendix C).

Due to the striking similarity with Schrödinger equation21, Ĥ  is often interpreted as the Hamiltonian – the 
time generator – of the Markov process. However, unlike the Hamiltonian of quantum theories, Ĥ  is real and, 
usually, an asymmetric operator. As a result, there exists one right-eigenvector |φμ〉  and one left-eigenvector 〈 χμ| 
for each eigenvalue λμ of Ĥ, with µ = … −0, , 2 1N . Although |φμ〉  and 〈 χμ| are not related by Hermitian conju-
gation, they decompose the identity φ χ= ∑ | 〉〈 |µ µ µ1  (completeness) and are orthogonal to each other 
χ φ δ χ φ〈 | 〉 = 〈 | 〉µ ν µν µ µ . Furthermore, λμ ≥  0 for any μ since T̂  is positive definite.

Figure 3. Configuration probabilities Pμ(t) for μ = 0, 5 and 2N − 1 with N = 12 in a complete network with 
initial condition P1(0) = 1 ↑ ↓ ↓ ↓| 〉( )N1 2 3 . In (a) probability P0(t) to observe all-cured configuration at time  
t for various couplings Γ N/ . In (b) P5(t) refers to the probability of transient configuration ↑ ↓ ↑ ↓ N1 2 3 , while  
(c) exhibits the probability with all-infected agents, −P t( )2 1N , in log scale. The coupling Γ =N/ 0 represents the 
SI model, whose stationary state is described by all-infected configuration. For Γ = .N/ 0 1, the stationary state is 
a linear combination of distinct |Cμ〉 , including all-cured |C0〉  and all-infected −C2 1N  configurations. For 
intermediate couplings Γ = .N/ 0 3 and Γ = .N/ 0 5, the stationary state is |C0〉  with large transient Δ τ ~ o(N4).
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The formal solution for Eq. (8) reads | 〉 = − | 〉ˆP t Ht P( ) exp( ) (0) , as long as Ĥ is time independent, i.e., the rates 
β and γ remains unchanged along time. In terms of left- and right-eigenvectors, χ φ| 〉 = ∑ 〈 | 〉| 〉µ

λ
µ µ

− µP t P( ) e (0)t . 
As a result, only the modes with vanishing eigenvalues λμ =  0 survive for large t. These modes are the stationary 
states12. Statistics for a given observable Ô t( ) are calculated according to 〈 〉 = ∑ 〈 | | 〉µ µ µ µ

ˆO t C O C P t( ) ( ). Among 
the relevant observables in disease spreading models, the mean number of infected agents, n̂ t( ) , and variance, 
σ2(t), both exemplified in Fig. 4, are often relevant variables. Formally, they admit eigendecomposition: 

= ∑ Ωµν µν
λ− νn t( ) e t and σ ξ= ∑ −µν µν

λ− νt n t( ) e ( )t2 2, with φ χΩ = 〈 |∑ | 〉〈 | 〉〈 |µν µ µ µ ν νˆC n C C P(0)k k  and 
ξ φ χ= 〈 |∑ | 〉〈 | 〉〈 |µν µ µ µ ν νˆ ˆC n n C C P(0)kl k l .

While left- and right-eigenvectors are expected to decompose the identity, their actual computation is rather 
cumbersome, doubling the computational effort and being prone to convergence errors. They also lack a clear 
physical interpretation. Ultimately, quantitative understanding of fluctuations and heterogeneity in epidemics is 
severely affected by the way left- and right-eigenvectors are currently handled. For instance, investigations using 
group theoretical methods usually relies on a single set of eigenvectors, for a given representation. This means 
symmetries are often overlooked. As a result, agent-based models have provided limited insight about epidemics 
in general3, despite their relevance to the study of emerging infectious diseases4.

A sensible way to overcome the problematic related to left- and right-eigenvectors is simply to avoid them 
altogether. One possibility is to consider quantities that preserves the scalar product. Here, we consider the 
squared norm, = = ∑µ µP t P t P t P t( ) ( ) ( ) ( )2 2 , which remains invariant under unitary transformations. 
Notice the total probability conservation ∑ =µ µP t( ) 1 does not warrant |P(t)|2 conservation over time. For 
instance, examples are found in any Markov process that starts from an arbitrary, but otherwise unique, initial 
state and arrives to a single stationary state. In these particular cases, although |P(0)|2 =  1 and ∞ =P ( ) 12 , the 
squared norm of the probability vector during the transient period is |P(t)|2 <  1 if two or more states are available. 
This happens because the probability to observe the system in any transient state is now lower than unity. 
Therefore, |P(t)|2 changes over time, being a suitable candidate to represent the dynamics of the system. The epi-
demic models considered in this study, SIS included, fall into this category, as shown in Fig. 5.

The time derivative of |P(t)|2 is obtained by substituting Eq. (8) in 〈 | = 〈 | | 〉+d dt P t P t d dt P t P t( / ) ( ) ( ) [( / ) ( ) ] ( )
〈 | | 〉P t d dt P t( ) [( / ) ( ) ]. Defining the Hermitian operator = +ˆ ˆ ˆH H(1/2)( )

T
 , produces the following equation:

| | = −〈 | | 〉.ˆd
dt

P t P t P t1
2

( ) ( ) ( ) (9)
2 

Unlike Ĥ , the operator ̂ has eigenvalues Λµ{ } with corresponding left- and right-eigenvectors {ψμ} related by 
Hermitian conjugation. The trade-off is that the eigenvalues Λµ may assume negative values, as shown in Fig. 6, 
and the coefficients ψ〈 | 〉 =µ µP t g t( ) ( ) are, in general, complex numbers. As a result, the coefficients gμ are not 
probabilities. Despite this shortcoming, the coefficients gμ are used to evaluate the probabilities Pμ(t) for each 
configuration |Cμ〉 :

∑ ψ= 〈 | 〉.µ
ν

ν µ νP t g t C( ) ( )
(10)

It is noteworthy that analytical and numerical diagonalization procedures are far more abundant for Hermitian 
operators than for asymmetric counterparts. However, the evaluation of gμ(t) as they are still poses as a hard 
problem. In what follows, we devise an alternative way to compute them for relevant time instants in the disease 
spreading process.

Using the completeness ψ ψ∑ | 〉〈 | =µ µ µ 1 in the right-hand side of Eq. (9), one arrives at ψ ψ−∑ 〈 | | 〉µν µ ν µ ν
ˆ⁎g g  . 

When the same procedure is performed on the left-hand side of Eq. (9), the resulting expression reads

Figure 4. Standard deviation σ(t) and mean number of infected agents 〈n(t)〉 for SIS model with N = 12 in 
the complete network. The statistics σ(t) and 〈 n(t)〉  are shown in (a,b), respectively. Intermediate cure/
infection rates Γ = .N/ 0 3 and Γ = .N/ 0 5 eradicate the disease after very large time intervals: σ(t) exhibits initial 
rapid growth, develops a maximum at ≡ Γt t N( / )c c  and then decays as power-law.
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∑




+ Λ


 | | =

µ
µ µ

d
dt

g t1
2

( ) 0,
(11)

2

subjected to the constraint ψ∑ 〈 | 〉 = ∑ =µν µ ν ν µ µC g t P t( ) ( ) 1. Now, Eq. (11) takes a simpler form if |P(t)|2 is 
constant, which is the expected outcome if the system reaches at least one stationary state. Under this assumption, 
Eq. (11) reads

∑| | Λ =
µ

µ µg 0,
(12)

j,
2

subjected to the constraint described above, and where the collection of coefficients ≡µ µ→∞g g tlim ( )j t,  describes 
the j-th stationary state. Table 1 displays non-trivial solutions of Eq. (12) for 

µg ,1 and Λµ using the SI model with 
N =  3 and β/N =  0.1. gμ are real numbers in this example chosen because it can be evaluated by brute force and 
tested against the correct answer. Of course, the trivial solution δ=µ µg ,0 ,0 and Λ = 00  also satisfy Eq. (12).

In addition to stationarity, |P(t)|2 may also assume extrema values at time instants tc, leading again to Eq. (12), 
the difference being only the evaluation of coefficients gμ(t) at t =  tc. Numerical examples are shown in Fig. 7. The 
times tc are important for dynamics as the extrema of |P(tc)|2 inform us when disease spreading reaches critical 
moments. Accordingly, tc may also be used to estimate the maxima for narrow peaked statistics. During the 
transient, the variance 〈 n2(t)〉  −  〈 n(t)〉 2 is well described by a narrow function with peak near tc. The estimation 
improves as N increases. Therefore, by solving the constrained algebraic Eq. (12), either directly or via functional 
minimization, one evaluates the coefficients gμ, which in turn are used to evaluate the probabilities Pμ in Eq. (10). 
Because solving algebraic equations are far less demanding then solving sets of coupled differential equations, the 
behavior of |P(t)|2 dramatically improves the usability of agent-based models in the study of disease spreading.

Equations (11) and (12) introduce a novel way to tackle stochastic problems: asymmetric time generators  
Ĥ are replaced by symmetric operators ̂, whose eigenspectra are used to assemble Eq. (12). The probabilities Pμ 

Figure 5. |P(t)|2: Sum of squared probabilities of infected agents in all possible configurations μ. SIS model 
with N =  12 and P1(0) =  1. For each coupling parameter Γ N/ , |P(t)|2 always develops a global minimum 
followed by constant value at stationary state, being unity only for single state configurations. Logarithmic scale 
is employed to emphasize extremal points at ≡ Γt t N( / )c c .

Figure 6. Sorted eigenspectra with N = 10 for the case of a complete network. Each filled circle (cross) 
represents one eigenvalue Λµ for coupling parameter Γ = .N/ 0 1 (0.3).
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for each configuration of N agents are evaluated according to Eq. (10), provided the coefficients gμ solve Eq. (12). 
Once the eigenvalues and eigenvectors of ̂ are known, the above procedure is simply the resolution of a single 
algebraic equation. However, the eigenvalue problem of N interacting agents is far from trivial. Since ̂ is a 
Hermitian operator, one may take advantage of well-known methods to solve the corresponding eigenvalues and 
eigenvectors. Among the now available methods, we point out the techniques from Hermitian many-body theo-
ries, largely employed in research fields such as quantum optics and condensed matter. These areas make heavy 
use of symmetries, reducing the computational efforts and also providing new insights about the fundamental 
properties and patterns in the system. In passing, we also remark that the number of symmetries of ̂ may differ 
from those found in the operator Ĥ . Furthermore, the stationary states or extremal solutions in the transient 
period carry the network topological information, as the adjacency matrix determines the eigenvalue distribution 
of ̂. In the large N 1 regime, the eigenspectrum Λ becomes dense o closely spaced. For completeness sake, we 
briefly discuss this regime in Supplementary Information: Appendix D.

Before moving on to applications, we address the physical interpretation of |P(t)|2. One important aspect from 
Eq. (9) concerns the fact that the global quantity |P(t)|2 acquires a dynamical meaning. As a result, any interpre-
tation of |P(t)|2 at the time t should also be valid for other time t′  >  t. Therefore, we restrict our analysis to a single 
time instant t. Under these circumstances, the squared norm of the probability vector may be also written as 

= ∑ ≡µ µ µP t P P P t( ) ( ) R
2 , where 〈 P(t)〉 R is an estimator for the average probability for each configuration at 

time t. For comparison purposes, we also define the standard estimator ≡ ∑ =µ µ
− −P t P t( ) 2 ( ) 2B

N N , which is 
always constant. If all configurations are equiprobable at time t, then 〈 P(t)〉 B is compatible with the Boltzmann 
hypothesis, from which one derives the entropy SB =  N ln 2. However, while 〈 P(t)〉 B treats equally any configura-
tion state |Cμ〉 , the estimator 〈 P(t)〉 R distinguishes and weights them differently from each other. More impor-
tantly, the difference 〈 P(t)〉 R −  〈 P(t)〉 B is minimal when |P(t)|2 develops a minimum. As Figs 4(a) and 5 depict, the 
region near the minimum of |P(t)|2 is also the region where σ(t) develops a maximum. This evidence suggests 
|P(t)|2 plays a role similar to the entropy for the disease spreading stochastic process. In fact, several generalized 
entropies use |P(t)|2 in their definitions. For instance, Tsallis’ generalized entropy28 reads (non-extensive param-
eter q =  2): ST(t) =  1 −  |P(t)|2. However, Eq. (9) is also valid for general extensive systems, hence, we discard ST(t). 
A more suitable choice for disease spreading processes is the quadratic Rényi entropy29,30:

∑≡ − = −
µ
µS P P tln ln ( ) ,

(13)
R R

2

which is always extensive31. In what follows, we adopt the Rényi entropy SR as the global quantity for epidemic 
models.

Perturbation Theory
Perturbative methods are usually pursued because they provide a way to evaluate the effects of small modifica-
tions in the underlying model to measurable quantities, such as 〈 n(t)〉 . In the case of epidemics, there are two 

 μ Λµ µg 1,

3 0.157199(3) 0.397770(3)

6 0.351413(7) − 0.380366(0)

7 − 0.108613(0) 0.834925(5)

Table 1.  Stationary state. Non-vanishing coefficients 
µg ,1 in the SI model with β/N =  0.1 and N =  3. The set 

µg{ },1  is obtained solving Eq. (12). The coefficients are real and ψ= 〈 | 〉µ µg C,1 7 , hence, =P 17 .

Figure 7. Solutions gν(tc) in a SIS model with N = 10. The coefficients gν are the weighs used to calculate Pμ 
using Eq. (10). Non-trivial solutions to Eq. (12) are shown for Γ = .N/ 0 1 (top), 0.3 (Bottom). The coefficient 
distribution greatly differs depending on coupling parameter Γ N/ .
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kinds of relevant quantities that affect the disease spreading dynamics, namely, the coupling parameters (trans-
mission and recovery rates) and the adjacency matrix A. More precisely, perturbations in A means the statistics of 
A are changed by small but otherwise known amounts. Examples include the removal of κl N  connections in 
a graph, where κ is the average degree for each vertex11, and reordering of a few connections among agents to 
produce a change in their clustering coefficients, δ′ = +c c ck k k, with δ c c/ 1k k . These perturbative schemes 
mimic sanitary and health measures often used to contain or control disease spreading.

Despite the relevance of perturbative theories, historically they have never enjoyed large endorsement in the 
study of epidemics. Common approaches include brute force computational power, but also perturbative theories 
for stochastic processes often relying on complex analyses, recurring to the formalism of Feynmann path inte-
grals32. More recently, Wang et al.18 have used the Rayleigh-Schrödinger perturbation theory33 in the mean-field 
approximation, for the SIS model with coupled networks. The main advantage of their approach is that one can 
easily understand and evaluate the effects of topological perturbations. In this section, we use Eq. (12) to rein-
troduce the standard Rayleigh-Schrödinger perturbation theory for stationary states and states with maximum 
Rényi entropy during transient, without any additional approximation. In a sense, our method expands the ideas 
of Wang et al.18 while still accounting for correlations, usually neglected in mean-field approximations. Thus, cor-
rections to measurable quantities are evaluated using standard algebraic methods and include any effect derived 
from fluctuations. As always, we focus on the SIS model to demonstrate the perturbative corrections, although we 
stress the procedure is valid for general Markovian epidemic models.

For the SIS model, the Hermitian time generator is   β= +ˆ ˆ ˆN( / )[ ]0 1 , with

∑
σ σ

=







− −

+ 







+ −
ˆ ˆ ˆ

ˆ ˆ ˆ ˆ
A n n

n n
(1 )

2
,

(14)kj
jk j k

j k k j
0

 ∑ δ σ= Γ − .ˆ ˆ ˆn( )
(15)kj

kj k k
x

1

Here we will assume that the adjacency matrix elements Ajk are already averaged over an ensemble. As a practical 
application, we discuss the random removal of links from a complete graph as the network perturbation. This case 
is also convenient since the dynamical equations for 〈 n(t)〉  are readily available from Eq. (8), whose solutions are 
known since all vertices are equivalent. However, the primary purpose of this application is to show the role of 
symmetries, which break down the initial problem into disjoint and smaller problems.

The complete network is obtained taking Ajk =  (1 −  δjk). Despite its simplicity, this network provides relevant 
operatorial content. Defining the many-body spin operators as = ∑ −ˆS n N /2z

k k , σ= ∑± ±ˆS k k , and 
σ σ= ∑ ++ −ˆ ˆS ( )/2x

k k k , the resulting symmetrized time generator is


β

=





− Γ





− − Γ + − −






−
+ Γ





.

ˆ
ˆ ˆ ˆ ˆ ˆ

N
N N S S S S S N

/ 2 2
[ ] 1

2
{ , } 1

2 (16)
z z x z xMF

The operator ̂MF satisfies =ˆ Ŝ[ , ] 0MF
2

 , where = +
+ −ˆ ˆ ˆ ˆS S S S( ) (1/2){ , }

z2 2  is the quadratic Casimir operator. 
Thus, the eigenvalues s(s +  1) are suitable labels, with s =  N/2, N/2 −  1, …  and s ≥  0. This means, the operator ˆ

MF  
in Eq. (16) prohibits transitions among different s-sectors, i.e. ̂MF is block diagonal, each block with dimension 
d =  2s +  1. In addition, each block is also tridiagonal in the basis |s, m〉  (m =  − s, − s +  1, … , s) as the Ŝ

x
 operator 

may only increase or decrease m by unity. Therefore, the largest s-sector block has, at most, dimension 
dmax =  N +  1 and 3N −  2 non-null matrix elements, thus sparsity O(3/N). When both properties are considered, 
one realizes the O(22N) computational problem has been reduced to O(N). Thus, symmetries considerations alone 
eliminate one of the main obstacles faced by agent-based epidemic models.

For general networks, the main strategy is to use the eigenvectors of Ŝ
2
 and treat any absent link among agents 

as perturbations. A simple perturbation to the complete network is obtained by considering a small probability 
δ p 1 to independently remove links between vertices, Ajk =  (1 −  δjk) (1 −  δp). This procedure is equivalent to 
transforming the underlying network into a random network20,34, with connection probability 1 −  δp. Perturbative 
effects to |P(t)|2 and σ(t) are shown in Fig. 8. Although both network and topological perturbations are simple, 
distinct perturbative effects for increasing Γ are observed. Accordingly, the perturbative operator relative to 
Eq. (16) reads

δ
δ β

= −













 − −




− 

 −








.ˆ ˆ ˆ ˆ ˆpV p

N
N S N S S S
2

( ) 1
2

1
2

{ , }
(17)

z x z x2
2

Since V̂  also enjoys complete permutation symmetry, one concludes =ˆ ˆV S[ , ] 0
2

, which means V̂  does not pro-
duce transitions between different s-sector blocks.

Concerning stationary states, the first order correction to eigenvalues Λµ
(1) and eigenvectors 

µg
(1), restricted to a 

single s-sector, are obtained using standard perturbation theory21,33

δ ψ ψΛ = 〈 | | 〉µ µ µ
ˆp V , (18)

(1)
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∑δ
ψ ψ

= ′
〈 | | 〉

Λ − Λµ
ν

µ ν

ν µ

ˆ
g p

V
,

(19)
(1)

where |ψμ〉  are the unperturbed eigenvectors of ̂. Accordingly, first order correction to the probability to find the 
system in configuration |Cμ〉  is

∑ ψ= 〈 | 〉µ
ν

µ ν νP C g ,
(20)

(1) (1)

where the unperturbed solutions are evaluated using Eq. (12). Equation (20) emphasizes the role played by the 
symmetrized operator ̂ to evaluate the effects caused by topological perturbations: µP(1) and further perturbative 
corrections are entirely evaluated using the unperturbed eigenvectors {|ψμ〉 } and eigenvalues Λµ{ }, given the per-
turbation V̂ . This rationale suits decision making strategies where the concern is the impact of changes to the 
system topology. In this approach, one avoids computations related to the asymmetric operator Ĥ , while still 
benefiting from standard perturbative techniques.

Complete networks are the simplest instances of a larger set known as regular networks. Another relevant 
element in the same set is obtained when the connection patterns among vertices are periodic, and are generally 
employed to describe translation invariant systems. Their eigenvectors are usually categorized in long and short 
range modes. Since perturbative effects are our main concern here, we now discuss a network with single period, 
or in the language of condensed-matter, a one-dimensional lattice of size N  with periodic boundary condition, as 
Fig. 9(a) illustrates. The adjacency matrix is AP and the matrix elements are δ δ= +′ ′+ ′−A( ) ( )P kk k k k k, 1 , 1 , with 
V0 =  VN and VN+1 =  V1.

The perturbative scheme to the network topology adds connections with probability δ p 1 among vertices 
not previously connected, as shown in Fig. 9(b). The perturbation creates shortcuts throughout the network, 
favoring rapid disease dispersion, in an attempt to mimic the relevant aspects found in small-world networks35. 
For a single graph realization, translation invariance breaks and the important expression ∑ =− ˆ ˆN O Ok k

1
1  is 

no longer valid for a general observable Ôk. However, for a large ensemble of graphs, the average transition matrix 
recovers translation invariance. The reasoning behind this claim lies in the fact all vertices would have 
2 +  δp(N −  2) neighbors, on average.

Let pk,k′ =  δp be the probability to create a single link between Vk and Vk′, including nearest-neighbor verti-
ces. The idea is to emphasize the emergence of translation invariance and use the perturbation operator V̂  of 
Eq. (17). Under this assumption, the contributions to the adjacency matrix due to perturbations are δp(1 −  δkk′). 
One must be careful to subtract contributions from links already accounted by AP, resulting in the symmetric 
time generator β δ δ= − + +ˆ ˆ ˆ ˆN p pV( / )[(1 ) ]P 0 1   . Next, define the effective couplings β δ β′ = − p(1 )  
and δ δ δ′ = −p p p/(1 ), so that


  

β
δ

′
= + + ′ − .

ˆ ˆ ˆ ˆ ˆ
N

p V
/

( )
(21)

P
0 1 1

The solution for δp′  =  0, the unperturbed system, is obtained using techniques from one-dimensional quantum 
spinchains, in momentum space36. Moreover, total momentum 2πQ/N (Q =  0, 1, … , N −  1) is conserved and 

Figure 8. Perturbation in mean-field SIS model and N = 12. In (a) |P(t)|2 is plotted against time steps for SIS 
coupling parameter Γ = .N/ 0 1 in the mean-field network δp =  0 (full magenta line) and in the perturbed 
network δp =  0.1 (magenta squares); the corresponding quantities are also shown for Γ = .N/ 0 3 with δp =  0 
(dashed green line) and δp =  0.1 (green circles). Topological perturbations decrease (increase) |P(t)|2 for 
Γ = .N/ 0 1 (0.3). In (b) σ(t) is plotted against time steps. The dotted line displays the expected SI behaviour for 
comparison. The inset shows σ(t) with Γ = .N/ 0 3 and δp =  0 (dashed green line) and δp =  0.1 (green circles) 
using increased time range. During transients, small perturbations δp may produce large modification to the 
statistics.
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serves as a label, breaking ˆ
P  into N block-diagonal matrices. For very large δp, the topology moves towards the 

complete network and favors perturbative analysis using Eq. (16) as the unperturbed operator. Therefore, for 
δ p 1 the perturbative regime favors periodic eigenvectors, whereas for δ− p(1 ) 1, eigenvectors of 
many-body angular momentum are preferred. The unperturbed eigenvectors and eigenvalues are then used in 
Eqs (18–20) to evaluate the first order perturbative corrections.

Conclusion
In compartmental approaches to epidemics, the role of fluctuations is underestimated when the population of 
infected agents is scarce. Disease spreading models using agent-based models are limited to small population 
sizes due to asymmetric time generators and their large 2N dimensions. Our findings show |P(t)|2 is sufficient to 
avoid the mathematical hardships that accompany asymmetric operators. The squared norm provides a novel way 
to obtain stationary states and extremal configurations in general Markov processes, including epidemic models. 
Once stationary states are secured, the standard Rayleigh-Schrödinger perturbative technique becomes available 
to epidemics, making use of symmetrized operators and their eigenvalues and eigenvectors. The method paves 
the way for evaluation of corrections to configuration probabilities caused by perturbations in general networks.

References
1. de Espíndola, A. L., Bauch, C. T., Cabella, B. C. T. & Martinez, A. S. An agent-based computational model of the spread of 

tuberculosis. J. Stat. Mech. Theor. Exp. 2011, P05003 (2011).
2. Kermack, W. O. & McKendrick, A. G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. A 115, 700–721 (1927).
3. Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys. 87, 

925–979 (2015).
4. Heesterbeek, H. et al. Modeling infectious disease dynamics in the complex landscape of global health. Science 347 (2015).
5. Keeling, M. & Eames, K. Networks and epidemic models. J. R. Soc. Interface 2, 295–307 (2005).
6. Bansal, S., Grenfell, B. T. & Meyers, L. A. When individual behaviour matters: homogeneous and network models in epidemiology. 

J. R. Soc. Interface 4, 879–891 (2007).
7. Heffernan, J., Smith, R. & Wahl, L. Perspectives on the basic reproductive ratio. J. R. Soc. Interface 2, 281–293 (2005).
8. Eames, K. T. D. & Keeling, M. J. Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. Proc. 

Natl. Acad. Sci. USA 99, 13330–13335 (2002).
9. Aiello, O. & da Silva, M. New approach to dynamical monte carlo methods: application to an epidemic model. Physica A 327, 

525–534 (2003).
10. Haas, V., Caliri, A. & da Silva, M. Temporal duration and event size distribution at the epidemic threshold. J. Biol. Phys. 25, 309–324 

(1999).
11. Albert, R. & Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002).
12. van Kampen, N. G. Stochastic Processes in Physics and Chemistry, vol. 1 (Elsevier Science, Amsterdam, 1992).
13. Mieghem, P. V., Omic, J. & Kooij, R. Virus spread in networks. IEEE/ACM Transactions on Networking 17, 1–14 (2009).
14. Van Mieghem, P. The n-intertwined sis epidemic network model. Computing 93, 147–169 (2011).
15. Van Mieghem, P. et al. Decreasing the spectral radius of a graph by link removals. Phys. Rev. E 84, 016101 (2011).
16. Van Mieghem, P. & Cator, E. Epidemics in networks with nodal self-infection and the epidemic threshold. Phys. Rev. E 86, 016116 

(2012).
17. Cator, E. & Van Mieghem, P. Second-order mean-field susceptible-infected-susceptible epidemic threshold. Phys. Rev. E 85, 056111 

(2012).
18. Wang, H. et al. Effect of the interconnected network structure on the epidemic threshold. Phys. Rev. E 88, 022801 (2013).
19. Chen, Y., Paul, G., Havlin, S., Liljeros, F. & Stanley, H. E. Finding a better immunization strategy. Phys. Rev. Lett. 101, 058701 (2008).
20. Newman, M. E. J. The structure and function of complex networks. SIAM Review 45, 167–256 (2003).
21. Landau, L. D. & Lifshitz, E. M. Quantum Mechanics: Non-Relativistic Theory, 3rd ed. (Butterworth-Heinemann, 2003).
22. Lieb, E., Schultz, T. & Mattis, D. Two soluble models of an antiferromagnetic chain. Ann. Phys. (NY) 16, 407–466 (1961).
23. Kogut, J. B. An introduction to lattice gauge theory and spin systems. Rev. Mod. Phys. 51, 659–713 (1979).
24. Batista, C. D. & Ortiz, G. Generalized Jordan-Wigner transformations. Phys. Rev. Lett. 86, 1082–1085 (2001).
25. Gómez, S., Arenas, A., Borge-Holthoefer, J., Meloni, S. & Moreno, Y. Discrete-time markov chain approach to contact-based disease 

spreading in complex networks. EPL (Europhys. Lett.) 89, 38009 (2010).

Figure 9. Regular periodic network with N = 8 vertices. (a) Vertex Vk connects with vertex Vk+1 and Vk−1 
with periodic boundary conditions, VN+1 =  V1 and V0 =  VN. (b) Perturbative link addition with probability 
δp =  δp′ /(1 +  δp′ ) increases the mean degree d(k) by δp(N −  2), allowing long range disease transmissions. The 
graph shows the regular connections for V3 and an additional connection to V8.



www.nature.com/scientificreports/

1 2Scientific RepoRts | 7:40885 | DOI: 10.1038/srep40885

26. Alcaraz, F. C. & Lazo, M. J. Exact solutions of exactly integrable quantum chains by a matrix product ansatz. J. Phys. A: Math. Gen. 
37, 4149 (2004).

27. Pastor-Satorras, R. & Vespignani, A. Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001).
28. Tsallis, C. Possible generalization of boltzmann-gibbs statistics. J. Stat. Phys. 52, 479–487 (1988).
29. Hastings, M. B., González, I., Kallin, A. B. & Melko, R. G. Measuring Renyi entanglement entropy in quantum monte carlo 

simulations. Phys. Rev. Lett. 104, 157201 (2010).
30. Sahoo, S. et al. Unusual corrections to scaling and convergence of universal renyi properties at quantum critical points. Phys. Rev. B 

93, 085120 (2016).
31. Parvan, A. & Biró, T. Extensive rényi statistics from non-extensive entropy. Phys. Lett. A 340, 375–387 (2005).
32. Cardy, J. L. Field theoretic formulation of an epidemic process with immunisation. J. Phys. A: Math. Gen. 16, L709 (1983).
33. Sakurai, J. J. & Tuan, S. F. Modern quantum mechanics (Addison-Wesley, 1994).
34. Durrett, R. Some features of the spread of epidemics and information on a random graph. Proc. Natl. Acad. Sci. USA 107, 4491–4498 

(2010).
35. Watts, D. J. & Strogatz, S. H. Collective dynamics of small-world networks. Nature 393, 440–442 (1998).
36. Baxter, R. Exactly soluble models in statistical mechanics (Academic Press, New York, 1990).

Acknowledgements
We are grateful for T.J. Arruda comments during manuscript preparation. The authors acknowledge Brazilian 
agencies for support. A.S.M. holds grants from CNPq 307948/2014-5, A.C.P.M. acknowledges funding from 
PIBIC/CNPq 800585/2016-0 and G.C.C. acknowledges funding from PAJT/CAPES 88881.067978/2014-01.

Author Contributions
A.S.M., G.C.C. and G.M.N. designed the research; A.C.P.M. and G.M.N. performed the research; G.M.N. wrote 
the paper; A.S.M. and G.C.C. edited the paper. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Nakamura, G. M. et al. Efficient method for comprehensive computation of agent-level 
epidemic dissemination in networks. Sci. Rep. 7, 40885; doi: 10.1038/srep40885 (2017).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2017

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Efficient method for comprehensive computation of agent-level epidemic dissemination in networks
	Introduction
	Transition matrix
	Squared Norm
	Perturbation Theory
	Conclusion
	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                Efficient method for comprehensive computation of agent-level epidemic dissemination in networks
            
         
          
             
                srep ,  (2016). doi:10.1038/srep40885
            
         
          
             
                Gilberto M. Nakamura
                Ana Carolina P. Monteiro
                George C. Cardoso
                Alexandre S. Martinez
            
         
          doi:10.1038/srep40885
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep40885
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep40885
            
         
      
       
          
          
          
             
                doi:10.1038/srep40885
            
         
          
             
                srep ,  (2016). doi:10.1038/srep40885
            
         
          
          
      
       
       
          True
      
   




