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Abnormalities of regional brain 
function in Parkinson’s disease: 
a meta-analysis of resting state 
functional magnetic resonance 
imaging studies
PingLei Pan1,2, Yang Zhang1, Yi Liu1, He Zhang1, DeNing Guan1 & Yun Xu1,3,4,5,6

There is convincing evidence that abnormalities of regional brain function exist in Parkinson’s disease 
(PD). However, many resting-state functional magnetic resonance imaging (rs-fMRI) studies using 
amplitude of low-frequency fluctuations (ALFF) have reported inconsistent results about regional 
spontaneous neuronal activity in PD. Therefore, we conducted a comprehensive meta-analysis using 
the Seed-based d Mapping and several complementary analyses. We searched PubMed, Embase, and 
Web of Science databases for eligible whole-brain rs-fMRI studies that measured ALFF differences 
between patients with PD and healthy controls published from January 1st, 2000 until June 24, 2016. 
Eleven studies reporting 14 comparisons, comparing 421 patients and 381 healthy controls, were 
included. The most consistent and replicable findings in patients with PD compared with healthy 
controls were identified, including the decreased ALFFs in the bilateral supplementary motor areas, left 
putamen, left premotor cortex, and left inferior parietal gyrus, and increased ALFFs in the right inferior 
parietal gyrus. The altered ALFFs in these brain regions are related to motor deficits and compensation 
in PD, which contribute to understanding its neurobiological underpinnings and could serve as specific 
regions of interest for further studies.

Parkinson’s disease (PD) is a common neurodegenerative disorder associated with progressive disability and 
chronic suffering that lead to a great social burden1,2. PD is traditionally defined as a movement disorder result-
ing from a prominent loss of dopaminergic neurons of the nigrostriatal pathway, but more recently it has been 
demonstrated that widespread non-motor symptoms, such as cognitive impairment and mood disorders, are 
also prevalent, which involve extensive brain regions3–6. PD is clinically and etiologically heterogeneous and its 
complex neurobiological underpinnings remain to be fully elucidated3.

During the last decade, resting-state functional magnetic resonance imaging (rs-fMRI) has become an estab-
lished approach for exploring functional neuroanatomy in vivo and numerous studies have sought to unravel 
the key abnormalities of brain function involved in the pathophysiology of PD7. Amplitude of low-frequency 
fluctuations (ALFF), an index to measure changes in resting-state blood oxygen level dependent (BOLD) signals, 
has been shown to reflect regional spontaneous neuronal activity8. ALFF has been widely used to explore regional 
changes of brain function in neuropsychiatric disorders9–14. Aberrant ALFF patterns in PD have been shown to 
be related to motor subtypes15, motor severity16,17, disease progression17,18, apathy16, depression16,19–21, and visual  
hallucinations22. These studies indicate that PD pathophysiology is involved in widespread abnormalities of regional 
spontaneous neuronal activity beyond those within the motor network. Although ALFF studies have substantially 
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enhanced our understanding of the neural substrates underlying PD, conclusions from these studies have not 
been entirely consistent, raising questions about their replicability and reliability. Widespread and heterogeneous 
ALFF abnormalities in many brain regions, such as the motor cortices, striatum, cerebellum, and brain stem, 
as well as frontal, temporal, parietal, occipital, and cingulate cortices (see Supplementary Table 1)13,15,17–19,22–27,  
were observed across studies in patients with PD in comparison with healthy controls. Differences in sample size, 
disease severity, disease duration, medication status, and imaging methodology may partially contribute to these 
inconsistencies. For example, ALFF differences about effect of therapy were observed in patients with PD23,25. 
Thus, to overcome the inconsistences across single ALFF studies is very timely and necessary.

We aimed at conducting a quantitative and voxel-based meta-analysis of ALFF changes in patients with PD. 
In addition, we set out to perform meta-regression analyses to examine the confounding effects of demographics 
and clinical variables on ALFF changes in PD. Furthermore, several complementary analyses of jackknife sen-
sitivity, heterogeneity, and publication bias were performed to explore the most consistent and reliable findings. 
Here, we used Seed-based d Mapping (SDM), a well validated meta-analytic tool for coordinate-based neuro-
imaging data28–33. SDM has already been applied to identify reliable brain anatomical or functional alterations 
in many neuropsychiatric disorders including Alzheimer’s disease34,35, PD36, multiple sclerosis37,38, amyotrophic 
lateral sclerosis29,39, depression30,40, and others28,33.

Results
Included studies and sample characteristics. Figure 1 showed the flow diagram for inclusion/exclusion 
of studies in the meta-analysis. The systematic search yielded a total of 43 relevant documents. After initially 
screen of the titles and abstracts, 17 ALFF studies were potentially eligible for this meta-analysis. Of these, 6 
studies were excluded because of the following reasons: one was an abstract41; one used a method of regions of 
interest42; one applied an approach of support vector machine training43; one did not perform a direct comparison 
between PD patients and healthy controls16; and two just reported findings from the on-state of PD patients22,44. 
The remaining 11 studies were included in the meta-analysis. Of these, two studies reported both on- and off-
state results, only the latter datasets were included23,25. One study reported the baseline and follow-up findings, 

Figure 1. Flow diagram for inclusion/exclusion of studies. Key: PD, Parkinson’s disease; ALFF, amplitude of 
low-frequency fluctuations.
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only the former dataset was included17. Two studies reported two datasets, respectively with non-depressed and 
depressed PD, and only the non-depressed datasets were included19,21. Another two studies reported two dis-
tinct15 and three distinct datasets18, respectively, and all of them were included. Totally, 11 original studies report-
ing 14 datasets were finally included in this meta-analysis13,15,17–19,21,23–27. These included datasets reported ALFF 
differences between 421 patients with PD (232 males and 189 females; mean age =  59.43 years) and 381 healthy 
controls (216 males and 165 females; mean age =  59.77 years). There were no significant differences between 
patients with PD and healthy controls regarding age (standardized mean difference =  0.018; 95% confidence 
interval =  − 0.114 to 0.151, z =  0.27, p =  0.786) or gender distribution (relative risk =  0.995, 95% CI =  0.925 to 
1.070, z =  0.14, p =  0.891). Quality assessment indicated that the quality of these studies was acceptable because 
its score of each study was no less than 18 (total score =  20) (Table 1). The demographic, clinical, and imaging 
characteristics of each study included in this meta-analysis are summarized in Table 1.

ALFF differences of the voxel-wise meta-analysis. As shown in Figure 2, the voxel-wise meta-analysis 
identified increased ALFFs in the right inferior temporal gyrus extending to the middle temporal, fusiform, and 
parahippocampal gyri, right inferior parietal gyrus, right inferior parietal gyrus, brainstem (pons extending to 
midbrain), and right orbitofrontal cortex in patients with PD compared to healthy controls. In contrast, decreased 
ALFFs were observed in the bilateral cuneus cortices, bilateral cuneus cortices, bilateral supplementary motor 
areas (SMAs), left putamen, left inferior parietal gyrus, and left lateral premotor cortex. The details of the results 
are presented in Table 2.

Analyses of jackknife sensitivity, heterogeneity, and publication bias. The jackknife sensitivity 
analysis (Table 3) revealed that regions of ALFF differences in the right inferior temporal gyrus extending to the 
middle temporal, fusiform, and parahippocampal gyri, right inferior parietal gyrus, and bilateral cuneus cortices 
(BAs 18, 17, and 19) were replicable in all 14 datasets. Regions of ALFF differences in the brainstem, right orb-
itofrontal cortex, bilateral SMAs, left putamen, left inferior parietal gyrus, and left lateral premotor cortex were 
replicable in at least 12 datasets. While a brain region in the left cuneus cortex (BA 23) was only replicable in 10 
datasets. The heterogeneity analysis revealed significant unexplained between-study variability of ALFF changes 
in widespread brain regions, including the left superior temporal gyrus extending to the middle temporal gyrus 
and insula, right caudate nucleus, right fusiform gyrus extending to the inferior temporal gyrus, right cerebellum 
(lobule VI), brainstem (pons), left cerebellum (crus I), right striatum, right inferior frontal gyrus, left superior 
occipital gyrus, left cuneus cortex (BA 23), right inferior temporal gyrus, right cerebellum (lobule IV/V), and 

Study
Sample 
(female)

Mean Age 
(SD)

UPDRS-III 
(SD)

H&Y stage 
(SD)

Duration 
(SD)

Medication 
status Scanner Software FWHM Threshold

Quality 
scores#

Kwak et al.25 PD 24 (2)  
HC 24 (5)

64.3 (8)  
63.3 (7) 18.5 (8) 2.2 (0.3) 5.4 (3) Off-state 3.0 T SPM5 8 mm p <  0.001 

uncorrected 20

Wen et al.19 PD 16 (8)  
HC 21 (8)

60.7 (18.7) 
55.4 (16.4) 33.8 (24.2) 1.5 (1) 5.6 (7.4) Off-state 3.0 T SPM8, REST 5 mm p <  0.005 

uncorrected 20

Possin et al.23 PD 12 (9)  
HC 15 (11)

73.9 (5.9) 
72.9 (5.2) 30.8 (14.5) NA 9 (7) Off-state 3.0 T SPM8, REST 4 mm p <  0.05 

corrected 19

Skidmore et al.13 PD 14 (3)  
HC 15 (6)

62 (9)  
65 (13) 37 (13) NA NA Off-state 3.0 T AFNI 6 mm p <  0.005 

uncorrected 18

Zhang et al.24 PD 72 (37) 
HC 78 (32)

59.7 (11.9) 
58.6 (8.5) 20.24 (8.44) NA 7.05 (6.01) Off-state 3.0 T SPM8, REST 8 mm p <  0.05 

corrected 19

Hou, et al.26 PD 101 (42) 
HC 102 (42)

59.84 (7.15) 
59.91 (7.09) 25.54 (11.51) 1.87 (0.71) 7.23 (4.42) Off-state 3.0 T SPM8, DPARSF 3 mm p <  0.05 

corrected 20

Luo et al.21 PD 30 (15) 
HC 30 (15)

53.64 (10.18)  
51.9 (7.70) 26.83 (12.44) 1.73 (0.38) 2.12 (1.30) Off-state 3.0 T SPM8, REST 8 mm p <  0.001 

corrected 20

Hu et al.17 PD 17 (7)  
HC 20 (9)

60.29 (12.03) 
58.48 (6.89) 17.11 (6.12) NA 3.94 (2.57) Off-state 3.0 T SPM8, REST 8 mm p <  0.005 

uncorrected 19

Chen et al.15
PD1 12 (8) 
PD2 19 (7)  
HC 22 (10)

62.6 (8.71) 
64.8 (8.34) 
65.1 (5.00)

19.1 (11.5) 21.6 
(11.6)

1.87 (0.607) 
2.13 (0.984)

6.38 (4.01) 
6.68 (4.85) Off-state 3.0 T SPM8, REST 4 mm p <  0.05 

corrected 20

Luo et al.18

PD3 28 (14) 
PD4 28 (14) 
PD5 24 (11) 
HC 30 (15)

52.45 (9.18) 
54.12 (8.24) 

54.41 (10.59) 
53.53 (10.45)

14.11 (6.45) 
29.68 (8.22) 

43.54 (12.65)

1.0 (NA)  
2.0 (NA)  
3.0 (NA)

1.56 (1.42) 
3.78 (2.87) 
5.31 (4.77)

Off-state 3.0 T SPM5, REST 8 mm p <  0.001 
uncorrected 19

Xiang et al.27 PD 24 (12) 
HC 24 (12)

62.7 (7.4) 
65.6 (6.9) 22.0 (7.0) 2.2 (0.9) 7.0 (3.3) Off-state 3.0 T SPM8, REST 8 mm p <  0.01 

corrected 20

Table 1.  Characteristics of ALFF studies included in the meta-analysis. Key: ALFF, amplitude of low-
frequency fluctuations; PD, Parkinson’s disease; HC, healthy controls; SD, standard deviation; UPDRS-III, 
Unified Parkinson’s Disease Rating Scale, Part III; H&Y, Hoehn and Yahr disability scale; FWHM, full width 
at half maximum; NA, not available; AFNI, Analysis of Functional NeuroImage software; fMRI, functional 
magnetic resonance imaging; SPM, statistical parametric mapping; REST, the Resting-State fMRI Data Analysis 
Toolkit; 1postural instability/gait difficulty subtype of PD; 2tremor-dominant subtype of PD; 3PD patients at 
H&Y stage I; 4PD patients at H&Y stage II; 5PD patients at H&Y stage III; #a maximum score of 20 for each 
study.



www.nature.com/scientificreports/

4Scientific RepoRts | 7:40469 | DOI: 10.1038/srep40469

left posterior cingulate cortex (PCC) (Supplementary Table 3). In addition, publication bias examined by the 
Egger’s test was detected in the regions of ALFF differences in the right inferior temporal gyrus extending to mid-
dle temporal, fusiform, and parahippocampal gyri (p <  0.001), brainstem (p =  0.046), right orbitofrontal cortex 
(p =  0.018), and bilateral cuneus cortices (p =  0.002). No publication bias was identified in other regions obtained 
from the voxel-wise meta-analysis (Table 2).

Meta-regression analyses. Meta-regression analysis revealed that the PD group with older mean age 
(available in all datasets) exhibited greater ALFFs in the right inferior temporal gyrus extending to the middle 
temporal, fusiform, and parahippocampal gyri, right inferior parietal gyrus and lesser ALFFs in the bilateral 
cuneus cortices. Higher average H&Y stage in the PD group (available in 10 datasets) was associated with greater 
ALFFs in the bilateral precuneus/PCC and right inferior parietal gyrus. Higher average UPDRS-III score in the 
PD group (available in all datasets) correlated with greater ALFFs in the right inferior parietal gyrus and bilateral 
precuneus/PCC, and lesser ALFFs in the bilateral SMAs. Regression analysis indicated that longer mean illness 
duration of PD patients (available in 13 datasets) was associated with greater ALFFs in the right fusiform/inferior 
temporal gyri. The results of these meta-regression analyses are listed in Table 4.

Discussion
In the present study, we conducted a meta-analysis to identify the most consistent and reliable ALFF changes in 
PD. Besides the main voxel-based meta-analysis, several complementary analyses, such as jackknife sensitivity, 
heterogeneity, and publication bias analyses were performed to explore the robustness of the findings. These 
comprehensive analyses showed that decreased ALFFs in the bilateral SMAs, left putamen, left lateral premotor 
cortex, and left inferior parietal gyrus and increased ALFFs in the right inferior parietal gyrus were the most con-
sistent and reliable findings in patients with PD compared to healthy controls. Further meta-regression analyses 
indicated an effect of motor severity on ALFF changes in the bilateral SMAs and right inferior parietal gyrus, and 
illness severity on ALFF changes in the right inferior parietal gyrus.

Figure 2. ALFF differences in patients with PD compared to healthy controls. Key: Red and green colors 
indicate increased and decreased ALFFs in patients with PD compared to healthy controls, respectively. 
ALFF, amplitude of low-frequency fluctuations; (A), Right inferior temporal/middle temporal/fusiform/
parahippocampal gyri; (B), Right inferior parietal gyrus; (C), Brainstem (pons and midbrain); (D), Right 
orbitofrontal cortex; (E), Left/Right cuneus cortices; (F), Left/Right supplementary motor areas; (G), Left 
putamen; (H), Left cuneus cortex; (I), Left inferior parietal gyrus; (J), Left lateral premotor cortex.
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Cardinal motor impairments characterize PD and dysfunction of the cortico-striatal-thalamic-cortical motor 
circuits is a fundamental model implicated in its pathophysiology45. Our meta-analysis consistently identified 
decreased ALFFs in the left putamen, bilateral SMAs, and left lateral premotor cortex. Decreased ALFFs are 
considered to reflect local spontaneous neuronal hypoactivity in these regions and indicate disease-related func-
tional deficits secondary to degeneration of the dopaminergic neurons of the nigrostriatal system45,46. Neuronal 
neurodegeneration, dopaminergic deficits, hypo-metabolism, and hypoactivation of the putamen have been con-
vergently confirmed in PD45,47–54. The putamen has dense anatomical and functional connections with motor 
cortical areas in normal humans55–57. While less functional connectivity between the putamen and cortical motor 
areas was observed in PD patients58,59.

Hypoactivity in the SMA in our meta-analysis is well in line with previous task-related and resting-state fMRI, 
and positron emission tomography (PET) studies51,52,60–62 and could be modulated by dopaminergic treatment in 
patients with PD52,61,63. However, brain activation (hypoactivity or hyperactivity) in the lateral premotor cortex 
has not been always consistent in task-related fMRI or PET studies62–66. A recent meta-analysis including 24 fMRI 
and PET studies in PD patients with motor tasks even could not detect consistent cortical activation in the lateral 
premotor cortex67. The activation inconsistences may attribute to task-specific recruitment of cortical motor areas 

Cluster Anatomical label

Peak MNI 
coordinate  

(x, y, z)
No. of 
voxels

SDM-Z 
value p value Heterogeneity

Egger’s 
test

PD >  HC

A Right inferior temporal/middle temporal/
fusiform parahippocampal gyri (BA 20) 44, − 18, − 30 790 3.00 0.000015 Yes ＜ 0.001

B Right inferior parietal gyrus (BAs 39, 40, and 7) 36, − 46, 52 740 2.81 0.000062 No 0.172

C Brainstem (pons and midbrain) 2, − 32, − 26 51 2.16 0.0011 Yes 0.046

D Right orbitofrontal cortex (BA 11) 14, 18, − 16 46 1.92 0.0029 No 0.018

PD <  HC

E Left/Right cuneus cortices (BAs 18, 17, and 19) 0, − 90, 14 641 − 3.03 0.000040 No 0.002

F Left/Right supplementary motor areas (BA 6) 0, 0, 62 352 − 2.44 0.00080 No 0.500

G Left putamen − 26, 8, 2 187 − 2.45 0.00078 No 0.186

H Left cuneus cortex (BA 23) − 18, − 58, 26 43 − 2.21 0.0018 Yes 0.140

I Left inferior parietal gyrus (BAs 40 and 2) − 48, − 34, 38 30 − 2.07 0.0030 No 0.065

J Left lateral premotor cortex (BA 6) − 44, 0, 44 26 − 2.07 0.0029 No 0.058

Table 2.  ALFF differences in patients with PD compared to healthy controls. Key: ALFF, amplitude of low-
frequency fluctuations; PD, Parkinson’s disease; HC, healthy controls; MNI, Montreal Neurological Institute; 
BA, Brodmann area; No., number; SDM, Seed-based d Mapping.

All studies 
but … A B C D E F G H I J

Kwak et al.25 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Wen et al.19 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Possin et al.23 Yes Yes Yes No Yes Yes Yes No Yes No

Skidmore et al.13 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Zhang et al.24 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Hou, et al.26 Yes Yes No No Yes No No Yes No No

Luo et al.21 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Hu et al.17 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Chen et al.a 15 Yes Yes No Yes Yes Yes Yes Yes Yes Yes

Chen et al.b 15 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Luo et al.c 18 Yes Yes Yes Yes Yes Yes Yes No Yes Yes

Luo et al.d 18 Yes Yes Yes Yes Yes Yes Yes No Yes Yes

Luo et al.e 18 Yes Yes Yes Yes Yes Yes Yes No Yes Yes

Xiang et al.27 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Total 14 out of 14 14 out of 14 12 out of 14 12 out of 14 14 out of 14 13 out of 14 13 out of 14 10 out of 14 13 out of 14 12 out of 14

Table 3.  Jackknife sensitivity analysis. Key: A, Right inferior temporal/middle temporal/fusiform/
parahippocampal gyri; B, Right inferior parietal gyrus; C, Brainstem (pons and midbrain); D, Right 
orbitofrontal cortex; E, Left/Right cuneus cortices; F, Left/Right supplementary motor areas; G, Left putamen; 
H, Left cuneus cortex; I, Left inferior parietal gyrus; J, Left lateral premotor cortex; Yes, the region reported; No, 
the region not reported; apostural instability/gait difficulty subtype of PD; btremor-dominant subtype of PD; 
cPD patients at H&Y stage I; dPD patients at H&Y stage II; ePD patients at H&Y stage III.
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or heterogeneity in task performance performed in enrolled patients. Rs-fMRI avoids any confound of variable 
task performance and can be easily implemented to obtain relatively stable results. The SMA is well known to play 
a critical role in internal motor preparation and execution63,68, whereas the lateral premotor cortex is involved 
more with externally guided movements69. SMA is a therapeutic target for PD management and repetitive tran-
scranial magnetic stimulation over the SMA has been shown to be effective for improving motor symptoms70,71. 
Moreover, our meta-analysis revealed that severer motor deficits in the PD group correlated with lesser ALFFs 
in the bilateral SMAs. Whether ALFF changes in the SMAs could serve as a prognostic imaging marker merits 
further investigations. Our meta-analysis together with previous studies suggests that resting-state hypoactivation 
in the putamen, SMA, and premotor may contribute to the cardinal motor signs underlying PD.

Interestingly, the present study observed an asymmetrical activation in the inferior parietal cortex. Analysis 
of anatomical connectivity using probabilistic tractography shows that the rostral inferior parietal areas were 
predominantly connected to inferior frontal, motor, premotor, and somatosensory areas involved in higher 
motor functions, whereas the caudal areas are more strongly connected with posterior parietal, higher visual 
and temporal areas related to spatial attention and language processing72–74. Our meta-analysis identified hypo-
activation in the left rostral inferior parietal cortex (BA 40) and hyperactivation in the right caudal inferior pari-
etal cortex (mainly BA39) with a differential functional involvement. Previous task-related fMRI or PET studies 
also observed abnormal activation or connectivity of the rostral inferior parietal cortex (BA 40) in patients with 
PD65,66,69,75. In addition, rs-fMRI data in PD patients showed abnormal functional connectivity between the 
putamen and the inferior parietal cortex (BA 40)76. Whereas the caudal inferior parietal cortex (BA39) is an 
important hub of the default mode network (DMN), which is one of the most investigated resting-state networks, 
involved in higher cognitive processes77. Although heterogenous in the meta-analysis, other regions such as the 
right inferior temporal gyrus extending to the middle temporal, fusiform, and parahippocampal gyri, and pre-
cuneus/PCC observed were also the components of the DMN77,78. Tessitore et al. found a decreased resting-state 
functional connectivity of the right medial temporal lobe and bilateral inferior parietal cortex within the DMN 
even in cognitively unimpaired patients with PD79. Furthermore, they showed significant positive correlations 
between this decreased DMN connectivity and cognitive parameters such as memory test and visuospatial 
scores79. Regional spontaneous hyperactivation in the caudal inferior parietal cortex may reflect a compensatory 
way for the remote decreased functional connectivity. However, regional hyperactivation in this region may com-
pensate more for the motor impairment in PD patients because our meta-analyses indicated that both increased 
motor severity and illness severity correlated with greater hyperactivation in this area.

Other regions are highly heterogenous or not robust detected in the meta-analysis. Besides the unexplained 
between-study variability of ALFF changes in the right inferior temporal gyrus extending to the middle temporal, 
fusiform, and parahippocampal gyri (BA 20), brainstem (pons and midbrain), and left cuneus cortex (BA 23), 
several moderator variables contributed to understanding the source of the heterogeneity. Of these, mean age in 
the PD group had a significant effect on the ALFF changes in the right inferior temporal gyrus extending to the 
middle temporal, fusiform, and parahippocampal gyri (BA 20), and bilateral cuneus cortices (BAs 18 and 17). 
In addition, we noted that the PD group with longer mean illness duration tended to have greater ALFF changes 
in the right fusiform extending to the inferior temporal gyri (BA 20). We also observed that decreased ALFFs 
in the left cuneus cortex (BA 23) were replicable only in 10 out of the 14 datasets as revealed by the jackknife 
sensitivity analysis. Unlike other coordinate-based meta-analytic methods for neuroimaging data, such as the 
activation likelihood estimation67,80 and multilevel kernel density analyses81,82, the SDM offers comprehensive 
information about robustness of the findings28,30,83. The present study suggests that future meta-analysis of neuro-
imaging data would benefit from complementary analyses to minimize the risk of false positives30,83.

Anatomical label
Peak MNI 

coordinate (x, y, z) No. of voxels SDM-Z value p value

Effects of age: ALFF changes in studies with older patients compared to younger patients

Right inferior temporal/middle temporal/
fusiform/parahippocampal gyri (BA 20) 44, − 16, − 28 169 2.193 0.0000305

Right/Left cuneus cortices (BAs 18 and 17) 6, − 98, 10 106 − 2.695 0.0000361

Effects of motor severity: ALFF changes in studies with higher average UPDRS-III score

Right inferior parietal gyrus (BAs 39, 40, and 7) 40, − 50, 48 811 3.567 ~0

Left/Right precuneus/PCC (BAs 23 and 30) − 16, − 90, 38 61 2.759 0.0000439

Right/Left supplementary motor area (BA 6) 2, 10, 60 223 − 2.114 0.000150

Effects of illness severity: ALFF changes in studies with higher average H&Y stage

Left/Right precuneus/PCC (BAs 23 and 30) − 4, − 46, 32 322 2.405 0.000214

Right inferior parietal gyrus (BAs 39, 40, and 7) 38, − 54, 46 200 2.643 0.0000718

Effects of illness duration: ALFF changes in studies with longer average illness duration

Right fusiform/inferior temporal gyri (BA 20) 40, − 20, − 28 125 3.830 0.0000279

Table 4.  Meta-regression analyses. Key: ALFF, amplitude of low-frequency fluctuations; PD, Parkinson’s 
disease; MNI, Montreal Neurological Institute; No., number; SDM, Seed-based d Mapping; BA, Brodmann area; 
UPDRS-III, Unified Parkinson’s Disease Rating Scale, Part III; H&Y, Hoehn and Yahr disability scale; PCC, 
posterior cingulate cortex.
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Limitations and perspectives. Despite the strengths, several limitations of the present meta-analysis should 
be acknowledged. First, SDM is a coordinate-based rather than an image-based meta-analytic method, which 
might lead to less accurate results that is also inherent to other coordinate-based meta-analytic approaches28,80,82,83.  
However, it is more difficult to obtain original imaging data than reported peak coordinates from original studies. 
Second, some potential methodological heterogeneity, such as different image analytical procedures (frequency 
differences, ALFF and fractional ALFF analyses)17,23,24,26 existed across studies. We could not further conduct 
subgroup analyses because of the limited number of eligible studies for controlling these moderator variables. 
Third, the ALFF studies in our meta-analyses mainly included Chinese samples, which might limit the findings to 
other populations. Further studies with more efforts are warranted to apply the ALFF method to other samples. 
Fourth, although ALFF is thought to reflect regional spontaneous neuronal activity, its exact neurobiological basis 
remains to be fully elucidated84. Future studies with multimodal imaging techniques and analysis approaches may 
provide more insights about the function-structure associations of the PD brain85.

Conclusions
Using the comprehensive meta-analytic approach, we identified the most consistent and reliable ALFF changes, 
including decreased ALFFs in the bilateral SMAs, left putamen, left premotor cortex, and left inferior parietal 
gyrus, and increased ALFFs in the right inferior parietal gyrus in patients with PD compared to healthy controls. 
The altered ALFFs in these brain regions may be related to motor deficits and compensation in PD, which could 
serve as specific regions of interest for further studies. Other highly heterogenous or not robust regions, such as 
right inferior temporal gyrus extending to the middle temporal, fusiform and parahippocampal gyri, brainstem 
(pons and midbrain), right orbitofrontal cortex, and bilateral cuneus cortices merit further investigations.

Methods
Identification, selection, and quality assessment of studies. We comprehensively searched 
PubMed, Embase, and Web of Science databases for studies published between January 1st, 2000 and June 24, 
2016 using the following keywords “Parkinson” OR “Parkinson’s disease”, AND “amplitude of low frequency 
fluctuations” OR “ALFF”. Other resources, such as the reference lists of included studies and relevant review 
articles were additionally identified. Studies were included if they satisfied the following conditions: (i) they were 
published in English as an original article in a peer-reviewed journal; (ii) they reported ALFF results at the whole-
brain level for direct comparison between patients with idiopathic PD and healthy controls; (iii) they reported 
negative results or three-dimensional coordinates in a standardized stereotaxic space for regions with significant 
differences; (iv) they reported significant results using thresholds for significance corrected for multiple compar-
isons or uncorrected with spatial extent thresholds. In order to reduce the heterogeneity, studies were excluded 
if they explicitly indicated patients with PD diagnosed with comorbid neurological or psychiatric disorders  
(i.e., depression, visual hallucinations, or cognitive impairment) or if they only reported the on-state results. The 
baseline result was included if the study was longitudinal. In cases where multiple articles were identified to use 
the overlapped patient datasets, the one with the largest sample size and the most comprehensive information was 
selected. The quality of each study included in this meta-analysis was assessed according to a 20-point checklist 
developed for rs-fMRI studies30 (see Supplementary Table 2). Literature search, study assessment and selection, 
and data extraction with a standard form were independently performed by two authors (P.L.P and Y.Z.). Any dis-
crepancies were discussed with a third researcher for a final decision (Y.L.). The Meta-analysis Of Observational 
Studies in Epidemiology (MOOSE) guidelines were followed in this study86.

Data analysis
Voxel-wise meta-analysis. This voxel-wise meta-analysis was carried out using the SDM software pack-
age available at http://www.sdmproject.com. The details of the approach have been described elsewhere28,31–33 
First, we extracted peak coordinates and effect sizes (t-values) of ALFF differences between patients with PD and 
healthy controls from each dataset. Second, an effect-size signed map of the ALFF differences was then separately 
recreated for each dataset. SDM calculates both positive and negative differences between datasets in the same 
map31,33. And third, the mean map was generated by voxel-wise calculation of the random-effects mean of the 
dataset maps, which was weighted by the sample size, intra-dataset variability, and additional between-data-
set heterogeneity. Default SDM settings (full width at half maximum [FWHM] =  20 mm, p =  0.005, peak height 
Z =  1, cluster extent =  10 voxels), which were found to optimally balance false positives and negatives, were 
applied to the results31,33.

Analyses of jackknife sensitivity, heterogeneity, and publication bias. To assess the replicability 
of the results, a jackknife sensitivity analysis was performed by iteratively repeating the same analysis, excluding 
one dataset each time28,31.

In addition, a heterogeneity analysis was conducted using a random effects model with Q statistics to explore 
unexplained between-study variability in the results. These analyses were thresholded with the default SDM set-
tings (FWHM =  20 mm, p =  0.005, peak height Z =  1, cluster extent =  10 voxels)31,33.

In order to evaluate possible publication bias, the Stata/SE 12.0 software for Windows (Stata Corp LP, College 
Station, TX, USA) was used to perform the Egger’s test by extracting the values from the peak coordinates of the 
voxel-wise meta-analysis between patients with PD and healthy controls87. Statistical significance was thresholded 
at a p-value less than 0.05.

The Stata/SE 12.0 software was additionally used to meta-analyze mean age and gender distribution in the 
PD groups and control groups across studies with a random-effects model to test whether there is heterogeneity.

http://www.sdmproject.com
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Meta-regression analyses. Meta-regression analyses were carried out to explore the effects of age, illness 
severity (Hoehn and Yahr [H&Y] stage), motor severity (Unified Parkinson’s Disease Rating Scale (UPDRS) Part 
III [UPDRS-III] score), and illness duration, which could potentially influence the analytic results. P-value less 
than 0.0005 and cluster extent more than 10 voxels were considered statistically significant31,32.
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