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From an indirect response 
pharmacodynamic model towards 
a secondary signal model of dose-
response relationship between 
exercise training and physical 
performance
Thierry Busso

The aim of this study was to test the suitability of using indirect responses for modeling the effects 
of physical training on performance. We formulated four different models assuming that increase 
in performance results of the transformation of a signal secondary to the primary stimulus which is 
the training dose. The models were designed to be used with experimental data with daily training 
amounts ascribed to input and performance measured at several dates ascribed to output. The models 
were tested using data obtained from six subjects who trained on a cycle ergometer over a 15-week 
period. The data fit for each subject was good for all of the models. Goodness-of-fit and consistency of 
parameter estimates favored the model that took into account the inhibition of production of training 
effect. This model produced an inverted-U shape graphic when plotting daily training dose against 
performance because of the effect of one training session on the cumulated effects of previous sessions. 
In conclusion, using secondary signal-dependent response provided a framework helpful for modeling 
training effect which could enhance the quantitative methods used to analyze how best to dose physical 
activity for athletic performance or healthy living.

Mathematical models of athletic training and performance exist to analyze and thus optimize physical training 
programs1–4. They were designed as a method of studying the dynamics of changes in physical performance over 
time as a function of training as the dose-response effect of training is important not only for athletes but also 
when designing training programs aimed at improved health or fitness.

The most widely used model considers that the performance response to a work session is the combined results 
of the negative (fatigue) and positive (improved fitness) effects of the training session1, both components being 
modeled in an identical fashion using first-order kinetics. During training, each component increases as a function 
of their respective gain and then decreases at a rate that is a function of their respective time constants. Performance 
is assumed to be the balance between these negative and positive components. A decrease in performance  
will occur immediately after a session if the increase in fatigue is greater than the body’s adaptation to the work-
load. However, when the negative effects of fatigue are less than adaptation then the body will not only recover 
its initial performance level but performance will be enhanced. The impulse response is thus characterized by a 
rebound effect after an initial decrease in performance. Goodness-of-fit analysis showed that the original model 
proposed by Banister et al.1 allowed good description of the dynamics of changes in performance with training 
for a wide range of sports including running5, swimming6–9, triathlon10, weightlifting11 and hammer throwing12. 
Theory and data from the model can be used to predict the response to training, allowing the design of optimal 
training programs for athletes just before key competitions13,14. The model has also been used to design a rehabil-
itation program for a patient with coronary artery disease15.
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Modifications to the original model were proposed to take into account a diminution in the effectiveness of 
training when training amounts increased16,17. This assumed a variable dose-response with the negative effects of 
a training session varying as a function of an accumulation of training2. This model considered that after repeated 
training sessions, the body’s capacity to benefit from a single session were impaired with it being necessary to 
reduce the amount of training to allow the athlete to recuperate his or her tolerance to exercise and so respond 
more effectively to each session. Intense training can attenuate and/or delay the rebound effect after a session but 
this phenomenon can be reversed if training amounts are reduced and training can again be better assimilated 
by the athlete. It is crucial to use this variable dose-response effect to adapt training loads to an athlete’s ability to 
cope with such a load and so optimize his or her training program. As this model takes into account the capacity 
to adapt to a new training session, a better fit of performance is observed than with the original model showing its 
usefulness for predicting responses to training with varied regimens2. The variable dose-response allows extensive 
analysis of the factors influencing the optimal characteristics of training before competitions18 and has been used 
to study responses to training in athletes19–21.

In the field of pharmacodynamics, indirect response models have been proposed based on the turnover of 
the physiological effects of a drug22,23. Such turnover models were developed to describe rebound phenomena 
and the development of tolerance24,25. Drug tolerance is defined as attenuation of a response to a given dose due 
to prior exposure. Indirect response models take into account the processes that inhibit or stimulate the factors 
controlling the response or resulting in tolerance or rebound phenomena. Administration of a drug is assumed 
to provoke changes in response depending on the amount of a precursor which may have accumulated or been 
depleted as a function of past administration of the drug. It has been shown that the response patterns obtained 
with precursor-dependent indirect response models are useful for describing changes to the response profile of 
a drug24,25.

There is a clear analogy between the biological response to repeated drug exposure and changes in perfor-
mance with repeated training sessions. Adaptation to training is defined as changes in structure and function 
resulting from repeated bouts of exercise which prepare the body to better cope with exercise26. A training ses-
sion leads to cellular disruption which, during post-exercise recovery, activates the multiple signaling pathways 
involved in the phenotypic plasticity specific to the mode of exercise27. We can consider these as secondary to the 
primary stimulus of the exercise as these signals continue to drive training-induced adaptations after cessation of 
the exercise. Similarly to a precursor of the biological effect of a drug, it is this secondary signal which is the agent 
that translates the primary training stimulus into training-induced adaptation as depicted in Fig. 1. Acute expo-
sure to exercise is the primary stimulus for training-induced adaptations that in turn activate a secondary signal 
which then dissipates during post exercise recovery. The cumulated signal resulting from repeated exposure to 
exercise increases the production of the training effect counterbalancing the loss of adaptations. Performance will 
improve when the amount of training produces effects at a greater rate than their removal and conversely, when 
these effects are removed faster than they are produced, then reduced performance may be observed.

The secondary signal model assumes that the gain in performance after a single training session peaks several 
days after the exercise as the secondary signal continues to stimulate adaptations within the body. Although the 
assumed variation in performance after one training session is similar to that described by the model with two 
antagonistic components1, there is a difference in that the gains between the positive and negative functions of 
this model give a decrease in performance for a few days immediately after the training session due to the acute 
fatigue induced by the exercise. Since previous models have evidenced the importance of cumulated fatigue with 
training, the model described in Fig. 1 ought also to introduce the negative effect of training on performance. 
The Banister et al.1 and variable dose-response2 models considered the negative effect of training to be fatigue 
which counterbalanced the positive effect of the exercise. The secondary signal model gives us the opportunity 
to test an alternative explanation. Although acute fatigue occurs for only a few days after a training session, 
the various models propose that the time required for athletes to recover performance levels is in the range of 
several weeks6–9,12. A time frame of several weeks corresponds instead to the amount of time needed to recover 
from overreaching or overtraining, which refer to the decrease in performance resulting from maladaptation to 
a period of excessive training with inadequate recovery28–30. The use of secondary signal-dependent responses 
allows us to formulate models that can distinguish between acute fatigue counterbalancing performance and 
maladaptation to excessive training loads. The latter can be added to the model assuming that cumulated training 
diminishes the positive effect produced by a given signal through an inhibition process.

We hypothesized that using secondary signal models would enhance the quantitative methods used to ana-
lyze how to dose levels of physical activity for athletic performance or healthy living and so designed several 
secondary signal models for modeling the effects of physical training and comparing their ability to describe the 
dynamics of responses to varying training regimens. The models used in this study differ in their description of 
the negative effects of training; they consider both fatigue as the counterbalance to the positive effects of training 
on performance and the inhibition of training-induced adaptations that is responsible for maladaptation to inten-
sified training. These models were then tested using data from an earlier report2.

Secondary signal models
Formulation of models. The first step was to build models assuming that change in performance results 
from training effect (i.e. production of performance) counterbalancing loss of adaptation (i.e. removal of perfor-
mance). They are all based on an indirect response to the primary training stimulus, as it is the secondary signals 
that stimulate the training effect. Additionally, training could also act negatively by inhibiting these secondary 
signals that drive the training effect or because fatigue counterbalances the positive effect of the exercise. To test 
these different hypotheses, four models were formulated and compared (Fig. 2).

The basic scheme of the proposed models is that the effect of training on performance (Perf) is the sum of 
the cumulated responses to each training bout produced by an indirect mechanism such as the stimulation 
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or inhibition of the production of an effect counterbalanced by its dissipation. Perf is the response to training 
ascribed to a performance criterion measured frequently throughout the period under study.

The change in performance over time with no training can be described as

= − ⋅k k Perf (1)
dPerf

dt on off

where kon represents the zero-order rate variable for production of performance and koff the first-order rate con-
stant for loss of performance.

Stimulation of the production of performance (Prod) occurs dependent on the amount of training (W) quan-
tified from the duration and intensity of the exercise done during each training session with production of a sec-
ondary signal (Signal) equal to the amount of training. The signal then dissipates with a first-order rate constant 
kout

s . The secondary signal is transformed into performance with a first-order rate constant kon
s , adding to the 

baseline value kout
0 . As a result, the rate of change in Signal after one training session, and before the next one, is 

given by

= − ⋅ − ⋅W k Prec k Prec (2)
dSignal

dt on
s

out
s

At any time, the production of performance is

= + ⋅Prod k k Signal (3)on on
s0

Figure 1. Schematic representation of secondary signal model of training effect. Impulse training doses 
are the primary stimulus giving a secondary signal which accumulates with training before its dissipation. The 
signal is transformed into training effect (i.e. production of performance). Performance increases because the 
production is greater than the loss of training-induced adaptation (i.e. removal of performance).
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Model T represents the simplest process where the responses to training are described by the production of 
the secondary signal which is the mediator for the change in performance through production counterbalancing 
its removal.

Model TI adds to Model T a process that inhibits production of performance by the secondary signal accord-
ing to the function Inhib introduced in equation (3) which becomes

= + ⋅ ⋅ −Prod k k Signal Inhib(1 ) (4)on on
s0

Inhibition on a given day is proportional to the amount of training done on this day. It therefore follows that

= ⋅Inhib k W (5)in
i

where kin
i  is the constant of proportionality.

Model TF adds to Model T a process of fatigue counterbalancing the positive effect of training. The net perfor-
mance (performance minus fatigue) represents the observed response to training.

During a training session, the amount of training leads to a proportional production in fatigue (Fatigue) at the 
rate kin

f  which dissipates with a first-order rate constant kout
f . The result is

= ⋅ − ⋅k W k Fatigue (6)
dFatigue

dt in
f

out
f

Model TIF adds to Model T both processes for inhibition of the factor controlling the production of perfor-
mance and fatigue using the same assumptions as models TI and TF respectively. Its formulation thus includes 
equations (4) and (5) for inhibition and equation (6) for fatigue.

Figure 2. Secondary signal models tested in this study: Model T with signal-dependent production of 
performance, Model TI adding to Model T inhibition process that reduces production of performance, 
Model TF adding to Model T fatigue process that reduces net performance with time and Model TIF adding 
to Model T both inhibition and fatigue processes. 
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Discretization of model equations. The secondary signal models of the training effects are defined above 
by a set of differential equations. The data required to solve them are obtained from the quantity of training per-
formed daily by subjects over several weeks or months during which performance is measured on several differ-
ent occasions. For solving the proposed models, w(t) was considered as a discrete function; i.e., a series of 
impulses each day, Wi on day i, and the model performance p̂i on day i was estimated by mathematical recursion 
from the series of W before day i. For this purpose, we discretized the continuous integral of the differential equa-
tions of each tested model as recursive sequences in which each term on a given day was defined as a function of 
other terms on either the same or the preceding day.

The performance on day i, Perfi, is computed from its level on day n −  1 and the balance between removal and 
production on day n −  1 as follows

= ⋅ − +− −Perf Perf k Prodexp( ) (7)i i off i1 1

The initial value of performance Perf0 was assumed to be equal to the first estimate of performance and to be 
stationary and thus the baseline production, kon

0 , is equal to the initial rate of removal as follows

= ⋅ − −k Perf k(1 exp( )) (8)on off
0

0

and

=Prod k (9)on0
0

In Model T, the signal on day i, Signali, is computed from its level on day i −  1 and Wi as follows

= ⋅ − − +−Signal Signal k k Wexp( ) (10)i i out
s

on
s

i1

giving

= + ⋅Prod k k Signal (11)i on on
s

i
0

In Model TI, the term Inhib was added as a variable function of training amounts which diminish the produc-
tion of performance. Its value on day i is computed as follows

= ⋅Inhib k W (12)i in
i

i

Equations 11 and 12 are modified in Model TI

= ⋅ − − ⋅ − +−Signal Signal k k Inhib Wexp( (1 )) (13)i i out
s

on
s

i i1

and

= + ⋅ − ⋅prod k k Inhib Signal(1 ) (14)i on on
s

i i
0

In Models TF and TIF, the equations for Signali, Prodi and Perfi are identical to those in Models T and TI 
respectively. In both of them, an equation is added to the term ascribed to fatigue. Its level on day i, Fatiguei, is 
computed as follows

= ⋅ + ⋅− −Fatigue k W Fatigue k( ) exp( ) (15)i in
f

i i out
f

1 1

with Fatigue0 and W0 initialized to 0.
In both Models TF and TIF, model output is net performance as follows

= −netPer f Per f Fatigue (16)i i i

Results
Table 1 gives the indicators of goodness-of-fit for the four models tested in this study which were statistically 
significant for each subject (P <  0.001). F-tests on residual variance showed that Model TI improved the fit in all 
subjects (P <  0.001) and Model TF only in subject 3 (P <  0.001) in comparison to model T. Model TIF improved 
the fit in 4 subjects (P <  0.05 in subjects 2, 4 and 6 and P <  0.001 in subject 3) in comparison to model TI.

AICc for Models TI and TIF was lower than for Models T and TF in 5 subjects. AICc was the lowest for Model 
TF only in subject 3. Average weight of evidence calculated from w(AICc) was close for models TI and TIF 
(0.428 ±  0.397 and 0.479 ±  0.302 respectively), whereas weak weights were found for Models T and TF 
(0.000005 ±  0.000013 and 0.092 ±  0.226 respectively). Nevertheless, the estimates for kin

f  with Models TF and TIF 
were positive only in subject 3. Obtaining negative value of kin

f  in the remaining five subjects was not consistent 
with the hypothesis that the fatigue term counteracts the positive effect of training.

Since evidence for the validity of the models including the fatigue term was only found in subject 3, analysis of 
the statistics was in favor of opting for Model TI from the four models tested in this study. Figure 3 shows the fit 
of Model TI to actual performance in the 6 subjects. The data of subject 1 were selected to show the balance 
between production and removal of performance giving a regular increase in performance during the first period 
of training which was interrupted during the 5 consecutive days of training because inhibition remained at a high 
level (Fig. 4). Table 2 gives the estimated parameters for Model TI showing large inter-individual variations for kon

s  
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and kout
s  because of outliers. Median values of koff kon

s , kout
s  and kin

i  were 0.0305 (IQR 0.0055), 0.0074 (IQR 0.0031), 
0.292 (IQR 0.165) and 0.0021 (IQR 0.0001) respectively. We chose the median value of the estimates to simulate 
the response to a 200 and 300-tu session for three cases: a single session and the same session performed on 1 and 
2 subsequent days (Fig. 5). These simulations illustrate how a session alters the response to previous ones to an 
extent dependent on the repeated dose. As a consequence, when identical sessions are repeated sufficiently for the 
subject to reach a steady state, the relationship between the daily training dose and performance has an inverted-U 
shape as depicted in Fig. 6.

Discussion
The goal of this study was to verify the ability of a secondary signal model to fit performance changes with training.  
Statistical analysis shows that the models tested in this study enable us to relate the changes in performance of 
each subject at P <  0.001. However, the comparison of indicators of goodness-of-fit and consistency of parameter 
estimates indicates that Model TI is the most useful of the four models tested.

The original model proposed by Banister et al. and the variable dose-response model were tested with the 
same data using the least square method to estimate the parameters for each subject2. Successive linear minimiza-
tion with a grid of values for decay time constants gave the total set of parameters. In the present study, the entire 
set of parameters was estimated using a method designed for non-linear models. The latter could not however be 
used to fit the two previous models because the solution was sensitive to the starting value for time constants cho-
sen to initialize the computation. It could be the result of ill-conditioning problems revealed for the Banister et al. 
model by analysis of the correlation matrix of the parameter estimates7. This is why we did not include these two 
other models in the present study. In addition to better model conditioning, using secondary signal-dependent 
responses gave a goodness-of-fit as satisfactory as with previous models. By way of comparison, Adj.R2 for the 
model proposed by Banister was 0.857 ±  0.042 and for the variable-dose response model 0.944 ±  0.042 similar to 
those for Model T (0.883 ±  0.045) and Model TI (0.945 ±  0.019) respectively.

Model T was the simplest model tested in this study with an accumulation of the signal which depleted slowly 
after training session giving the training effect. Although it did not consider fatigue to act negatively on perfor-
mance, Model T described performance changes with training as precisely as did the original model in which 
performance was calculated from two components modeled using first order kinetics. Introducing the fatigue 
variable balancing the effect of training in Model TF did not significantly improve the fit compared to Model T. 
This result implies that the secondary signal-dependent response would be a good alternative to the two antag-
onistic first order systems. Using secondary signal also has the advantage of avoiding the collinearity between 
positive and negative effects leading to ill-conditioning problems revealed with the original model from Banister 
et al.7.

The negative influence of training was considered in Model TI assuming that a session inhibited 
training-induced adaptation from the signal accumulated as a function of past sessions. This model gave a perfor-
mance data fit as precise as with the variable dose-response model2. The latter implied that fatigue produced by a 
single unit of training increases when training is intensified. It results in an inverted U-shape relationship between 
the amount of daily training and performance gain2. The existence of an optimum amount of daily training was 

Model T Model TI Model TF Model TIF

Adj.R2 0.923 0.967 0.919 0.967

Subject 1 AICc 328.04 291.07 332.74 293.96

w(AICc) 0.000 0.809 0.000 0.191

Adj.R2 0.860 0.932 0.853 0.939

Subject 2 AICc 330.27 299.27 335.22 297.16

w(AICc) 0.000 0.258 0.000 0.742

Adj.R2 0.896 0.920 0.946 0.947

Subject 3 AICc 323.71 312.77 296.40 296.83

w(AICc) 0.000 0.000 0.554 0.445

Adj.R2 0.831 0.950 0.826 0.956

Subject 4 AICc 312.72 265.16 316.83 263.75

w(AICc) 0.000 0.331 0.000 0.669

Adj.R2 0.944 0.965 0.943 0.963

Subject 5 AICc 301.99 281.39 305.55 287.04

w(AICc) 0.000 0.944 0.000 0.006

Adj.R2 0.843 0.935 0.846 0.943

Subject 6 AICc 351.29 312.56 353.01 310.10

w(AICc) 0.000 0.226 0.000 0.774

Adj.R2 0.883 ±  0.045 0.945 ±  0.019 0.889 ±  0.053 0.952 ±  0.011

Mean ±  SD AICc 324.67 ±  16.79 293.70 ±  18.57 323.29 ±  20.95 291.47 ±  15.51

w(AICc) 0.000 ±  0.000 0.428 ±  0.367 0.092 ±  0.226 0.479 ±  0.302

Table 1.  Indicators of goodness-of-fit of secondary signal models.
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also captured by Model TI (Fig. 6). This feature was the training effect for a given signal varying as a function of 
the current training sequence as depicted in Fig. 5. The optimum daily training amount estimated from Model 
TI was however lower than the variable dose-response model (253 ±  45 vs 322 ±  70 tu per day). Adding a fatigue 
variable acting negatively on the training effect in Model TIF did not improve the description of performance 
response to training compared to Model TI. Contrary to the original concept of fatigue and adaptation balancing 
the performance response, the negative effect of training in Model TI acts through altering the performance gain 
for a training unit as a function of the work done on subsequent days. In other words, maladaptation to intensi-
fied training would be due to inhibition of the transformation of the secondary signal thus inhibiting adaptation. 
Because of signal dissipation, this inhibition process would be responsible for signal wasting explaining why the 
performance change was lower than expected with high amounts of training. However, Model TIF has the poten-
tial to single out acute fatigue after a training session and maladaptation during periods of intense training. The 
benefit of adding a fatigue component to the model was however not evidenced in this study, with the exception 
of one subject. Athletes train with workloads much higher than those by the subjects in this study. It has been 
acknowledged that recovery from accumulated fatigue occurring during an overload period would be a key point 
for taper strategies in the final stages of preparation before high-level competitions8,14,18,21. Adding acute fatigue to 
maladaptation to excessive training as in Model TIF would deserve to be re-examined for athletes.

In conclusion, this study shows that secondary signal-dependent response provides a useful framework to 
model the dynamic response of performance during training. The comparison of the different models highlights 
the usefulness of Model TI which considers inhibition of current training effect with new training sessions. It is 
worth noting that the data used in this study came from healthy volunteers for an intensified training program 

Figure 3. Measured performance around line of best fit with Model TI for the 6 subjects. 
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but Model T would also be appropriate for studying the response to lower training doses during rehabilitation 
programs. On the other hand, Model TIF could be more appropriate for the analysis of responses in elite athletes 
because of the higher workload during their preparation. Further studies are warranted to determine how sec-
ondary signal models could create new opportunities to quantify the dose-response effect of exercise in order to 
gain insights into the prescription of physical activity programs with athletic performance, fitness or health goals.

Methods
Experimental data. To test the models proposed in this study, we took the experimental data from a study 
entirely described in a previous report2. This study had been approved by the local ethics committee (Conseil 
Consultatif de la Protection des Personnes dans la Recherche Biomédicale de la Loire) and the methods used in 
accordance with relevant guidelines. Six healthy men volunteered after giving their informed written consent. 
The 15-wk experiment included two periods of training: an 8-wk period with 3 training sessions per week (weeks 
1–8) and a 4-wk period with 5 training sessions per week (weeks 10–13) separated by one week without training 
(week 9). The last two weeks of the experiment were also a period without training (weeks 14–15). Throughout 
the experiment, the subjects performed a total of 40 to 46 trials to measure the maximal work they could develop 
for 5 min on a cycle ergometer (Model 829E, Monark, Stockholm, Sweden). The power output developed by the 
subjects was averaged over the 5-min test to estimate Plim5′. Performance was measured 2 or 3 times each week 
during the entire experiment including the week before it began (week 0), and the rest periods (weeks 9, 14 and 
15). During the first training period (weeks 1–8), the subjects performed one test 3 times per week to measure 
Plim5′ and a training session consisting of 4 repetitions of 5 minutes of work interspersed with 3 minutes of active 
recovery. During the second training period (weeks 10–13), the subjects trained on 5 consecutive days; on days 1, 

Figure 4. Results for Model TI in subject 1. A: measured performance around line of best fit. B: rate of 
production and removal of performance. C: Amount of signal producing performance. D. Inhibition variable 
which reduces production of performance from signal.

koff kon
s kout

s kin
i

Subject 1 0.0328 0.00845 0.297 0.00199

Subject 2 0.0285 0.00462 0.189 0.00246

Subject 3 0.0267 0.00071 0.053 0.00148

Subject 4 0.0326 0.00783 0.286 0.00213

Subject 5 0.0194 0.00695 0.405 0.00201

Subject 6 0.0341 0.03751 1.066 0.00211

Mean ± SD 0.0290 ±  0.0055 0.0110 ±  0.0133 0.383 ±  0.355 0.00203 ±  0.0003

Table 2.  Estimate of parameters for Model TI.
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3 and 5 this was identical to the first training period and on days 2 and 4, the performed 5 repetitions of 5 minutes 
but no performance trial. Exercise intensity was set at 85% of the last measured Plim5′. The daily amount of train-
ing on day i (Wi) was computed in arbitrary units (tu) from mean power (Pmean) during 5-min bouts of exercise 
(Plim5′) as follows

= ⋅ ⋅
′

W P
P

rep 100
(17)i

mean

lim 5

with rep the number of repetitions of the training sequence. The amount of training for each performance trial 
was fixed at 100 tu.

Figure 5. Gain in performance after a training session (200 and 300 tu): (1) no work the days after (single 
session), (2) same training session one day after and (3) same training session two days after. Computations 
were made with Model TI with the median values of parameter estimates.

Figure 6. Performance at steady state for same training dose repeated each day with baseline performance 
equal to 250 W. Computations were made with Model TI with the median values of parameter estimates.
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The entire data set for the 6 subjects can be found as Supplementary Table S1.

Model fitting and statistics. Model performances p̂i were ascribed to the effects of training for Models T 
and TI and to net effects for Models TF and TIF and fitted to measured performance pi.

With n the number of performance measurements during the study and resi the residuals from the fit −p̂ p( )i i . 
Assuming normally distributed errors, log-likelihood of the estimated model ln(L) was computed as follows

∑π= − . ⋅ ⋅ + − + =( )( )L n resiln( ) 0 5 n ln(2 ) 1 ln( ) ln (18)i
n

i1
2

Each model was fitted for each subject by minimizing the negative log-likelihood function using nlm function 
in R package31.

For the measures of goodness-of-fit, we calculated the coefficient of determination (R2)

= −R RSS
TSS

1 (19)
2

with RSS the residual sum of squares and TSS the total sum of squares. The mean square error on performance 
estimation (SE) was computed as RSS/(N-p). The statistical significance of the fit was tested by analysis of variance 
of the RSS in accordance with the degrees of freedom of each model.

The adjusted coefficient of determination (Adj . R2) was calculated according to p the number of parameters 
for each model (3 for Model T, 4 for Model TI, 5 for Model TF and 6 for Model TIF) as follows

⋅ = −
−
−

⋅ −Adj R n
n p

R1 1 (1 )
(20)

2 2

The level of confidence for each level of model complexity was tested by analysis of variance of the related 
decrease in residual variation. The decrease in RSS explained by the introduction of further model parameters was 
tested using the F-ratio test in accordance with the increase in degrees of freedom32.

As an indicator of goodness-of-fit, we also calculated the bias-corrected Akaike Information Criterion 
(AICc)33

= ⋅ − ⋅ +
⋅ +
− −

AICc p L p p
n p

2 2 ln( ) 2 ( 1)
1 (21)

We used Akaike weights to obtain weight of evidence for each of the four models tested in this study33

=
− . ⋅ ∆

∑ − . ⋅ ∆=

w AICc( ) exp( 0 5 (AICc))
exp( 0 5 (AICc)) (22)

i
i

k 1
4

k

where i is the model number and Δ i(AICc) the difference between AICc of model i and the lowest AICc.
A spreadsheet implementation of Model T and Model TI can be found as Supplementary Information.
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