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Optical coherence tomography 
angiography microvascular findings 
in macular edema due to central 
and branch retinal vein occlusions
Rodolfo Mastropasqua1,*, Lisa Toto2,*, Luca Di Antonio2, Enrico Borrelli2, Alfonso Senatore2, 
Marta Di Nicola3, Giuseppe Di Martino3, Marco Ciancaglini4 & Paolo Carpineto2

The aim of this study was to evaluate retinal and choriocapillaris vessel density using optical coherence 
tomography angiography (OCTA) in eyes with central retinal vein occlusion (CRVO) and branch retinal 
vein occlusion (BRVO) complicated by macular edema (ME). Sixty eyes of 60 patients with CRVO or 
BRVO and ME and 40 healthy subjects underwent measurements of superficial and deep foveal and 
parafoveal vessel density (FVD, PFVD) and choricapillary density using OCTA at baseline and 60 days 
after intravitreal dexamethasone implant (IVDEX). FVD and PFVD of the superficial plexus were not 
significantly lower in CRVO group compared to the controls while in the BRVO group overall PFVD 
were significantly lower compared to control group (p < 0.001). Overall PFVD of the deep plexus 
was significantly lower in CRVO and BRVO groups compared to the control group (p < 0.001). FVD 
and overall PFVD of choriocapillaris were significantly reduced compared to controls in CRVO group 
(p < 0.001) and PFVD of choriocapillaris was significantly reduced compared to controls in the affected 
hemi fields in BRVO groups (p < 0.001). OCTA showed vessel density reduction in BRVO and CRVO with 
main involvement of the deep retinal plexus compared to the superficial retinal plexus due to ischemia 
that did not recover after intravitreal dexamethasone implant.

Retinal vein occlusions (RVOs) are the second most common retinal vascular disease after diabetic retinopathy1.
Among sight threatening complications of RVOs there are macular edema and retinal non-perfusion. 

Fluorescein angiography (FA) is useful for identifying retinal ischemia and macular edema characterized by dye 
leakage in the late phases of FA angiograms2.

Enhanced imaging system such as adaptive optics (AO) scanning light ophthalmoscope (SLO) FA have been 
used to better characterize retinal microvasculature in vascular retinal diseases such as RVO with vascular density 
evaluation3,4.

Recently optical coherence tomography angiography (OCTA), a non-invasive imaging technique, has been 
conceived allowing the study of retinal microvasculature without dye injection5–7. The movement of red blood 
cells (RBC) within the retinal capillaries is used as an intrinsic contrast medium to generate flow imaging. OCTA 
provides non-invasive imaging of the superficial and deep retinal capillary network with detailed foveal avascular 
zone (FAZ) visualization and vessel density evaluation useful in different vascular diseases5.

Some authors investigated the OCTA features of patients with RVO8–10. Coscas et al. observed retinal capillary 
network abnormalities in all patients in both superficial capillary plexus and deep capillary plexus on OCTA with 
detection of ischemic areas more frequent in the deep capillary plexus9.

Samara et al. investigated superficial and deep retinal capillary densities in patients affected by branch retinal 
vein occlusion (BRVO) and reported lower vascular densities both in the superficial and deep plexus with corre-
lation between visual function and FAZ area and vessel density10.
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In the current study, two aspects not previously reported in the literature were explored in eyes affected by 
RVOs using an OCTA with a Split-Spectrum Amplitude Decorrelation Algorithm (SSADA) such as modification 
of vessel density after intravitreal dexamethasone implant (IVDEX) and choriocapillaris density compared to that 
of eyes of healthy age-matched subjects.

Results
Demographic data. Three out of 63 patients were excluded from the study for poor image quality of OCTA 
images.

The mean age was 58.7 ±  17.6 years for patients with CRVO, 59.3 ±  5.6 years for patients with BRVO 
supero-temporal (ST), 55.9 ±  6.3 years for patients with BRVO infero-temporal (IT) and 56.1 ±  14.3 for the con-
trol group. The difference in age between the four groups was not statistically significant (p =  0.416). In the overall 
RVOs group of 60 patients 48.3% were females and 51.7% patients were males and in the control group of 40 
subjects 52.6% were females and 47.4% were males (p =  0.729). Among RVOs 20 eyes were affected by CRVO and 
40 eyes by BRVO (20 superotemporal BRVO, 20 inferotemporal BRVO).

At FA 2 out of 20 eyes with CRVO and 18 out of 40 eyes with BRVO showed macular ischemia (p =  0.015).
Four eyes in the CRVO group and 10 eyes in the BRVO group had received prior treatment anti–vascular 

endothelial growth factor (VEGF) injections while the remaining patients (46) were treatment naïve (p =  0.804).

Visual acuity and microperimetry. The mean BCVA and microperimetry (4°, 8°, 20°) values are reported 
in Table 1. The mean BCVA and microperimetry are significantly lower in the RVOs patients compared to con-
trols (p <  0.001 for BCVA, p <  0.001 for microperimtery at 4° and 8°) with lower values in CRVO compared to 
BRVO ST. Microperimetry within 4° and 8° is significantly lower in CRVO compared to BRVO (Table 1).

The 8° degree sensitivity and the inferior emifield, were significantly influenced by presence of macular 
ischemia (p =  0.036 and p =  0.020, respectively) with lower microperimetric values in macular ischemic vs non 
macular ischemic eyes at FA.

Quantitative vessel density analysis. Whole enface, FVD and PFVD of the superficial, deep plexus and 
of the choriocapillaris are shown in Table 2. Whole enface, FVD and PFVD of the superficial plexus were not sig-
nificantly lower in CRVO group compared to the control group while in the BRVO group overall PFVD was sig-
nificantly lower compared to control group with highest statistical significance in the affected sectors (p <  0.001). 
Whole enface and overall PFVD of the deep plexus were significantly lower in CRVO and BRVO groups com-
pared to the control group (p <  0.001). In CRVO group deep PFVD in the superior and inferior hemi fields was 
significantly lower compared to controls (p <  0.001). In BRVO groups deep PFVD in the superior and inferior 
hemi fields were respectively reduced in supero- and inferotemporal BRVO (p <  0.001). Whole enface FVD and 
overall PFVD of choriocapillaris was significantly reduced compared to controls in CRVO group (p <  0.001). 
PFVD of choriocapillaris was significantly reduced compared to controls in the affected hemi fields in BRVO 
groups (p <  0.001).

FVD of superficial plexus, PFVD of chorocapillaris and para- superior hemi fields and para-inferior hemi 
fields were significantly different in CRVO and BRVO groups considering the presence of macular ischemia 
(Table 2).

Qualitative vessel analysis. Superficial retinal vessels in the macular area were diffusely rarified in CRVO 
particularly in eyes with macular ischemia at FA and in the affected sector of both types of BRVO. In presence of 
macular ischemia disruption of perifoveal anastomotic arcade was a frequent finding.

In the deep retinal plexus a rarefaction of vessel density was observed with telengectatic appearance of retinal 
vessels particularly in the areas of macular edema (Fig. 1). Choriocapillaris showed texture rarefaction in the 
affected sector of BRVO and in whole macular area in CRVO beneath the retinal edema.

After dexamethasone implant treatment with partial or complete resolution of macular edema deep retinal 
vessels appeared less telangectatic.

Variable Controls CRVO
p-value vs 
controls BRVO ST

p-value vs 
controls BRVO IT

p-value vs 
controls p-valuea

Microperimetry (dB)

 20 degree sensitivity 10.55 ±  4.37 7.40 ±  4.23 0.136 9.98 ±  3.27 0.960 6.91 ±  3.14 0.052 0.125

 8 degree sensitivity 13.41 ±  1.01 5.50 ±  3.56*,° <0.001 9.42 ±  2.63+ <0.001 5.36 ±  2.94 <0.001 <0.001

 4 degree sensitivity 13.02 ±  5.28 3.75 ±  2.20*** <0.001 8.47 ±  2.10+++ 0.007 3.96 ±  1.73 <0.001 0.025

 Superior emifield 10.55 ±  4.32 7.39 ±  3.92 0.159 8.96 ±  4.56 0.577 5.87 ±  3.87 0.011 0.035

 Inferior emifield 12.44 ±  1.64 7.45 ±  4.24* <0.001 11.38 ±  2.35+ 0.450 7.27 ±  3.32 <0.001 <0.001

BCVA (logMar) 0.05 ±  0.07 0.35 ±  0.12 <0.001 0.33 ±  0.29 <0.001 0.41 ±  0.28 <0.001 0.594

Table 1.  Functional parameters (visual acuity and microperimetry) in patients with retinal vein occlusion 
at baseline. CRVO, central retinal vein occlusion; BRVO ST, superotemporal branch retinal vein occlusion; 
BRVO IT, inferotemporal branch retinal vein occlusion. *p <  0.05; **p <  0.01; ***p <  0.001 CRVO vs BRVO ST. 
°p <  0.05; °°p <  0.01; °°°p <  0.001 CRVO vs BRVO IT. +p <  0.05; ++p <  0.01; +++p <  0.001 BRVO ST vs BRVO IT. 
aProbability that values are influenced by type of occlusion (CRVO and BRVO) adjusted for presence of macular 
ischemia.
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Retinal macular thickness and subfoveal choroidal thickness analysis. Retinal macular thickness 
of RVOs patients is significantly increased compared to controls (p <  0.001) (Table S1 in the Supplementary 
Appendix). Significant correlations were found between macular thickness and visual function (microperimetry 
and VA) (Figure 1S in the Supplementary Appendix); and between macular thickness and superficial, deep and 
choriocapillaris vessel density (Figs 2, 3 and 4).

Variable Controls CRVO

p-value 
vs 

controls BRVO ST

p-value 
vs 

controls BRVO IT

p-value 
vs 

controls p-valuea

Density of superior plexus (%)

 Whole EnFace 50.06 ±  3.90 47.68 ±  3.24 0.289 46.59 ±  3.87 0.022 45.81 ±  4.12 0.011 0.282

 Fovea 30.76 ±  7.07 35.43 ±  3.29 0.299 32.45 ±  7.96 0.867 36.88 ±  11.84 0.090 0.033

 ParaFovea 51.85 ±  4.23 48.47 ±  2.65 0.089 47.58 ±  3.83 0.005 46.83 ±  3.97 0.003 0.426

 Para-Superior-Hemifield 52.04 ±  4.75 48.59 ±  2.73 0.134 45.06 ±  4.77 <0.001 48.75 ±  2.50 0.132 0.001

 Para-Inferior-Hemifield 51.67 ±  4.15 48.34 ±  2.84 0.128 50.10 ±  4.11+ 0.589 44.94 ±  6.08 <0.001 0.016

Density of deep plexus (%)

 Whole EnFace 57.46 ±  3.15 48.83 ±  4.61 <0.001 52.32 ±  5.30 0.001 51.29 ±  6.17 <0.001 0.443

 Fovea 26.78 ±  7.73 25.85 ±  6.54 0.985 25.72 ±  5.94 0.966 27.54 ±  10.02 0.991 0.713

 ParaFovea 60.32 ±  3.61 50.03 ±  4.92 <0.001 55.13 ±  5.92 0.003 53.41 ±  6.98 <0.001 0.407

 Para-Superior-Hemifield 60.47 ±  4.30 49.85 ±  5.14 <0.001 51.30 ±  6.96 <0.001 56.97 ±  6.62 0.213 0.001

 Para-Inferior-Hemifield 60.17 ±  3.53 50.21 ±  6.80 <0.001 58.96 ±  5.50+ 0.798 49.87 ±  8.23 <0.001 0.001

Density of choriocapillaris (%)

 Whole EnFace 66.82 ±  1.43 63.81 ±  1.17* <0.001 64.60 ±  1.70 0.002 62.6 ±  4.11 <0.001 0.262

 Fovea 66.61 ±  3.57 52.03 ±  15.67* <0.001 66.03 ±  5.94 0.992 63.31 ±  7.87 0.482 0.115

 ParaFovea 66.34 ±  1.71 59.74 ±  4.51 <0.001 64.56 ±  2.48 0.115 61.32 ±  4.64 <0.001 0.047

 Para-Superior-Hemifield 66.29 ±  1.93 59.38 ±  3.76° <0.001 60.82 ±  5.52+ <0.001 65.87 ±  3.31 0.977 0.001

 Para-Infererior-Hemifield 66.39 ±  1.80 60.10 ±  6.77* 0.001 68.35 ±  5.06++ 0.386 56.78 ±  8.62 <0.001 0.001

Table 2.  Retinal and choriocapillaris vessel density in patients with retinal vein occlusion at baseline. 
CRVO, central retinal vein occlusion; BRVO ST, superotemporal branch retinal vein occlusion; BRVO IT, 
inferotemporal branch retinal vein occlusion. *p <  0.05; **p <  0.01; ***p <  0.001 CRVO vs BRVO ST. °p <  0.05; 
°°p <  0.01; °°°p <  0.001 CRVO vs BRVO IT. +p <  0.05; ++p <  0.01; +++p <  0.001 BRVO ST vs BRVO IT. 
aProbability that values are influenced by type of occlusion (CRVO or BRVO) adjusted for presence of macular 
ischemia.

Figure 1. Optical coherence tomography (OCT) angiography images of a patient with supero-temporal 
branch retinal vein occlusion: deep retinal plexus before dexamethasone implant (panel A) showing areas of 
telangiectatic vessels (red squares) and after dexamethasone implant (panel B), showing vessel caliber reduction 
(green squares).
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Foveal para-superior and para-inferior macular thickness, were significantly different in CRVO and BRVO 
groups considering the presence of macular ischemia (p =  0.034, p =  0.001 and p <  0.001, respectively).

Suboveal choroidal thickness was not significantly different between CRVO, BRVO ST and BRVO IT and 
normal controls (p =  0.672, p =  0.242, p =  0.911) (Table 3) and it was not significantly influenced by presence of 
macular ischemia at FA.

Correlation analysis between different parameters. No correlation was found between vessel density 
and functional parameters. Retinal superficial and deep vessel density (Figs 2 and 3) were positively correlated to 
foveal and parafoveal retinal thickness on the contrary choriocapillaris density was negatively correlated to foveal 
and parafoveal retinal thickness (Fig. 4). Functional parameters such as microperimetry and visual acuity (Figure 1S  
in the Supplementary Appendix) were negatively correlated with foveal and parafoveal thickness.

Post treatment quantitative analysis. Thirty-eight patients (10 CRVO, 12 BRVO ST, 16 BRVO IT) out 
of 60 patients included in the study underwent IVDEX implant in the vitreous cavity to treat macular edema. In 
all groups BCVA significantly improved compared to baseline values (Table S2 in the Supplementary Appendix) 
with significant effect of presence of macular ischemia (p <  0.05) on the treatment. Microperimetry signifi-
cantly improved in CRVO and BRVO IT and showed a trend toward improvement in BRVO ST (Table S2 in the 
Supplementary Appendix). Macular thickness of RVOs patients is significantly reduced after treatment (Table S3 
in the Supplementary Appendix). Subfoveal choroidal thickness did not change significantly after treatment 
(Table 4) and it is not significantly influenced by presence of macular ischemia at FA. No significant changes 
of superficial and deep vessel density was observed after treatment both in CRVO and BRVO on the contrary 
choriocapillaris density significantly increased in foveal and parafoveal areas in CRVO, in parafoveal area of both 
BRVO, in foveal area of BRVO ST and in the affected sector of BRVO ST and BRVO IT considering the presence 
of macular ischemia (Table 5, Figs 5, 6, 7 and 8).

Discussion
In this study, using OCTA, we investigated retinal superficial and deep vessel densities and choriocapillaris den-
sity in patients with both central and branch retinal vein occlusions complicated by macular edema at baseline 
and after an intravitreal dexamethasone implant. Overall, we found a reduction of foveal and parafoveal retinal 
superficial and deep vascular density and choriocapillaris density compared to normal controls. Retinal superfi-
cial and deep vessel density did not change significantly after intravitreal dexamethasone implant, on the contrary 
choroid vessel density significantly increased.

Figure 2. Correlations [Pearson correlation coefficient (R)] between macular thickness (foveal and 
parafoveal thickness) and superficial vessel density (superficial foveal and parafoveal vascular density) in 
RVOs patients. 
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Figure 3. Correlations [Pearson correlation coefficient (R)] between macular thickness (foveal and 
parafoveal thickness) and deep vessel density (deep foveal and parafoveal vascular density) in RVOs 
patients. 

Figure 4. Correlations [Pearson correlation coefficient (R)] between macular thickness (foveal and 
parafoveal thickness) and choroid vessel density (choroid foveal and parafoveal vascular density) in RVOs 
patients. 
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FVD and PFVD of the superficial plexus were not significantly lower in CRVO group compared to the control 
group while in the BRVO group overall PFVD was significantly lower compared to control group with highest 
statistical significance in the affected sectors (p <  0.001).

Overall PFVD of the deep plexus was significantly lower in CRVO and BRVO groups compared to the control 
group (p <  0.001). In BRVO groups deep PFVD in the superior and inferior hemi fields were respectively reduced 
in supero- and inferotemporal BRVO (p <  0.001). FVD and overall PFVD of choriocapillaris was significantly 
reduced compared to controls in CRVO group (p <  0.001) and PFVD of choriocapillaris was significantly reduced 
compared to controls in the affected hemi fields in BRVO groups (p <  0.001). The presence of retinal ischemia at 
FA was related to lower values of superficial and deep vessel density and choriocapillaris density.

The results of our study partially confirm the data from the study of Samara et al. that reported lower vascular 
densities of superficial and deep retinal capillary densities in patients affected by BRVO compared to density 
values of the fellow eye10. In accordance with these results in our study both superficial and deep plexus in BRVO 
were reduced, nevertheless as already suggested by other authors the deep plexus was more severely affected 
compared to the superficial plexus. In addition in CRVO the vessel density was reduced only in the deep plexus 
compared to controls.

The more severe alteration of deep plexus was also demonstrated by Coscas et al. that found at OCTA ischemic 
areas more frequent in the deep capillary plexus9.

Previous in vivo animal studies have demonstrated that the venous flow from the deep vascular network joins 
the major veins in the superficial layers through transverse venules so that when a RVO is present the intravas-
cular pressure increases and the elevation of hydrostatic pressure is more rapid and severe in the deep network 
resulting in a perfusion decrease in the retinal tissues drained by the deep capillary plexus11.

This vessel topographic organization discovered in animals has also been hypothesized by Bonnin et al. that 
studied the vessel organization both in the superficial and in the deep plexus using OCTA in human eyes12. He 
found that the deep capillary plexus is composed of a capillary vortex arrangement, whose centers are aligned 
along the course of the macular superficial venules thus suggesting that capillary vortex drain into the superficial 
venules12.

Differences in superficial vessel density reduction compared to control eyes between CRVO and BRVO was 
probably related to a more severe perfusion decrease in BRVO in the affected sectors involving both plexuses. 
OCTA results confirm baseline characteristics of eyes at FA that showed higher percentage of macular ischemia 
in BRVO compared to CRVO.

It has been demonstrated that intravitreal administration of anti VEGF drugs in RVOs leads to a progression 
of retinal ischemia13,14. In our series there were no significant differences in the percentage of eyes previously 
treated with anti VEGF thus this aspect cannot explain differences between the two types of RVOs in superficial 
retinal vessel density. In addition the treatment with anti VEGF was performed more than 9 months prior to the 
entry in the study.

Retinal vessel density did not change significantly after intravitreal Ozurdex implant in all types of RVOs 
although retinal macular thickness significantly decreased with concurrent increase of VA and retinal sensitivity 
at microperimetry.

It has been demonstrated that intravitreal steroid such as dexamethasone or triamcinolone in eyes with RVOs 
or diabetic retinopathy causes a reduction of arteriolar or venular vessel diameter probably due to a blockage of 
vascular endothelial growth factor with macular edema improvement15,16.

Influence of intravitreal steroid treatment on vessel density has not been previously evaluated.
In our study some aspects could have influenced vessel density in the macular area after treatment: disappear-

ance of macular edema and steroid action on vessel diameter.
The presence of macular edema with intraretinal cysts may lead to vessel displacement in the area of interest 

thus at edema disappearance vessel topographic distribution may change.
In addition as already mentioned vessel caliber could change thus influencing vessel density in an area of 

interest. At a subjective evaluation we observed a normalization of vessel caliber after retinal edema resolution 
with deep vessels being less angiectatic nevertheless at a quantitative vessel density analysis we did not find a 
significant change of vessel density both in the superficial and deep plexuses that were significantly reduced 
compared to normal controls. This is probably due to the ischemic damage of retinal vessels that do not recover 
after treatment.

The analysis of choriocapillaris density is a previously unreported result in RVOs that was evaluated in our 
study.

Variable Controls CRVO
p-value vs 
controls BRVO ST

p-value vs 
controls BRVO IT

p-value vs 
controls p-valuea

Subfoveal 
choroidal 
thickness 
(μm)

257.81 ±  46.29 223.62 ±  71.33 0.672 296.10 ±  78.94 0.242 271.75 ±  93.43 0.911 0.214

Table 3.  Morphologic parameters (subfoveal choroidal thickness) in patients with retinal vein occlusion at 
baseline. CRVO, central retinal vein occlusion; BRVO ST, superotemporal branch retinal vein occlusion; BRVO 
IT, inferotemporal branch retinal vein occlusion. aProbability that values are influenced by type of occlusion 
(CRVO and BRVO) adjusted for presence of macular ischemia.



www.nature.com/scientificreports/

7Scientific REPORTS | 7:40763 | DOI: 10.1038/srep40763

Other authors analysed choriocapillaris density in vascular pathologies such as diabetic retinopathy (RD) or 
in age related macular degeneration (AMD)17–19. Agemy et al. found a reduction of choriocapillaris density in 
patients affected by DR with greater reduction at increasing disease severity17.

A reduction of choriocapillaris density has also been found in early stages of dry AMD18,19.
In our series we found a reduction of choriocapillaris in CRVO and BRVO compared to controls that returned 

to normal values after disappearance of macular edema related to intravitreal Ozurdex treatment.
Some studies showed in RVOs an increase of subfoveal choroidal thickness complicated by macular edema 

compared to controls with a reduction after intravitreal treatment either with steroid implant or anti VEGF20,21. 
They hypothesize choroid vessel dilation due VEGF hyper expression. Other authors did not find significant 
increase of subfoveal choroidal thickness compared to normal eyes22.

In our study we did not find significant differences in subfoveal choroidal thickness between diseased and 
normal eyes.

As far as regard choriocapillaris vessel density we can hypothesize that overlying pathologic retina due to 
edema could attenuate the OCT signal making regions of the choriocapillaris seem reduced. Other hypothesis 
could be explored comparing large series of RVOs eyes with or without macular edema to ascertain if hyper 
expression of VEGF could influence choriocapillaris density.

In this study we also evaluated correlation between the OCTA vessel density and functional parameters such 
as visual acuity and microperimetry and morphologic parameters such as foveal and parafoveal retinal thickness 
both in eyes with CRVO and BRVO.

No correlation was found between vessel density and functional parameters.
Retinal superficial and deep vessel density was positively correlated to foveal and parafoveal retinal thickness 

on the contrary choriocapillaris density was negatively correlated to retinal foveal and parafoveal thickness.

CRVO (n = 10) BRVO ST (n = 12) BRVO IT (n = 16)

Before treatment After treatment p-valuea Before treatment After treatment p-valuea Before treatment After treatment p-valuea

Subfoveal 
choroidal 
thickness (μm)

223.62 ±  71.33 232.60 ±  62.44 0.192 296.10 ±  78.94 313.33 ±  50.82 0.533 271.75 ±  93.43 252.50 ±  95.05 0.140

Table 4.  Morphologic parameters (subfofeal choroidal thickness) in patients with retinal vein occlusion 
after treatment. CRVO, central retinal vein occlusion; BRVO ST, superotemporal branch retinal vein occlusion; 
BRVO IT, inferotemporal branch retinal vein occlusion. aProbability that values are influenced by treatment 
adjusted for presence of macular ischemia.

CRVO (n = 10) BRVO ST (n = 12) BRVO IT (n = 16)

Before 
treatment

After 
treatment p-valuea

Before 
treatment

After 
treatment p-valuea

Before 
treatment

After 
treatment p-valuea

Density of sup plexus (%)

 Whole EnFace 47.68 ±  3.24 45.78 ±  5.16 0.548 46.59 ±  3.87 47.42 ±  2.41 0.039 45.81 ±  4.12 45.63 ±  2.17 0.199

 Fovea 35.43 ±  3.29 31.37 ±  3.97 <0.001 32.45 ±  7.96 31.28 ±  7.60 0.036 36.88 ±  11.84 36.06 ±  9.71 0.086

 ParaFovea 48.47 ±  2.65 49.60 ±  4.87 0.334 47.58 ±  3.83 47.03 ±  2.49 0.039 46.83 ±  3.97 46.91 ±  2.12 0.097

 Para-Superior-Hemifield 48.59 ±  2.73 49.89 ±  4.54 0.212 45.06 ±  4.77 45.72 ±  2.31 0.009 48.75 ±  2.50 48.27 ±  2.69 0.164

 Para-Inferior-Hemifield 48.34 ±  2.84 49.33 ±  5.26 0.649 50.10 ±  4.11 51.33 ±  2.66 0.040 44.94 ±  6.08 45.49 ±  2.33 0.166

Density of deep plexus (%)

 Whole EnFace 48.83 ±  4.61 49.93 ±  4.95 0.198 52.32 ±  5.30 52.82 ±  0.87 0.038 51.29 ±  6.17 51.40 ±  4.82 0.027

 Fovea 25.85 ±  6.54 26.13 ±  6.75 0.155 25.72 ±  5.94 26.92 ±  4.45 0.036 27.54 ±  10.02 27.37 ±  5.10 0.014

 ParaFovea 50.03 ±  4.92 52.42 ±  6.04 0.146 55.13 ±  5.92 56.26 ±  2.37 0.039 53.41 ±  6.98 53.56 ±  5.59 0.366

 Para-Superior-Hemifield 49.85 ±  5.14 51.69 ±  6.49 0.067 51.30 ±  6.96 51.92 ±  1.22 0.038 56.97 ±  6.62 56.15 ±  4.73 0.875

 Para-Inferior-Hemifield 50.21 ±  6.80 53.15 ±  5.97 0.490 58.96 ±  5.50 57.58 ±  3.56 0.039 49.87 ±  8.23 50.83 ±  6.79 0.053

Density of choriocapillaris (%)

 Whole EnFace 63.81 ±  1.17 66.36 ±  1.79 0.005 64.60 ±  1.70 65.27 ±  1.76 0.042 62.6 ±  4.11 65.57 ±  1.50 0.152

 Fovea 52.03 ±  15.67 65.51 ±  3.56 0.011 66.03 ±  5.94 70.36 ±  4.30 0.039 63.31 ±  7.87 63.69 ±  2.96 0.071

 ParaFovea 59.74 ±  4.51 66.13 ±  1.88 <0.001 64.56 ±  2.48 66.83 ±  0.67 0.042 61.32 ±  4.64 65.21 ±  1.63 0.009

 Para-Superior-Hemifield 59.38 ±  3.76 66.25 ±  1.35 <0.001 60.82 ±  5.52 64.32 ±  2.63 0.041 65.87 ±  3.31 65.30 ±  1.49 0.153

 Para-Inferior-Hemifield 60.10 ±  6.77 66.02 ±  2.46 0.072 68.35 ±  5.06 69.32 ±  3.91 0.042 56.78 ±  8.62 65.11 ±  1.80 0.023

Table 5.  Retinal and choriocapillaris vessel density in patients with retinal vein occlusion after treatment. 
CRVO, central retinal vein occlusion; BRVO ST, superotemporal branch retinal vein occlusion; BRVO IT, 
inferotemporal branch retinal vein occlusion. aProbability that values are influenced by treatment adjusted for 
presence of macular ischemia.
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OCTA with SSADA algorithm uses blood flow as intrinsic contrast and detects motion in the blood vessel 
lumen by measuring the variation in reflected OCT signal amplitude between consecutive cross-sectional scans. 
OCTA calculates flow index which is the average decorrelation value within a region of interest and vessel density 
calculated as the percentage area occupied by vessels in a circular ROI, with the blood vessels being defined as 
pixels having decorrelation values above threshold level. The decorrelation value varies within the capillaries and 
reaches the saturation value in larger blood vessels23. It has been demonstrated that macular edema is related to a 
hyper expression of VEGF and that greater amount of macular edema is associated to higher intraocular levels of 
inflammatory cytokines such as VEGF causing a disruption of the blood retinal barrier (BRB) with vessel caliber 
modification24,25. In our study the increase in vessel density with increasing macular edema could be attributed 
to an increase in vessel caliber because vessel density is defined as the percentage area occupied by flow pixels. 
As already stated RVOs patients with macular edema show areas of vessel density reduction mostly in the deep 
plexus compared to controls probably due to a perfusion decrease. As also reported by Spaide, sites of macular 
edema are mainly localized in the deep plexus in regions of reduced or absent flow26. Nevertheless independently 
from vascular non perfused areas, the superficial vessels and mainly the perfused vessels of the deep plexus are 

Figure 5. Fluorescein angiography (FA), enface optical coherence tomography (OCT) and OCT 
angiography (OCTA) images of a patient with ischemic supero-temporal branch retinal vein occlusion. 
Early (panel A: top) FA and late FA (panel A: bottom) showing tortuous vessels, retinal hemorrhages and 
diffuse vascular leakage in the late phase. Enface OCT images at the level of the superficial retinal plexus (panel 
B: top) showing hyporeflectivity in the superior macular area due to retinal edema and hemorrhages and 
arcuate hypereflectivity due fiber nerve swelling. Corresponding OCTA frame at the level of superficial retinal 
plexus (panel B: middle) showing rarified vessels in the superior macular area with disruption of perifoveal 
anastomotic arcade. Enface OCT at the level of the deep retinal plexus (panel C: top) showing numerous 
hyporeflective central spaces corresponding to retinal cysts separated by Mullers cells pillars, hyporeflective 
areas due to retinal hemorrhages and arcuate hypereflectivity due fiber nerve swelling. Corresponding OCTA 
frame at the level of the deep plexus (panel C: middle) showing telangiectatic and rarified vessels at OCTA. 
Enface OCT at the level of the choriocapillary (panel D: top ) showing hyporeflectivity due to overlying retinal 
edema and hemorrhages. Corresponding OCTA frame at the level of choriocapillaris (panel D: middle) showing 
apparent reduction of choriocapillaris texture in the area underlying the affected retina. OCTA images with 
vessel densities and relative longitudinal B-Scan images with highlighted layer segmentation (panel B, C, D: 
bottom left, bottom middle, bottom right).
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dilated due to two main mechanisms: increased blood flow resistance at the level of DCP and vascular dilation 
related to increased levels of cytokines and growth factors such as VEGF due to inflammation and ischemia26,27. 
Macular edema in veno-occlusive diseases has been linked to breakdown of blood-ocular barrier due to increased 
level of inflammatory cytokines and the amount of macular edema is related to intraocular levels of inflammatory 
cytokines24. It is possible to hypothesize that when a greater amount of macular edema is detected and greater 
levels of inflammatory cytokines such as VEGF are present they account for vessel dilation measured as a vessel 
density increase with OCTA in terms of increase of percentage area of vessel density in a ROI of interest.

On the contrary at increasing macular edema choriocapillaris density decreases probably due to the greater 
masking effect of the overlying thickened retina. In general signal strength of choriocapillaris and choroid is 
strongly attenuated by RPE and these layers have low signal with conventional spectral domain (SD) OCTA. In 
addition as already reported by Spaide in his review on image artifacts in OCTA en face imaging that relies on 
segmentation strategies are going to have difficulty in diseased eyes. In cases of retinal edema, the layers increase 
in thickness and the signal strength of the underlying choroid is reduced28. The reduced signal of SDOCTA limit 
has been partially overcome by swept source (SS) OCTA due to longer center wavelength that is less attenuated 
by RPE and less susceptibility to sensitivity roll-off allowing better visualization of choroid and choriocapillaris29. 
Probably the use of SSOCTA would permit also in case of RVO better visualization of choriocapillaris allowing 
more definitive conclusion on CC changes in case of macular edema.

Figure 6. Fluorescein angiography (FA), enface optical coherence tomography (OCT) and OCT 
angiography (OCTA) images of the same patient after IVDEX implant. Early (panel A: top) FA and late FA 
(panel A: bottom) reduction of retinal hemorrhages and mild vascular leakage in the late phase. Enface OCT 
images at the level of the superficial retinal plexus (panel B: top) with almost complete recovery of retinal 
structure. Corresponding OCTA frame at the level of superficial retinal plexus (panel B: middle) showing 
rarified vessels in the superior macular area with disruption of perifoveal anastomotic arcade. Enface OCT at 
the level of the deep retinal plexus (panel C: top) showing partial recovery of retinal structure. Corresponding 
OCTA frame at the level of the deep plexus (panel C: middle) showing almost normalized vessel caliber that 
are rarified mainly in the supero-temporal sectors. Enface OCT at the level of the choriocapillary (panel D: top) 
showing normal texture. Corresponding OCTA frame at the level of choriocapillaris (panel D: middle) showing 
normal choriocapillaris texture due to resolution of the overlying hemorrhages and intraretinal edema. OCTA 
images with vessel densities and relative longitudinal B-Scan images with highlighted layer segmentation (panel 
B, C, D: bottom left, bottom middle, bottom right).
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Functional parameters such as microperimetry and visual acuity were negatively correlated with foveal and 
parafoveal thickness.

In conclusion our study demonstrated that retinal vessel density is reduced both in CRVO and BRVO eyes 
with main involvement of the deep plexus and that vessel density does not recover after intravitreal steroid treat-
ment. Choriocapillaris density reduction should be better explored to evaluate the reliability of this finding or 
attribute it to a limit of OCTA in choriocapillaris analysis in eyes with pathologic overlying retina.

Other limits of this study are related to possible segmentation errors in diseased eyes particularly in presence 
of macular edema and to vessel density analysis errors due to projection artifacts from inner vascular plexus in 
the outer retina.

Materials and Methods
Study participants. Sixty-three eyes of 63 patients with ophthalmoscopy and fluorescein angiography (FA) 
diagnosis of either monolateral central retinal vein occlusion (CRVO) or BRVO complicated by macular edema 

Figure 7. Color fundus, fluorescein angiography (FA), enface optical coherence tomography (OCT) and 
OCT angiography (OCTA) images of a patient with well perfused central retinal vein occlusion. Color 
fundus photograph (panel A: top) showing tortuous and congested venous vessels, diffuse retinal hemorrhages 
and macular edema. Early (panel A: middle) FA and late FA (panel A: bottom) showing tortuous vessels, retinal 
hemorrhages and vascular leakage with pooling of dye in the late phase. Enface OCT images at the level of 
the superficial retinal plexus (panel B: middle) showing central hyporeflective spaces due intraretinal cysts. 
Corresponding OCTA frame at the level of superficial retinal plexus (panel B: top) showing vessels tortuosity. 
Enface OCT at the level of the deep retinal plexus (panel C: top) showing diffuse hyporeflective spaces 
corresponding to retinal cysts separated by Mullers cells pillars. Corresponding OCTA frame at the level of the 
deep plexus (panel C: middle) showing telangiectatic and rarified vessels and flow-void spaces. Enface OCT 
at the level of the choriocapillary (panel D: top right) showing hyporeflectivity due to overlying retinal edema 
and hemorrhages. Corresponding OCTA frame at the level of choriocapillaris (panel D: middle right) showing 
apparent reduction of choriocapillaris texture in the area underlying the affected retina. OCTA images with 
vessel densities and relative longitudinal B-Scan images with highlighted layer segmentation (panel B, C, D: 
bottom left, bottom middle, bottom right).
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were enrolled in the study. Forty-nine eyes were treatment-naive with recent macular edema (less than 3 months) 
and 14 eyes were previously treated with anti-VEGF with recurrence of macular edema (last injection over 9 
months prior to study entry). Patients consecutively presented at the Department of Ophthalmology, University 
“G. d’Annunzio” of Chieti-Pescara, between June 2015 and March 2016. Forty age-matched healthy subjects were 
included as controls. The Institutional Review Board of the Department of Medicine and Science of Aging of 
University “G. d’Annunzio of Chieti-Pescara, Italy, approved this study and patients signed informed consent to 
the use of their data. The study adhered to the tenets of the Declaration of Helsinki.

Criteria for inclusion were: 1) age 18 years old; 2) best-corrected visual acuity (BCVA) greater than 0.5 
LogMAR in the study eye at baseline examination (to ensure proper execution of examination); 3) confirmed 
ophthalmologic and fluorescein angiography diagnosis of RVO.

The exclusion criteria were: 1) any ocular surgery (included intravitreal injections) in the study eye in the last 
6 months; 2) laser treatment in the study eye; 3) history of glaucoma; 4) media opacity in the study eye.

Study Protocol. All recruited patients underwent a complete ophthalmic evaluation, including assessment 
of BCVA, tonometry, slit-lamp biomicroscopy, and indirect fundus ophthalmoscopy.

Figure 8. Color fundus, fluorescein angiography (FA), enface optical coherence tomography (OCT) and 
OCT angiography (OCTA) images of the same patient after IVDEX implant. Color fundus photograph 
(panel A: top), showing reduction of both hemorrhages and main vessel tortuosity. Early (panel A: middle) FA 
and late FA (panel A: bottom) reduction of retinal hemorrhages and mild vascular leakage in the late phase. 
Enface OCT images at the level of the superficial retinal plexus (panel B: top) with complete recovery of retinal 
structure. Corresponding OCTA frame at the level of superficial retinal plexus (panel B: middle) showing partial 
reduction of vessel tortuosity. Enface OCT at the level of the deep retinal plexus (panel C: top) showing partial 
recovery of retinal structure. Corresponding OCTA frame at the level of the deep plexus (panel C: middle) 
showing almost normalized vessel caliber that appear less dilated. Enface OCT at the level of the choriocapillaris 
(panel D: top right) showing normal texture. Corresponding OCTA frame at the level of choriocapillaris (panel 
D: middle right) showing normal choriocapillaris texture due to resolution of the overlying hemorrhages and 
intraretinal edema. OCTA images with vessel densities and relative longitudinal B-Scan images with highlighted 
layer segmentation (panel B, C, D: bottom left, bottom middle, bottom right).
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BCVA was assessed using an Early Treatment Diabetic Retinopathy Study (ETDRS) chart.
Furthermore, all patients were tested by means of XR Avanti®  AngioVue OCTA (Optovue Inc., Fremont, CA, 

USA).
RVO were classified according to the location of the occluded vessel: central retinal vein occlusion (CRVO); 

branch retinal vein occlusion (BRVO); and hemiretinal vein occlusion (hemi-RVO).
FA images previously acquired with Heidelberg Retina Angiograph 2 HRA2 (HRA+ OCT Spectralis: 

Heidelberg Engineering, Heidelberg, Germany) were used to assess the presence of ischemia in the macular area 
and RVOs were subjectively graded as ischemic or not by two independent experienced retina specialists (LT and 
LDA) and a final grade with presence or absence of macular ischemia was formulated if an agreement was reached 
by the two specialists.

In addition patients willing to improve their visual acuity, with no ocular or systemic contraindications to 
steroid treatment and signing an informed consent were treated with a sustained-release dexamethasone 0.7 mg 
intravitreal implant (DEX implant; Ozurdex, Allergan, Inc.) within 7 days from baseline examination.

Procedures. SD-OCT Angiography with XR Avanti. XR Avanti®  AngioVue OCTA (Optovue Inc., Fremont, 
CA, USA) is a device with a high-speed of 70,000 axial scans per second, using a light source of 840 nm, and an 
axial resolution of 5 μ m. The AngioVue OCTA system based on SSADA algorithm (Version: 2015.1.0.90) uses 
blood flow as intrinsic contrast. Indeed, the flow is detected as a variation over time in the speckle pattern formed 
by interference of light scattered from RBC and adjacent tissue structure5,30.

Before imaging, each subject’s pupils were dilated with a combination of 0,5% tropicamide and 10% phenyle-
phrine. Study participants underwent SD-OCT imaging following a protocol that included AngioVue OCT 3D 
volume set of 3 ×  3 mm, consisting of 304 ×  304 pixels in the transverse dimension. An internal fixation light was 
used to center the scanning area.

One FastX (horizontal raster) set and one FastY (vertical raster) set were performed for each acquisition scan. 
Scans with low quality (i.e. if the subject blinked or if there were significant motion artifacts) were excluded and 
repeated until good quality was achieved. Three scans for each patient were captured (all with a signal straight 
index 60) and the scan of best quality was chosen for analysis.

Vascular layer segmentation. Vascular retinal layers were visualized and segmented based on the default 
settings of the automated software algorithm of the XR Avanti AngioVue OCTA10,17. The superficial plexus con-
sists of the capillaries 3 μ m below the internal limiting membrane (ILM) to 15 μ m below the inner plexiform 
layer (IPL). The deep plexus extends from 15 μ m to 70 μ m below the IPL. The choriocapillaris consists of capil-
laries in a 30 μ m thick layer posterior to the retinal pigment epithelium-Bruch membrane junction. The software 
option to remove projection artifacts from inner vascular plexus in the outer retina was selected. Two observ-
ers, independently, checked image quality and excluded poor quality images leading to possible segmentation 
errors. Eventual manual adjustment of layer segmentation in case of inaccurate segmentation was performed by 
two-retina specialist (LT and EB) and the manual adjustment of segmentation was chosen only if a consensus was 
reached.

Quantitative vessel analysis. Objective quantification vessel density was evaluated on the OCTA en face 
images for each eye using the AngioVue software (Optovue, Inc., Fremont, CA, USA). The flow area was calcu-
lated with a user defined circular region of interest (ROI) and a threshold. The area within the ROI with intensi-
ties greater than the threshold was calculated. The vessel density was defined as the percentage area occupied by 
vessels in a circular ROI centered on the center of the foveal avascular zone and with a diameter of 2.5 mm. The 
AngioVue software automatically splits the ROI into two fields: the foveal area, a central circle with a diameter of 
1 mm; and the parafoveal area that constitutes the remaining part inside the ROI.

The AngioVue software automatically outputs the vessel density percentage inside the foveal area (foveal ves-
sel density – FVD), in the whole parafoveal area (parafoveal vessel density – PFVD), in the hemi superior and 
inferior fields, and in different quadrants of the parafoveal area (temporal, superior, nasal and inferior). FVD and 
PFVD of superficial and deep capillary plexuses and of choriocapillaris were analyzed.

The vessel density is calculated using the formula previously described5,30, as follows:

∫
∫

=
⋅

Vessel density
v dA

dA
,

where V is 1 when the OCTA value is above a background threshold and 0 otherwise. A is the area of interest.
For each patient whole enface (foveal and parafoveal) vessel density, foveal vessel density, parafoveal vessel 

density, superior and inferior hemi parafoveal vessel density in the superficial plexus, deep plexus and in the 
choriocapillaris were calculated.

Qualitative vessel analysis. Two independent observers (LT and LDA) subjectively evaluated OCTA in 
the 3 ×  3 mm scan of best quality. Vascular anomalies were evaluated in terms of vessels caliper (regular or irreg-
ular such as telangectatic vascular abnormalities and/or microaneurysm), vessel course (regular or irregular such 
as distorted) and density (normal or rarified).

Perifoveal capillaries were evaluated to disclose disruption or integrity of the perifoveal anastomotic arcades.

Foveal and parafoveal retinal thickness analysis. Foveal retinal thickness (FRT) and parafoveal reti-
nal thickness (PFRT) in different retinal quadrants were automatically calculated by the software on the OCTA 
3 ×  3 mm volume scan (XR Avanti® ; Optovue, Inc., Fremont, CA, USA) from ILM to RPE (full retinal thickness). 
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A circular ROI centered on the center of the foveal avascular zone with a diameter of 2.5 mm was considered for 
retinal thickness analysis: central foveal area (1 mm of diameter) and parafoveal area that constitutes the remain-
ing part inside the ROI (total parafoveal area or temporal, superior, nasal and inferior quadrants).

Choroidal thickness. Cross-sectional SD-OCT scan (10 mm scan length, 3 mm scan depth) of macular region 
was performed using the XR Avanti®  SD-OCT. The obtained scan provides visualization of structures from deep 
choroid well into the vitreous, in a single B-scan. The images were shown and measured with the XR Avanti®  
software. The choroid was manually measured in the sub-foveal (SF) location by a trained investigator (L.T.) from 
the outer portion of the hyper-reflective line corresponding to the RPE to the inner surface of the sclera.

Microperimetry. Microperimetry was performed by means of the MP-1 Microperimeter (Nidek Technologies, 
Padova, Italy), the latter using an infrared fundus camera with a liquid crystal display software-controlled.

All patients were dilated with tropicamide 1% eye drops and, after a pre-test training; 5 minutes of dark adap-
tation were performed. The test is routinely carried out with an automated eye tracking system, which provides 
real-time compensation for eye movements and allows improved presentation of a stimulus at the predefined 
retinal location. During the test, the patient was encouraged to fix a red ring target, 1° in diameter, on a white 
monochromatic background at 4 asb. Then, the retinal sensitivity was tested by means of a customized radial grid 
centered on the fovea and having 77 Goldman III stimuli covering the central 20°. Therefore, the retinal sensi-
tivity can be measured easily because the level of stimulation changes automatically and progressively during 
the microperimetry test. The stimulus intensity ranged from 0 dB to 20 dB (0 dB corresponded to the strongest 
signal intensity of 127 cd/m2) in 1-dB steps, and the duration of each stimulus was 200 milliseconds. Finally, in 
order to improve the correlation between microperimetric data with retinal characteristics, results were matched 
with a color digital retinography obtained with the MP1 color fundus camera. To assess central macular retinal 
sensitivity, differential light threshold values were compared by calculating the mean of the central 4° and 8°, and 
the superior and inferior 20° hemi-macular area which was averaged automatically by the MP-1 microperimetry 
software program of mean sensitivity in a polygon.

Treatment. Sustained-release dexamethasone 0.7 mg intravitreal implant (Ozurdex® ) was injected in the vitre-
ous cavity. All injections were performed in the operation room, and IVDEX was inserted into the vitreous cavity 
through the pars plana using a customized, single-use 22-gauge applicator. Patients were treated with a topical 
ophthalmic antibiotic for 10 days after the treatment.

Main outcome measures. Patients were examined at baseline and at 60 days after the IVDEX implant.
Main outcome measures were mean VA; microperimetry at 4°, 8° and 20°; foveal and parafoveal vessel density 

and retinal macular thickness and subfoveal choroidal thickness.

Sample size determination and statistical analysis. The estimation of the number of eyes was based on the main 
endpoint criteria. A planned sample size of 40 control patients and 20 patients in each of the RVO’s groups was 
expected to provide 80% power for a two-sided test with significance level of 0.05, assuming an effect size of 3 dB 
difference of sensibility between case and controls with between subjects’ pooled standard deviation of 4 dB.

The quantitative variables were summarized as mean and standard deviation (SD), qualitative variables as 
frequency and percentage. A Shapiro-Wilk’s test was performed to evaluate the departures from normality dis-
tribution for each variable.

Different two-way analysis of variance (ANOVA) was performed to evaluate the effect of type of occlusion 
(CRVO and BRVO) and presence of macular ischemia and their interaction on BCVA, microperimetry, macu-
lar thickness, choroidal thickness and vessel density parameters. Contrasts analysis, a priori specified were per-
formed to pairwaise comparisons among each of the three RVO groups (CRVO vs BRVO ST, CRVO vs BRVO IT 
and BRVO ST vs BRVO IT) and control group. Bonferroni- corrected p value were presented.

Chi-square test was applied to assess differences in the proportion between groups.
The Pearson correlation coefficient (R) was performed to analyze the correlation among BCVA, microperim-

etry, macular thickness and vessel density.
Different linear mixed models for repeated data were applied to regress pre and post treatment measures on 

the fixed-effect factors assuming unstructured covariance matrix. Linear mixed model for repeated measure-
ments was also used to evaluate the effect of each factor (presence of macular ischemia and treatment) and their 
interaction on BCVA, microperimetry, macular thickness and vessel density parameters. In all models a priori 
contrasts, were used to compare mean of different parameters between pre and post treatment.

Statistical analysis was performed using IBM® SPSS Statistics v 20.0 software (SPSS Inc, Chicago, Illinois, 
USA).
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The original version of this Article contained errors in the spelling of authors Rodolfo Mastropasqua, Lisa 
Toto, Luca Di Antonio, Enrico Borrelli, Alfonso Senatore, Marta Di Nicola, Giuseppe Di Martino and Marco 
Ciancaglini, which were incorrectly given as Mastropasqua Rodolfo, Toto Lisa, Di Antonio Luca, Borrelli Enrico, 
Senatore Alfonso, Di Nicola Marta, Di Martino Giuseppe, Ciancaglini Marco respectively.

These errors have now been corrected in the HTML and PDF versions of this Article.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
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