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Urinary proteomics can define 
distinct diagnostic inflammatory 
arthritis subgroups
Stefan Siebert1, Duncan Porter2, Caron Paterson1, Rosie Hampson2, Daniel Gaya3, 
Agnieszka Latosinska4, Harald Mischak4,5, Joost Schanstra6,7, William Mullen5 & Iain McInnes1

Current diagnostic tests applied to inflammatory arthritis lack the necessary specificity to appropriately 
categorise patients. There is a need for novel approaches to classify patients with these conditions. 
Herein we explored whether urinary proteomic biomarkers specific for different forms of arthritis 
(rheumatoid arthritis (RA), psoriatic arthritis (PsA), osteoarthritis (OA)) or chronic inflammatory 
conditions (inflammatory bowel disease (IBD)) can be identified. Fifty subjects per group with RA, PsA, 
OA or IBD and 50 healthy controls were included in the study. Two-thirds of these populations were 
randomly selected to serve as a training set, while the remaining one-third was reserved for validation. 
Sequential comparison of one group to the other four enabled identification of multiple urinary 
peptides significantly associated with discrete pathological conditions. Classifiers for the five groups 
were developed and subsequently tested blind in the validation test set. Upon unblinding, the classifiers 
demonstrated excellent performance, with an area under the curve between 0.90 and 0.97 per group. 
Identification of the peptide markers pointed to dysregulation of collagen synthesis and inflammation, 
but also novel inflammatory markers. We conclude that urinary peptide signatures can reliably 
differentiate between chronic arthropathies and inflammatory conditions with discrete pathogenesis.

Early diagnosis of inflammatory arthritis offers a window of opportunity for effective treatment and is asso-
ciated with improved patient outcomes1,2. However, in the initial stages of the disease, accurate diagnosis can 
be challenging because of the lack of sufficiently sensitive and specific diagnostic tests. Rheumatoid factor and 
anti-citrullinated protein antibodies used to support the diagnosis of rheumatoid arthritis (RA) have limited 
selectivity3. Moreover, there are no specific diagnostic tests available for conditions like psoriatic arthritis (PsA). 
Similarly, inflammatory markers such as C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) 
can be affected by a large number of variables, including age and obesity, and as such offer limited specificity in 
patient identification. Therefore, there is a need for novel diagnostic biomarkers to assist accurate, early diagnosis, 
particularly in primary care settings where specialist expertise and imaging may not be readily available.

We previously described the application of capillary electrophoresis coupled to mass spectrometry to identify 
urinary biomarkers for the diagnosis of several diseases such as acute and chronic kidney disease4, left ventricular 
dysfunction5, preeclampsia6 and cardiovascular diseases7, allowing accurate classification of case versus control 
groups. The use of urine for the identification of biomarkers has several advantages, including the non-invasive 
method of sample collection, the low dynamic range of analytes which facilitates the detection and analysis of bio-
markers, and high stability due to absence of proteolytic agents8,9. Stability of urine and interference of different 
agents has been investigated recently10, demonstrating good reproducibility and stability. The latter allows a urine 
sample to be posted to a laboratory for testing rather than a patient being required to attend a primary care loca-
tion for diagnosis by a specialist. Although concentration of compounds in urine differs substantially depending 
on the fluid intake, this can be compensated based on a set of urinary “housekeeping” peptides11. Furthermore, 
identification of proteomic biomarkers may be useful in understanding the molecular mechanisms involved in 
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the onset and progression of a disease12. Disadvantages of urine may be a bias towards diseases of the kidney 
and urogenital tract (proteins and peptides derived thereof represent about 70% of the urine proteome), and 
frequently a lack of a direct connection between the biomarkers identified in urine, and the molecular changes in 
the tissue (not applicable for kidney disease).

In a pilot study we defined peptide biomarkers in urine that distinguished RA from healthy controls13. It is 
possible that the biomarkers identified reflected the presence of systemic inflammation, synovial inflammation, 
joint damage, or a combination of these. As such, they could be markers of articular insult/damage in general 
(conferring no diagnostic specificity), inflammatory arthritis, systemic inflammation or they could be disease 
specific.

In this further pilot study, we sought to identify novel urinary biomarkers that distinguish different forms 
of chronic arthropathy including RA, PsA, osteoarthritis (OA) from a discrete inflammatory disease, namely 
inflammatory bowel disease (IBD). We hypothesized that specific peptides could be detected in urine samples of 
patients that could be combined into a classifier, which may be developed into a tool enabling early and differ-
ential diagnosis. In order to eliminate non-specific biomarkers of classical systemic inflammation and/or joint 
damage, we selected diagnostic groups that over-lapped for each of these domains – i.e. OA, PsA and RA are 
associated with joint damage (but IBD is not); RA, PsA and IBD are chronic inflammatory diseases (but OA is 
not); and PsA usually involves the skin whereas RA, IBD and OA usually do not.

Results
The demographic and applicable clinical characteristics of the cohort are shown in Table 1. All urine samples 
could be successfully analyzed and passed quality control10. As a first step we aimed at assessing the performance 
of the previously identified biomarker panel for RA13 in this independent cohort. For this purpose, the previ-
ously defined classifier was applied blinded to 100 samples from patients with RA (n =  50) and healthy controls 
(n =  50). Upon unblinding, the data revealed a significant association of the previously developed classifier with 
RA in comparison to healthy controls, with an area under the curve (AUC) of 0.83 (p <  0.01, Fig. 1A). While this 
confirmed the validity of the previously developed classifier for RA, it also indicated that further improvement 
would be beneficial for future clinical implementation.

The previously described biomarker classifier was not developed for differential diagnosis of RA, OA, IBD, 
and PsA. This is also evident from the scoring using the previously developed RA classifier for these groups of 
patients. As shown in Fig. 1B, the scoring for the other conditions was distributed between healthy controls and 
RA. Differential diagnosis would require employing different classifiers, one for each disease. As a next step, we 

Diagnosis  
(n = 50 for each group)

Age  
mean (±SD) years

Females 
number (%)

Healthy Controls 48.3 (± 13.3) 33 (66%)

Inflammatory Bowel Disease (IBD): - 
Crohn’s (n =  42), ulcerative colitis (n =  8) 48.1 (± 18.0) 28 (56%)

Osteoarthritis (OA) 64.6 (± 10.3) 31 (62%)

Rheumatoid Arthritis (RA) 56.1 (± 13.8) 33 (66%)

Psoriatic Arthritis (PsA) 53.8 (± 11.7) 30 (60%)

Table 1.  Clinical and demographic data for the disease groups.

Figure 1. (A) Receiver operating characteristics (ROC) curve for the performance of the previously published 
biomarker model13 in patients with RA compared to healthy controls. The dotted lines represent the upper and 
lower limits of the 95% CI. (B) Box-whisker blots of the scoring of the 5 different groups with the previously 
developed “RA” classifier. IBD – inflammatory bowel disease; OA – osteoarthritis; PsA – psoriatic arthritis; RA 
– rheumatoid arthritis.
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therefore investigated if the different diseases represented here can be distinguished from each other, based on the 
urine proteome by a de novo analysis. To identify biomarkers that may enable differential diagnosis, and to assess 
the value of such biomarkers and any classifiers developed, we employed a study design based on an initial dis-
covery cohort employed as training set for the classifier, and another test cohort to assess the performance of the 
biomarkers. As depicted in Fig. 2, the cohort was separated into a training set which included a random selection 
of 2 thirds of the entire cohort (33 samples from each of the four disease and the healthy control groups), and a 
validation test set, containing 1/3 of the samples (n =  17 per group).

As a first step we aimed at identifying urinary biomarkers specific for the 5 different clinical groups. To this 
end, we compared each group (PsA, RA, OA, IBD, healthy controls) with all others. In each case we could identify 
peptides significantly associated with the respective group being tested, ranging between 89 (healthy controls) 
and 566 (RA) peptides. The results are presented in Supplementary Table 1.

Since potential peptide biomarkers specific for each of the 5 groups could be identified, we developed classi-
fiers for each of the 5 groups. To avoid introducing bias, and to give similar “weight” to each group, we employed 
the same number of potential biomarkers (i.e. the 50 most significant peptides) as biomarkers in each group. 
This number was chosen based on of the number of potentially significant biomarkers available in all groups 
and the previous observation that more biomarkers confer higher stability to the classifier. There was very little 
overlap in the biomarkers between the five groups, with > 80% of the biomarkers for each group being unique 
for that respective disease group only, as evident from the Venn diagram (Fig. 3). The 50 most significant bio-
markers per group are listed in the Supplementary Table 2, including the average abundance of the peptide in 
each of the 5 groups separately, and the p-value. All 50 potential biomarkers were initially included in each of the 
high-dimensional classifiers, which were subsequently trained in the discovery cohort. Using a bootstrapping 
approach based on take-one-out cross-validation, the number of biomarkers employed was reduced to 45 in each 
classifier. This is based on past experience where a 10% reduction of the number of biomarkers was found to be 
the optimum between improving the classifier, and overfitting (Mischak, unpublished, and ref. 14).

The five classifiers were subsequently applied to the validation set in a blinded manner. After unblinding, 
the results were evaluated using Receiver Operating Characteristics (ROC) analysis. As presented in Fig. 4, the 
classifiers enabled detection of the respective disease with very good accuracy, with the AUC being between 0.90 
and 0.97, depending on the group. The scoring of each of the samples with all five classifiers is also presented in 

Figure 2. Schematic of the study design. The available samples from each of the 5 groups were randomly 
assigned, using an automated algorithm, to the training (discovery) or the validation test set. Samples in the 
training set were used to identify potential biomarkers by comparing each group with all the others to identify 
peptides significantly associated with each group. In order to avoid introducing bias and to give similar 
weighting to each group, the 50 most significant peptides in each group were then used to generate a 45 peptide 
classifier specific for the respective group. Performance of this classifier was tested in the remaining blinded 
independent samples in the validation set to give an assessment of the performance of the classifiers for each 
disease (shown in Fig. 4).
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Supplementary Table 3. When examining the misclassified samples, no obvious association of the misclassifica-
tion with a specific pathology could be observed, suggesting the errors are random.

Figure 3. Venn diagram of the overlap between the 50 most significant peptides per group. Only minor 
overlap can be detected between the five groups, with 80% or more of the peptides being significant for one 
specific group only. OA – osteoarthritis; IBD – inflammatory bowel disease; PsA – psoriatic arthritis; RA – 
rheumatoid arthritis

Figure 4. Receiver operating characteristics (ROC) curve for the performance of the five classifiers (as 
identified in the discovery (training) test set (n = 33 for each cohort) in the blinded independent validation 
test set (n = 75 in total, 17 for each cohort). The dotted lines represent the upper and lower limits of the 95% 
CI. AUC – area under the curve; OA – osteoarthritis; PsA – psoriatic arthritis; IBD – inflammatory bowel 
disease; RA – rheumatoid arthritis.
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OA IBD RA PsA Healthy control

Sequence
Protein 
Symbol Protein Namep-value fold-

change p-value fold-
change p-value fold-

change p-value fold-
change p-value fold-

change

1.22E-06 0.12 1.16E-07 2.76 GRYVPGSASmGTTM 
AGVDPFTGNSAYRSAAS PLAA Phospholipase A-2-

activating protein; PLAA

 3.97E-06 2.38 SGSVIDQSRVLNLGP UMOD Uromodulin

 1.23E-05 1.75 KEGGKGPRGETGPAG 
RpGEVGpPGPpGP COL1A1 Collagen alpha-1(I) chain

8.79E-06 0.64 1.51E-05 1.38 TGSpGSpGPDGKTG 
PPGpAG COL1A1 Collagen alpha-1(I) chain

4.40E-06 0.47 2.19E-05 1.75 DDGEAGKpG COL1A1 Collagen alpha-1(I) chain

 2.84E-05 1.73 TTLSPSSSTTHEGEPTTF 
QSWPSSKDTSPAPSG MUC12 Mucin-12

 3.55E-05 2.68 TGLSmDGGGSPKGDVDP FXYD2
Sodium/potassium-
transporting ATPase 
subunit gamma

 4.36E-05 2.07 ADGQPGAKGEpGDAGAK 
GDAGPpGPAGPAGPPGPIG COL1A1 Collagen alpha-1(I) chain

 4.74E-05 1.79 TGEVGAVGppGFAGEKGPS 
GEAGTAGpPGTpGPQG COL1A2 Collagen alpha-2(I) chain

 9.63E-05 2.48 QKGDEGPPGISIpGppGLD 
GQpGAP COL4A5 Collagen alpha-5(IV) 

chain; COL4A5

 7.70E-06 1.59 AGSEADHEGTHSTKRG FGA Fibrinogen alpha chain; 
FGA

 9.72E-06 2.41 FVESQKDPENSPV CTSA Cathepsin A; CTSA

 2.30E-05 0.46 AGVANALAHKYH HBD Hemoglobin subunit delta

 2.88E-05 0.34 NVGApGAKGARGSAGPpGAT 
GFpGAAGRVGPpGP COL1A1 Collagen alpha-1(I) chain

 4.17E-05 7.55 LNAADADVPLDDLTFT FREM2
FRAS1-related 
extracellular matrix 
protein 2; FREM2

 6.43E-05 0.22 AGGGAGGAAGAEGGPEAA 
GGAAESPAEGE ICAM5 Intercellular adhesion 

molecule 5

 8.18E-05 0.22 KLGHPDTL S100A9 Protein S100-A9

 8.37E-05 1.54 LGPHAGDVEGHLS APOA4 Apolipoprotein A-IV

 9.58E-05 1.29 GppGPDGNKGEpG COL1A2 Collagen alpha-2(I) chain

 1.18E-04 1.46 DKGETGEQGDRG COL1A1 Collagen alpha-1(I) chain

 2.88E-09 5.37 PEPAKSAPAPKKG HIST1H2BK Histone H2B type 
1-C/E/F/G/I

 1.97E-08 4.59 pGPQGPLGKPGAPGEPGPQG COL8A1 Collagen alpha-1(VIII) 
chain

 8.62E-08 1.44 NGApGNDGAKGDAGApG 
ApGSQGApG COL1A1 Collagen alpha-1(I) chain

 1.63E-07 9.42 DGAKGDAGPAGPKGEpGS 
pGENGApG COL1A1 Collagen alpha-1(I) chain

 4.53E-07 2.72 DGQPGAKGEpGDAG COL1A1 Collagen alpha-1(I) chain

 7.21E-07 3.73 RVLNLGPITR UMOD Uromodulin; UMOD

 8.61E-07 2.28 PVQGQQQGP CUX1 Homeobox protein cut-
like 1; CUX1

 1.07E-06 2.04 NGEpGGKGERGApGEKG 
EGGppG COL3A1 Collagen alpha-1(III) 

chain; COL3A1

 1.09E-06 3.46 DEAGSEADHEGTHSTK FGA Fibrinogen alpha chain

 9.99E-05 0.27 1.10E-06 2.47 PPPLPPPPPPPPP PRIMA1 Isoform 2 of Proline-rich 
membrane anchor 1

 5.48E-08 0.25 GRAGEpGLQGpAGPPG 
EKGEpGDDGPSGAEGpP COL2A1, Collagen alpha-1(II) 

chain

 7.74E-08 0.55 EpGSpGENGApGQmGPR COL1A1 Collagen alpha-1(I) chain

 4.79E-07 0.33 GADGQPGAKGEpGDA 
GAKGDAGPpGPAGP COL1A1 Collagen alpha-1(I) chain

 2.50E-06 0.41 GEVGPAGSpGSNGApGQ 
RGEpGPQGHAGAQGp COL3A1 Collagen alpha-1(III) 

chain; COL3A1

 8.44E-06 0.43 PpGppGPpGVPGSD 
GIDGDNGPPGK COL9A2 Collagen alpha-2(IX) 

chain; COL9A2

 1.12E-05 2.13 GQDGRpGPpGPpG COL1A1 Collagen alpha-1(I) chain

 1.61E-05 0.26 PAPAPPPEPERPKEVE MYL3 Myosin light chain 3; 
MYL3

 1.98E-05 0.16 SIAAGGEGLTDVSPE ATG12 Ubiquitin-like protein 
ATG12; ATG12

Continued
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To examine if the results can be linked to molecular pathophysiology, we investigated the biomarkers on a 
single peptide level. The ten most significant sequenced peptides for each of the five groups are presented in 
Table 2. This number was chosen for pragmatic reason, to allow for some coverage, while at the same time avoid 
investigating a very large list of peptides.

Collagen fragments are abundant in urine. 50% of the peptide markers associated with the different arthritic 
disease groups were collagen fragments, with collagen alpha-1(I) chain being the most frequently found species. 
The OA group displayed the highest number of reduced urinary collagen alpha-1(I) chain fragments (3/10), while 
in the healthy control group the highest number of increased collagen alpha-1(I) chain fragments (4/10) was 
observed. Two collagen alpha-1(I) chain fragments overlapped between these two conditions. All other collagen 
fragments, including collagen alpha-2(I), collagen alpha-1(II), collagen alpha-1(III), collagen alpha-5(IV), colla-
gen alpha-1(VIII) and collagen alpha-2(IX) chains, did not display specific enrichment in any one of the groups. 
Only a few fragments were derived from proteins generally known to be associated to inflammation, including 
protein S100-A9, fibrinogen and ICAM5. In addition, a number of other peptide fragments derived from func-
tionally very different proteins not previously identified to be associated to arthritis were identified (Table 2).

Discussion
The identification of urinary biomarkers that distinguish between these discrete rheumatic and inflammatory 
diseases in this pilot study is encouraging, and suggests that further study of urinary peptidomics will be worth-
while to further explore the diagnostic potential of this approach for inflammatory arthritis. However, this study 
was small and will require validation in independent cohorts. If the utility of the classifiers is confirmed, it will 
also be necessary to establish whether changes in the sample collection protocols affect the accuracy of the various 
classifiers. Nevertheless, our study provides the first substantive data suggesting that inflammatory arthropathies 
could yield unique peptide profiles of this kind.

Ultimately, the goal would be the development of a diagnostic kit that could be used in routine clinical prac-
tice. This may benefit from a reduced number of biomarkers. To investigate this issue, we reduced the classifiers to 
10 biomarkers per condition. In each case the AUC dropped, although not significantly, and classification based 
on 10 biomarkers was consistently of slightly lower accuracy than classification based on 45 biomarkers. This 
was expected based on our previous experience; similar approaches in chronic kidney disease4 or cardiovascular 
disease7 also demonstrated that a reduction of the number of biomarkers leads to a reduction in the diagnostic 
accuracy. Two issues may be responsible for this observation: 1) the complexity of these diseases cannot be dis-
played by a limited set of features, and 2) biological variability can to some degree be counteracted by assessment 
of multiple variables. Hence, a higher number of biomarkers will confer more stability and higher accuracy to the 
classifier.

It was possible that we would detect non-specific biomarkers of joint damage, or chronic inflammation rather 
than disease-specific biomarkers. We used a range of chronic disease with different but overlapping character-
istics to mitigate this pitfall – for example, RA and PsA are both classical chronic inflammatory arthropathies, 
whereas OA compromises articular compromise but is not associated with significant systemic inflammation. 
We were able to develop classifiers that identified and distinguished patients with each of the selected diseases, 
indicating that the peptides included in these classifiers are not simply non-specific markers of either chronic 
inflammation or joint damage. This is also supported by the fact that few commonly known inflammatory mark-
ers (eg fibrinogen, protein S100-A9 and ICAM5) were among the 10 most significant biomarker peptides per 
disease group (Table 2). In contrast, peptide fragments of proteins involved in specific inflammatory processes 
not previously identified in arthritic diseases were found to be associated with specific disease groups. As an 
example, homeobox protein cut-like 1 (CUX1) was found to be associated to the RA group and has previously 
been shown to be potentially involved in pro-inflammatory tumour necrosis factor alpha (TNFα ) production 

OA IBD RA PsA Healthy control

Sequence
Protein 
Symbol Protein Namep-value fold-

change p-value fold-
change p-value fold-

change p-value fold-
change p-value fold-

change

 2.29E-05 2.83 NTGAPGSpGVSGpKGDA 
GQPGEKGSpGAQGPPGAPGPLG COL3A1 Collagen alpha-1(III) 

chain

 3.56E-05 0.50 SVIDQSRVLNLGPITR UMOD Uromodulin

1.33E-07 2.29 ASTAQASSSAASNNH 
QVGSGNDPWSA SNX9 Sorting nexin-9

1.79E-06 1.39 FAERNPVEELTVDSPPVQ PCDH12 Protocadherin-12

1.69E-05 1.45 PpGEAGKpGEQGVpGDLGAPGP COL1A1 Collagen alpha-1(I) chain

2.26E-05 0.62 LTGPIGPPGpAGApGD 
KGESGPSGPAGPTG COL1A1 Collagen alpha-1(I) chain

3.78E-05 1.72 HQGPAGPpGPpGPp 
GPpGVSGGG COL1A2 Collagen alpha-2(I) chain

3.84E-05 1.55 VANEESEHNQGASEENGLP TRPC4AP
Short transient receptor 
potential channel 
4-associated protein

3.84E-05 1.90 SGPpGPDGNKGEpG COL1A2 Collagen alpha-2(I) chain

Table 1. Most significant sequenced peptides associated with RA, PsA OA, IBD, or healthy controls.
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following lipopolysaccharide administration15. Collagen remodelling is key in articular disease16 and 50% of the 
peptides were fragments of various collagens. In addition, CUX1 has been shown to inhibit high dose transform-
ing growth factor β -induced collagen I production17. Although the in situ change in abundance of the different 
urinary peptide markers remain to be determined, examination of the nature of the peptides might thus led to 
confirmation of existing processes in arthritic diseases or uncover novel insight. It should be noted that several 
of the biomarker peptides identified are from highly abundant proteins. The most plausible hypothesis for their 
differential abundance is a significant difference in specific proteases. Hence, the peptide biomarkers observed 
likely do not reflect abundance of the parental protein, but activity of potentially disease-specific proteases.

The results also suggest that this approach may have potential for the identification of patients with inflamma-
tory arthritis in general when combining the disease classifiers (i.e. as screening test in primary care settings) as 
well as diagnostic test for the specific condition (i.e. in specialist secondary care settings). The latter may become 
increasingly important as the targeted biologic therapies for these conditions progressively diverge in response to 
increased understanding of the shared and distinct pathophysiologies between RA and PsA. While the patients 
with OA had end-stage disease requiring joint replacement, it would be interesting to evaluate the performance 
of the OA classifier in patients with early radiographic changes, particularly as the development of therapeutics in 
OA is severely hampered by the current absence of reliable diagnostic biomarkers.

It is not possible to directly compare the peptides identified in this study with those in previously published 
studies for a number of reasons. Firstly, the vast majority of previous studies evaluated peptides in serum, synovial 
fluid or tissue (for example cartilage, skin, synovial biopsies)18–20. Biomarkers present in these specimens would 
not be expected to be present in urine in an unmodified manner. These previous studies also focused largely on 
using proteomics to identify biomarkers of disease activity or treatment response rather than for diagnostic pur-
poses18–21. Furthermore, the differentially expressed peptides identified will depend on which condition they are 
being compared to, and in our case this was a unique combination of four other conditions for each condition.

Our study has several limitations: firstly, not all biomarkers could be identified. This is most likely a result of 
unknown post-translational modifications22. However, a large number of biomarkers could be sequenced, and 
shows good linkage to molecular pathophysiology. Another limitation is the relatively small size cohort employed 
for validation. However, the classification results obtained are of very high statistical significance, suggesting a 
high certainty in the validity of the findings. Before considering employing these classifiers in routine clinical 
assessment of patients, their value has to be demonstrated and validated in a separate longitudinal study in a 
larger, carefully phenotyped cohort of patients with early or undifferentiated disease. These larger studies would 
also allow the influence of other factors (such as gender, age, body mass index (BMI), medication, disease activity) 
to be assessed, which is not possible in a study of the current size.

In summary, urine proteomics offers potential as a method for developing biomarkers in chronic rheumatic 
conditions. We have identified classifiers that can reliably differentiate between each of the five disease states. 
Furthermore, the differentially expressed peptides may suggest proteases differentially involved in, or affected by, 
the various conditions. While identifying the specific pathways is not required for the development of diagnostic 
biomarkers, further identification is likely to be useful for understanding the pathophysiology of these diseases 
and may have therapeutic implications. We plan to develop these aspects further in our future work.

Methods and Materials
Patients and sample collection. Patients with OA, PsA, RA or IBD attending hospital-based specialist 
outpatient clinics were invited to provide a sample for this study. The patients had a diagnosis made by their 
rheumatologist (RA and PsA), orthopaedic surgeon (OA) or gastroenterologist (IBD). Patients could be on any 
anti-rheumatic therapies excluding cyclosporine or biologic agents. Spot urine samples were collected, immedi-
ately filtered and chilled, and then stored frozen until processed as recommended by the European Kidney and 
Urine Proteomics, and the Human Kidney and Urine Proteome Project, and described previously23. All samples 
were analyzed with the investigator blinded to the patients’ diagnosis. The samples from the patients with RA were 
selected from patients in the Scottish Early RA (SERA) inception cohort biobank24 who fulfilled the 2010 ACR/
EULAR diagnostic criteria for RA. Samples for OA patients were obtained from patients with OA, but no history 
of RA or PsA, attending orthopaedic pre-operative assessment clinics in advance of knee or hip replacement sur-
gery. Samples for IBD were collected from patients with IBD but no joint disease. The SERA study (RA patients) 
was given study-specific approval by the West of Scotland Research Ethics Committee (REC reference number 
10/S0704/20). The PsA, OA IBD and healthy control samples were collected using generic sample collection 
approval from the West of Scotland Research Ethics Committee (REC reference number 11/S0704/7). Our study 
was done according to the protocol approved by the research team in the Institute of Infection, Immunity and 
Inflammation, University of Glasgow, and in line with the Declaration of Helsinki and International Committee 
on Harmonisation good clinical practice. All patients provided written informed consent for their samples to be 
used for research.

Urinary proteome analysis and peptide identification. The urine samples were prepared and ana-
lyzed using a P/ACE MDQ capillary electrophoresis system (Beckman Coulter, Fullerton, USA) on line coupled 
to a MicroTOF MS (Bruker, Bremen, Germany) exactly as described previously10. Details on accuracy, precision, 
selectivity, sensitivity, reproducibility, and stability of the CE-MS method have been previously described10,25. To 
ensure appropriate quality of the analytical platform, a standard urine sample23 is prepared and analyzed daily, 
and data are evaluated to fulfil the predefined quality control criteria, including appropriate reproducibility, as 
detailed previously (e.g. in Stalmach et al.26). MosaiquesVisu was used to analyse the CE-MS data27. Twenty nine 
collagen peptides that have been identified previously as being of high abundance and without apparent associ-
ation to disease were used as internal standards11. Briefly, ion counts are employed as measure of relative abun-
dance, and are calibrated based on the abundance of the 29 predefined internal standards, using linear regression 
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analysis11. This approach has been tested extensively and used in over 100 studies and over 10000 samples28, and 
is being routinely employed in a number of large randomized controlled trials29–31. All detected peptides were 
deposited, matched, and annotated in a MicrosoftSQL database26, allowing for further analysis and comparison 
between case and control groups. Sequencing of target peptides was performed as described32, using Dionex 
Ultimate 3000 RSLS nano flow system (Dionex, Camberly UK) and a Beckman CE, coupled to an Orbitrap Velos 
MS instrument (Thermo Scientific).

Statistical analysis and classifier development. After testing for normal distribution, continuous data 
were compared by Wilcoxon t-test, as this test has proven to be of superior statistical power in proteomics data-
sets14. A p-value of < 0.05 was considered to be statistically significant. In order to control for the false discovery 
rate, the p-values were adjusted by the Benjamini and Hochberg method33. For the development of classifiers, 
the amplitudes of the single peptides that were selected as biomarkers were combined using a support vector 
machine (SVM), to result in a single variable (SVM score)14. The process of statistical analysis and subsequent 
classifier development has been previously optimized specifically for urinary peptide data from CE-MS analysis14 
and has been applied as routine procedure in multiple studies, some also jointly with regulatory agencies34, and 
acknowledged as being of significant value by regulators35. We employed a study design based on an initial dis-
covery cohort employed as training set for the classifier, and another test cohort to assess the performance of the 
biomarkers. Participants were randomly assigned, using an automated algorithm (the srand() function in C+ + ), 
to either the training set (containing 2 thirds of the entire cohort; 33 samples from each of the four disease and the 
healthy control groups) or a validation test set (containing 1 third of the cohort; n =  17 per group).
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