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Deployment of check-in nodes in 
complex networks
Zhong-Yuan Jiang1 & Jian-Feng Ma1,2

In many real complex networks such as the city road networks and highway networks, vehicles often 
have to pass through some specially functioned nodes to receive check-in like services such as gas 
supplement at gas stations. Based on existing network structures, to guarantee every shortest path 
including at least a check-in node, the location selection of all check-in nodes is very essential and 
important to make vehicles to easily visit these check-in nodes, and it is still remains an open problem 
in complex network studies. In this work, we aim to find possible solutions for this problem. We first 
convert it into a set cover problem which is NP-complete and propose to employ the greedy algorithm 
to achieve an approximate result. Inspired by heuristic information of network structure, we discuss 
other four check-in node location deployment methods including high betweenness first (HBF), high 
degree first (HDF), random and low degree first (LDF). Finally, we compose extensive simulations in 
classical scale-free networks, random networks and real network models, and the results can well 
confirm the effectiveness of the greedy algorithm. This work has potential applications into many real 
networks.

The advent of complex network1–3 theory has had a significant impact on the network and data science4 over the 
course of past 20 years. People’s daily life deeply relies on kinds of artificial networks such as city road networks, 
highway networks, power grids, communication networks, and virtual networks such as WWW (World Wide 
Web), social networks, and so on. A wide range of research topics aim to solve the challenges that many real 
networks face. As discussed in our previous work5, a portion of nodes in many complex networks have spe-
cial functions such gas stations in road networks and highway networks supplying for check-in like services. In 
air transportation, for the convenience of passengers and resource locations, e.g. maintenance crews, it is very 
important to locate the hub nodes of an airline6. In IT infrastructure, we may want to allocate specific functions to 
critical nodes or driver nodes7, for instance, the nodes that control the Internet traffic in the search for viruses. In 
interdependent networks (e.g. power grids and communication networks), a fraction of critical nodes may result 
in the collapse of whole interdependent network8, such as the largest blackout of the power gird and the outages 
of the Internet. In social science, for security purpose, many “inside” agents are need to intercept all communica-
tions9 in a network of terrorists. In food web10, the predation relation can be also considered as check-in like ser-
vice, and mining the key species whose disappearance may lead to large scale species extinction is a very critical 
problem. These nodes with special functions can be called check-in nodes, and objects that flow in networks need 
to finish check-in like services at the check-in nodes. For instance, vehicles often have to pass through gas stations 
to get gas supplement. Then two aspects of this problem should be considered:

(1) Efficient routing strategies. With a portion of predesigned locations (perhaps randomized ones) of gas sta-
tions, designing efficient routes for all vehicles is very essential and important to alleviate traffic congestion, 
save gas fuel and time consumption of drivers. Our work5 tried to explore a possible check-in based routing 
framework for this problem. Definitely, many previous routing optimization methods including the efficient 
routing11, optimal routing12, global dynamic routing13, incremental routing14 and hybrid routing15 can be 
referenced. For simplicity and without loss of generality, here we employ the classical shortest path routing 
method for path discovery.

(2) Optimal deployment of check-in node locations. With a given number of check-in nodes, which positions 
are the optimal ones that can achieve the highest profits to citizens and governors? To our best knowledge, it 
is still an open problem in complex network research.
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In other words, with minimum number of check-in nodes, we aim to maximize the profits of the whole net-
work in this work. There are several aspects which need to be clarified clearly for this problem:

(1) Clear problem definition and evaluation metric. The problem of check-in node deployment should be clear 
and a metric should be defined to accurately evaluate performance for check-in node deployment methods.

(2) Efficient check-in node deployment method. Currently, to our best knowledge, the check-in node deploy-
ment method research is open, and there is a lack of deep study.

(3) Evaluations. To verify the effectiveness of proposed methods, extensive simulations must be composed in 
both classical complex network models (e.g. scale-free network model and random network model) and real 
network models.

In the following section, we will first show the results of this work. Then we introduce the proposed algorithms 
and the employed network models. Finally, we close this work with a conclusion.

Results
Here we first define the check-in node deployment problem. Given a network which might be directed or undi-
rected, assuming the shortest path routing protocol is employed, every shortest path between any pair of source 
and destination must include at least a check-in node to receive the check-in like services. Then the minimum 
number of check-in nodes (MNCN) which can guarantee every shortest path including at least a check-in node can 
be employed to evaluate the performance of a check-in node deployment method.

This problem can be converted into the set cover problem16 (see details in Methods section) and solved by 
employing greedy algorithm16 (GA). To compare with GA, other 4 check-in node position selection methods (see 
details in Methods section) including high betweenness first (HBF), high degree first (HDF), random and low 
degree first (LDF) are discussed.

Given a set of locations for check-in nodes ⁎J , the cover rate of all shortest paths f (see details in Methods sec-
tion) can be employed to evaluate the effectiveness of check-in node location selection methods.

We first investigate the evolution of cover rate f as a function of the number of check-in nodes in BA17 
scale-free networks and ER18 random networks in Fig. 1(a,b) respectively. One can see that the GA achieves the 
highest f. With the same number of check-in nodes, for instance, 150 check-in nodes in Fig. 1(a,b), f under the 
five methods appears to be GA >  HFB >  HDF >  Random >  LDF in both two types of networks. The HBF and 
HDF appear to be a bit lower than the GA, but very near. The LDF is the worst, because under the shortest path 
routing, paths trend to pass through the nodes with high degrees. Therefore, with the same number of check-in 
nodes, the number of the shortest paths that passing through check-in nodes of low degrees is very small, result-
ing in low f. With increasing number of check-in nodes, the f increases under the 5 methods. When the number 
of check-in nodes goes beyond a critical value, the f gets its maximum value of 1.0. Then the MNCN can be effi-
ciently achieved and represented by the critical value.

In Fig. 2, we investigate the comparisons of different location selection methods in the two types of classical 
network models. In Fig. 2(a), based on the GA method, with the same network size and average degree, the 
robustness of BA17 networks appears to be better. It is related to the network structure, and in BA17 networks, 
most of the shortest path pass through a fraction of hub nodes. Meanwhile, the betweenness distribution of all 
nodes in ER18 network is much even, and more check-in nodes are needed. Similarly, under the HDF and HBF 
methods, the results are very similar to GA. Under the random selection, the effects are almost the same in two 
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Figure 1. Evolution of cover rate f as a function of the number of check-in nodes under the five different 
check-in nodes selection methods. (a) BA Networks; (b) ER networks. Network parameters are N =  1000,  
〈 k〉  =  8. Each datum is the average of 50 realizations of BA scale-free networks.
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network models. In Fig. 2(e), under the LDF method, the ER18 network appears to achieve better performance. 
It is also related to the network structure. The degree distribution of ER18 networks is more even than BA17 
networks.

In Fig. 3, we investigate the evolution of minimum number of check-in nodes (MNCN) under the 5 methods 
in BA17 scale-free networks and ER18 random networks of different network sizes. With increasing network size, 
the MNCN increases. Because the larger the network size, the higher the number of the shortest paths appears, 
and more check-in nodes are needed. Under all network sizes, the GA method can achieve the lowest MNCN, and 
it can confirm the effectiveness of GA method.

In Fig. 4, we investigate the comparisons of all methods in the two network models. We can see that it is very 
obvious that under the GA, HBF, and HDF, the BA17 network models appear to have smaller MNCN, namely 
higher efficiency than the ER18 networks. The effects are almost the same under the Random and LDF methods.

So far, we can say the GA can achieve very good results when compared with all other methods. However, we 
may want to compare the results with the optimal solution which has been proved to be NP-hard16. Here we set 
network size N =  20, average degree 〈 k〉  =  4. We run the simulations on many BA17 and ER18 networks on a PC 
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Figure 2. Comparisons of different methods in the two classical networks. (a) GA; (b) HBF; (c) HDF; (d) 
Random; (e) LDF. Network parameters are N =  1000, and average degree 〈 k〉  =  8. Each datum is the average of 
over 50 realizations of BA scale-free networks.
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Figure 3. Evolution of MNCN as a function of the network size under the five different check-in nodes 
selection methods. (a) BA Networks of average degree 〈 k〉  =  8; (b) ER networks of average degree 〈 k〉  =  8. Each 
datum is the average of 50 realizations of BA scale-free networks.
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of Intel(R) Core(TM) i5-3470 CPU @3.2 GHz 3.2 GHz, RAM 4.0 GB. In Table 1, the results show that the average 
MNCN =  9 for both GA and optimal solution in BA17 networks, and average MNCN =  11 for both GA the opti-
mal in ER18 networks. But the computational cost of the optimal solution is about 4800 and 12000 times more 
than GA in BA17 networks and ER18 networks respectively. The results are very amazing, especially for MNCN for 
both GA and optimal solution. For this special problem, the GA can achieve very good results.

In Table 2, we evaluate MNCN for many real networks which are widely used in previous research papers. One 
can see that the GA method can efficiently locate the check-in nodes than other 4 methods.

Discussion
In this work, assuming a portion of nodes were designated as check-in ones to supply check-in services for vehi-
cles or network objects, we aimed to find efficient locations for these check-in nodes to achieve every shortest 
path including at least a check-in node. By carefully analyzing this problem, we transformed it into a set cover 
problem which has proved to be NP-complete, and proposed to use the greedy algorithm16 to find a cover. To ver-
ify the effectiveness of greedy algorithm16, we discussed other four heuristic location selection methods including 
high betweenness first, high degree first, random, and low degree first. To compare these methods, extensive 
simulations were done in BA17 scale-free networks and ER18 random networks. We investigated evolution of cover 
rate as functions of network sizes and average degrees, and found that with increasing network size and average 
degree the minimum number of check-in nodes which can guarantee every shortest path including at least a 
check-in node increases. Moreover, we employed these methods into many real network models. All the results 
can well confirm the effectiveness of the greedy algorithm for set cover problem. We compare the results of the 
greedy algorithm16 with the optimal results, and found that the GA method can achieve better network robustness 
with low computational cost. The results of this work can be employed for check-in node location selections in 
many potential real networks. In reality, other factors such as traffic density, source and destination distribu-
tions, and routing methods should also be comprehensively considered to efficiently solve the real challenges 
in complex networks. Moreover, network resilience is a very important topic in network science. In epidemic 
processes19,20, it has been found that the epidemic processes are drastically affected by the first two moments of 

200 400 600 800 1000
100

200

300

400

500

600

700

Network size N

M
in

im
um

 N
um

be
r 

of
 C

he
ck

−
in

 N
od

es
 (

M
N

C
N

)

 

 
BA networks
ER networks

200 400 600 800 1000
0

200

400

600

800

1000

Network size N

M
in

im
um

 N
um

be
r 

of
 C

he
ck

−
in

 N
od

es
 (

M
N

C
N

)

 

 
BA networks
ER networks

200 400 600 800 1000
0

200

400

600

800

1000

Network size N

M
in

im
um

 N
um

be
r 

of
 C

he
ck

−
in

 N
od

es
 (

M
N

C
N

)

 

 
BA networks
ER networks

200 400 600 800 1000
0

200

400

600

800

1000

Network size N

M
in

im
um

 N
um

be
r 

of
 C

he
ck

−
in

 N
od

es
 (

M
N

C
N

)

 

 
BA networks
ER networks

200 400 600 800 1000
0

200

400

600

800

1000

Network size N

M
in

im
um

 N
um

be
r 

of
 C

he
ck

−
in

 N
od

es
 (

M
N

C
N

)

 

 
BA networks
ER networks

b c

d e

a

HBF HDFGA

Random LDF

Figure 4. (a) Comparisons of different methods in the two classical networks of average degree 〈 k〉  =  8. (a) 
GA; (b) HBF; (c) HDF; (d) Random; (e) LDF. Each datum is the average of over 50 realizations of BA scale-free 
networks.

GA Optimal

MNCN Computational cost (seconds) MNCN Computational cost (seconds)

BA networks 9 0.0136846 9 66.84760

ER networks 11 0.015486 11 190.421226

Table 1.  The comparisons MNCN and Computational cost under GA and the Optimal methods in several 
small network models.
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the degree distribution21. Can these methods be employed into these network processes and enhance the other 
network resilience measures? In our future work, we will continue the research topic and share the results soon.

Methods
Algorithms. As shown in Fig. 5(a), a simple directed network with 5 nodes. The shortest path routing is 
employed. If many shortest paths exist between a source and destination pair, one of them is used randomly. For 
instance in Fig. 5(a), the shortest path from node 1 to 5 might be P1,5 =  {1, 2, 5} or P1,5 =  {1, 3, 5}, and we randomly 
select P1,5 =  {1, 3, 5}. Figure 5(b) shows all the shortest paths in the network.

In order to find the minimum number of check-in nodes, we first collect the shortest paths which pass through 
a given node. As shown in Fig. 5(c), node 1 has 6 shortest paths including this node, denoted by a set S1.

Type Name N L GA HBF HDF Random LDF

Regulatory TRN-Yeast-2 688 1079 123 675 521 679 678

Trust

Prison-inmate 67 182 41 58 62 61 64

Netscience 1461 5484 899 1457 1458 1451 1459

Leadership 32 96 19 24 24 31 31

Food Web

Grassland 88 137 33 83 54 86 86

Seagrass 49 226 34 38 41 49 48

Littlerock 183 2476 82 180 145 176 182

St. Marks 49 223 33 38 41 47 48

St. Martin 45 224 28 36 39 42 44

Ythan 135 597 57 133 81 130 134

Biologic Network

E. coli-1 99 212 63 89 92 96 97

E. coli-2 418 519 103 414 416 401 413

S. cerevisiae 688 1209 145 675 521 663 678

Ppi 990 9374 590 981 961 980 989

Neural 297 2345 193 280 249 286 295

Electronic Circuits

S208 122 189 66 111 112 106 119

S420 252 399 133 233 234 236 250

S838 512 819 267 477 478 494 509

World Wide Wibe Politicalblogs 1224 19022 563 1203 1113 1222 1221

Transposition Airports 2939 30501 1101 2901 2915 2918 2938

Lauguage Japanese 2704 8300 502 2623 2641 2688 2702

BA Model Network

SF2-1 400 797 166 201 201 386 399

SF2-2 400 797 170 201 201 383 398

SF3-1 400 1194 195 230 230 388 399

SF3-2 400 1194 215 247 247 386 399

SF4-1 400 1590 231 272 272 389 399

SF4-2 400 1590 217 263 263 388 398

Business
Ownership 141 189 51 130 133 137 140

Wtn61 218 5851 114 198 158 212 217

Table 2.  The comparisons of minimum number of check-in nodes (MNCN) under different check-in node 
selection methods in the many real and classical networks. L is the number of links of the network.

Figure 5. An example for the problem. (a) A simple directed network which employs the shortest path 
routing; (b) All shortest paths between all possible source and destination pairs in the network; (c) Set Si denotes 
the path set in which all paths include node i.
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In fact, the MNCN problem can be described from another perspective. Given every Si of node i in the net-
work, find the minimum number of sets that can cover all the shortest paths in the network, namely finding a 
cover J (J ⊂  V) with minimum |J| that can achieve ∪ ∈ =S i J P( : )i , where ∪= ∈P S i V( , )i  and V is the set of 
all nodes in the network. Then it is converted into the classical Set Cover problem22 which has been proved to be 
NP-complete and can be approximately solved by greedy algorithm16 described as follows.

Algorithm 1: Greedy algorithm (GA):

 Step 0. Set J = .
 Step 1. If Si =  for all i then stop: J is a cover. Otherwise, find a subscript j maximizing |Sj| and proceed to Step 2.
 Step 2. Add j to J, replace each Si by Si −  Sj and return to Step 1.

As shown in Fig. 5, by employing the greedy algorithm, the cover J =  {3, 1, 2}, namely the minimum number 
of check-in nodes MNCN equal to |J| =  3.

The above greedy algorithm16 can find an approximate cover J. In the greedy algorithm process, at each step, 
we find the set which can maximize the number of included shortest paths. Finally, there is a set sequence J. 
However, in real check-in demands, it is not necessary to cover all paths, and we may want to only cover a large 
portion of them with minimum check-in nodes. Given a subset of V, denoted as ⁎J , here we employ a cover rate 
metric to evaluate the covered portion of all the shortest paths, described as

∪
∪

=
| |

| |
∈

∈
⁎ ⁎f J

S
S

( )
(1)

j J j

j V j

Under the greedy algorithm16, when ⊆ ⁎J J , =⁎f J( ) 1. However, the scales of real networks are very large, and it 
is very difficult to emulate all shortest paths in the network and calculate the set cover. Is there any simple and 
heuristic algorithm to achieve an approximate cover rate f with small number of check-in nodes? Most of real 
networks can be modeled by the scale-free network model17, in which many nodes with the highest degrees are 
considered as central nodes. Moreover, the betweenness centrality23 of a node v is defined as the number of short-
est paths passing through the node and be used to evaluate the importance of node in the network. Inspired by 
these heuristic information, in the following parts, we will employ several check-in node selection methods as 
baselines to compare with the greedy algorithm.

In general, the betweenness of a node directly represents the number of shortest path passing through the 
node, so the betweenness information based method can be described as follows.

Algorithm 2: High betweenness first (HBF).

 Step 0. Sort the betweenness of all nodes in descend order.
 Step 1. Given the number of check-in nodes, select the top ⁎J  nodes in the descend order.
 Step 2. Calculate the ⁎f J( ).

In HBF, the betweenness of every node must be calculated first. Though the fast algorithm24 can be used, it 
is still consuming huge computation resource especially for large scale networks. Meanwhile, getting the node 
degree information is relatively simple, and the degree information is also very efficient in evaluating node impor-
tance. Moreover, in complex networks, betweenness of a node is strong correlated to its degree. A node of high 
degree often has large betweenness23. Therefore, here we propose a degree based check-in node deployment 
method.

Algorithm 3: High degree first (HDF)

 Step 0. Sort the degrees of all nodes in descend order.
 Step 1. Given the number of check-in nodes, select the top ⁎J  nodes in the descend order.
 Step 2. Calculate the ⁎f J( ).

In HDF, the node degree in employed. Sometimes, the network structure might not be known to us, and no 
heuristic information can be used. Then the random location deployment mechanism can be simply used.

Algorithm 4: Random

 Step 0. Given the number of check-in nodes, randomly select the ⁎J  nodes in the network.
 Step 1. Calculate the ⁎f J( ).

Opposite to HDF, as discussed in our previous work5, if the check-in nodes are selected as the nodes of the 
lowest degrees, the network traffic capacity25 will be remarkably reduced. Here, we assume the nodes of the lowest 
degrees are set as the check-in nodes, and compare the results with other methods.

Algorithm 5: Low degree first (LDF)

 Step 0. Sort the degrees of all nodes in ascend order.
 Step 1. Given the number of check-in nodes, select the top ⁎J  nodes in the ascend order.
 Step 2. Calculate the ⁎f J( ).
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Moreover, in order to compare the results with optimal solution, here we try to obtain optimal by emulating 
all possible sets of check-in nodes. Described as follows:

 Step 0. Assuming =⁎J 11 .
 Step 1. Find all combinations ⁎C J

J1 .
 Step 2. For each combination, if =⁎f J( ) 11  then ⁎J1  is the result, else = +⁎ ⁎J J 11 1 , go to Step 1.

Network models. To verify the effectiveness of above check-in node selection methods, the network struc-
ture is the basic. In this work, the used network models include two categories: BA17 scale free networks, ER18 
random networks and real network models.

The BA17 scale-free network model which is constructed by two general rules: (1) Growth; (2) Preferential 
attachment. Starting from m0 fully connected nodes, a new node with m (m ≤  m0) edges are added to the exist-
ing network, and the other end of every new edge is connected to an old node preferentially proportional to the 
degree of the old node.

Another classical network model is the ER18 random graph. The network generation is simple. Initially, begin-
ning with N isolated nodes, a pair of nodes is connected by a probability p.
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