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for monitoring rice leaf nitrogen 
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LiDAR and passive spectrometer
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Fast and nondestructive assessment of leaf nitrogen concentration (LNC) is critical for crop growth 
diagnosis and nitrogen management guidance. In the last decade, multispectral LiDAR (MSL) systems 
have promoted developments in the earth and ecological sciences with the additional spectral 
information. With more wavelengths than MSL, the hyperspectral LiDAR (HSL) system provides greater 
possibilities for remote sensing crop physiological conditions. This study compared the performance 
of ASD FieldSpec Pro FR, MSL, and HSL for estimating rice (Oryza sativa) LNC. Spectral reflectance 
and biochemical composition were determined in rice leaves of different cultivars (Yongyou 4949 
and Yangliangyou 6) throughout two growing seasons (2014–2015). Results demonstrated that HSL 
provided the best indicator for predicting rice LNC, yielding a coefficient of determination (R2) of 0.74 
and a root mean square error of 2.80 mg/g with a support vector machine, similar to the performance of 
ASD (R2 = 0.73). Estimation of rice LNC could be significantly improved with the finer spectral resolution 
of HSL compared with MSL (R2 = 0.56).

Rice (Oryza sativa) is a daily necessity among people. The expansion of cities has resulted in a decrease in avail-
able land for paddies. In addition, immoderate application of fertilizers has given rise to serious environmen-
tal consequences, such as water eutrophication and soil hardening1. Nitrogenous fertilizer is used extensively 
because nitrogen (N) supply is a crucial factor in improving crop yields. Thus, accurate monitoring of the status 
of rice leaf N concentration (LNC) not only enables high yields but also improves the efficiency of applied nitrog-
enous fertilizer and prevents eutrophication. As an important indicator for crop growth diagnosis, the concept of 
plant N concentration is based on dry matter2, while plant N content is based on field area, and is the product of 
N concentration and dry biomass3. Considering that plant N content is strongly influenced by growth stages, we 
measured LNCs in the present study.

Multispectral and hyperspectral remote sensing are nondestructive methods of estimating the foliar biochem-
ical concentration of vegetation4,5. This method has been used to monitor the chlorophyll, lignin, N, and water 
status of vegetation3,6,7. The influence of factors, including canopy structure, needs to be eliminated before using 
canopy reflectance to estimate N concentration8. However, passive remote sensing is often influenced by multiple 
aerial/atmospheric condition factors, including pollution, clouds, and solar zenith angle.

Given the advantage of obtaining precise three-dimensional (3D) information, light detection and ranging 
(LiDAR) has undergone advanced developments in quantifying the 3D surface properties and processes in earth 
and ecological sciences9,10. The potential use of the intensity of point clouds in plant biochemistry estimation 
needs further exploration11. LiDAR intensity is useful in retrieving plant chlorophyll content12, nitrogen status13, 
and leaf water content14. Compared with traditional single-wavelength LiDAR systems such as active flash sen-
sor (AFS) and GreenSeeker (NTech Industries, Inc., Ukiah, CA), multispectral LiDAR (MSL) and hyperspectral 
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LiDAR (HSL) with high spectral resolution allow for increased sensitivity to characterize leaf biochemistry by 
emitting separate laser beams simultaneously, or utilizing a supercontinuum laser source with a wide spectrum 
range and a multi-channel detector.

Recently, MSL/HSL systems have been applied to estimate leaf moisture contents under laboratory condi-
tions15, represent the chlorophyll content of harvested Scots pine shoots16, and reflect leaf nitrogen content levels17.  
A few promising commercial multispectral laser scanners have been developed18–20. Nevertheless, their wave-
length number is limited to 2–3. Moreover, different channels frequently do not follow the same optical path, 
which can result in a series of noises and errors.

With regard to pattern recognition algorithms, multiple linear regression methods such as partial least-squares 
regression21 have been widely applied to estimate vegetation biochemical parameters22,23. However, the exact rela-
tionship between spectral reflectance and LNC may not be linear. A decision tree is quick to train and execute, 
able to deal with non-linear relationships between features and classes and with other advantages. However, it 
can have difficulty handling too many features17. A support vector machine (SVM) is a popular machine learning 
method for data classification and regression; this method has been successfully applied in remote sensing24,25. 
Advantages of SVM include robustness, insensitivity to the number of dimensions, and small sample size require-
ment for training26.

The development of HSL offers a way to address the limitations of traditional optical remote sensing and 
LiDAR. However, the performance of HSL in quantifying LNC has yet to be directly compared with that of other 
remote sensing technologies. The current study compared the performance of an HSL system in discriminating 
rice LNC with that of the passive sensor ASD FieldSpec Pro FR (Analytical Spectral Devices, field spectroradiom-
eter, full-range, Inc., Boulder, USA) and an MSL system using SVM. The experiments were based on rice samples 
of different cultivars and growth states, grown in different places for two consecutive years (2014–2015). The 
objectives of this study were to (1) estimate rice LNC in different situations (cultivars, growth stages, and different 
field locations) with data collected by three sensors (ASD, MSL, and HSL) and (2) compare their capability to 
predict rice LNC with SVM. This study focused mainly on the novel use of the LiDAR intensities of HSL and MSL 
to reflect foliar biochemistry.

Materials and Methods
Study sites and leaf sampling.  Located on the Jianghan Plain, Hubei Province is one of the largest prov-
inces for rice plantations in China. The yield of Hubei Province ranked first in the nation’s yields in 201427. The 
experiments were conducted at two locations in Hubei Province: fields located in Junchuan County, Suizhou 
(113°13′​26.52″​E, 31°39′​0.94″​N) and the experimental station of Huazhong Agricultural University in Wuhan 
(114°21′​9.27″​E, 30°28′​34.10″​N) (Fig. 1). Different fertilizer treatments were applied in the fields sampled to pro-
vide a wide range of nitrogen concentrations.

Yongyou 4949 was grown in Junchuan County, Suizhou during the growing season of 2014. The crops were 
seeded on April 27, and transplanted on June 1. Six levels of urea fertilizer (0, 189, 229.5, 270, 310.5, and 351 kg/ha)  
were implemented. For every urea fertilizer level, three fields with identical cultivation conditions were used as 
replicates. The fields were designed as randomized blocks. Each plot was separated completely from the others by 
setting plastic films on the ridges of adjacent fields to avoid water leakage, thereby ensuring the precise application 
of N. The paddy rice samples were collected on July 15 and August 1, 2014.

Yangliangyou 6 was grown in the experimental station of the Huazhong Agricultural University in Wuhan in 
the growing season of 2015. The crops were seeded on April 30, and transplanted on May 27. Four levels of urea 
fertilizer (0, 120, 180, and 240 kg/ha) were implemented. Replications and separation between fields were similar 
to the procedures used in 2014. The paddy rice samples were gathered on July 20, 22, 24, and 26, 2015.

In each experimental field, at least six fully expanded second leaves from the top were selected randomly. The 
fresh leaf samples were sealed in plastic bags, kept in ice chests, and then transported to the laboratory for spectral 
measurements28 by ASD, MSL, and HSL. All samples were sent immediately to Wuhan Academy of Agricultural 
Science and Technology, where the Kjeldahl method29 was utilized to determine the paddy rice LNC.

Figure 1.  Location of study sites: location of Hubei Province in Greater China, and locations of Suizhou 
and Wuhan in Hubei Province [constructed by MATLAB (R2011b, Mathworks Inc., Natick, MA, USA)]. 
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Measurements based on active and passive sensors.  ASD field spectroradiometer.  The passive 
sensor ASD FieldSpec Pro FR (Analytical Spectral Devices, field spectroradiometer, full-range, Inc., Boulder, 
USA) was used for spectrum measurements. The measurement was performed as described by Song, et al.28. 
The light source was a 100 W halogen reflectorized lamp. Each sample was measured three times. All spectra 
were obtained at the nadir direction of the radiometer with a 25° field of view (FOV) (resultant FOV diameter of 
0.9 cm). Leaf radiance was measured initially in the range of 400–1000 nm at 1.4 nm intervals and 1000–2500 nm 
at 2.2 nm intervals, and then resampled automatically at 1 nm resolution. We measured a standard reference 
panel (Spectralon, Labsphere, Inc., North Sutton, NH, USA, reflectance nearly 99%) at several times during data 
acquisition. We obtained the reflectance of the target by dividing the radiance intensity of the target by that of the 
white panel.

Previous rice LNC studies showed that the highest R2 for LNC is concentrated in the red-edge bands (700–
760 nm) paired with the red-edge to near-infrared (NIR) bands (700–1100 nm), followed by blue to green bands 
(450–520 nm) paired with red-edge to NIR bands (740–1000 nm)30. Moreover, N and chlorophyll are closely 
related, because chlorophylls are major nitrogen-containing components of plants31. Sensitivity analysis of chlo-
rophyll conducted from field experiments32,33 and the leaf radiative transfer model of PROSPECT34 indicated that 
chlorophyll influences reflectance within the visible (VIS) and red-edge domain. We selected the VIS and NIR 
spectra (400–1000 nm) for this analysis because these regions of ASD data have high signal to noise ratio and 
avoid the water absorption bands present at higher wavelengths. In consideration that leaf reflectance was utilized 
in this study, canopy structural influences were not considered8. This range also avoids the influence of water35.

MSL system.  One of the investigated active sensors was an MSL system developed by Wuhan University, operat-
ing at four wavelengths (556, 670, 700, and 780 nm) covering VIS and NIR wavelengths. A detailed description of 
the system is provided in the study by Wei, et al.36. The MSL system is composed of three parts: the laser emitting 
system, the receiver unit and the data-processing system (Fig. 2). Lasers are transmitted from four semiconductor 
laser diodes and synthesized into a single beam. After transferring to the detected leaf, the backscattered radiation 
is received by a Schmidt–Cassegrain telescope and detected by four photomultipliers. The connected computer 
then processes the acquired signals and LiDAR intensities. The MSL system functions on a motorized precision 
platform to ensure synchronous scanning and signal reception. In the experiment, all rice leaves were measured 
perpendicular at a distance of 3.7 m.

HSL system.  The HSL system employed in this study was developed by Wuhan University, and a detailed 
description can be found in the study by Du, et al.17 (Fig. 3). A supercontinuum laser source was adopted to emit 
wide-band “white” laser. After the backscattered signals are collected by an achromatic telescope and collimated, 
the grating spectrometer (blazed grating) separates the maximum of single-slit diffraction from the zero-order 
maximum of multi-slit interference, thereby separating the echoes into different channels. With a multi-detector 
of 32 channels, the wavelength range of the HSL system is 538–910 nm. Finally, as a data acquisition detector, the 
photosensitive photomultiplier (PMT) arrays convert data to electronic signals.

All of the rice leaves were measured perpendicular at a distance of 4.2 m. Thus, the effects of incidence angle 
and distance were eliminated. The influence of certain factors, such as the dark current of the instrument, can be 
weakened by calculating the reflectance from the spectral measurements of a reference white panel37.

Regression analysis.  Data preprocessing.  Foliar reflectance in the VIS and NIR regions (including the red 
edge) has often been considered a good candidate for representing the biochemical or biophysical parameters 
of vegetation38. On the basis of measurements of a standard white reference panel, a normalized laser return 
intensity can be obtained by dividing the raw laser return intensity value of the target with the averaged value of 
the panel. This normalized value is equivalent to the spectral reflectance in traditional optical remote sensing, 
and will be referred to as reflectance below. Three positions were randomly selected on each rice leaf sample and 

Figure 2.  Optical layout of the employed multispectral LiDAR (MSL) system (PMT: photomultiplier). 
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measured by the three sensors. The spectral values for all points per leaf were averaged. The collected spectral 
data were preprocessed in order to eliminate various random and environmental noises. The Savitzky–Golay 
smoothing filter39 with a third-order polynomial function and a bandwidth of 25 nm was applied to ASD data. In 
each MSL and HSL measurement, the spectra were collected for a point together with its 3D information. For the 
HSL spectrum, logarithmic and differential transformation17 were conducted. This procedure allows the analysis 
of the relationship between the leaf-level spectral characteristics in the VIS and NIR ranges as acquired by three 
detectors and laboratory-provided LNC (mass-based).

Support vector machine (SVM).  The exact relationship between LNC and the reflectance spectra remains 
unclear. With this consideration, a SVM, capable of constructing both linear and nonlinear inversion, was 
employed in this study. Different from an artificial neural network, a SVM has excellent generalization perfor-
mance with a strong theoretical foundation in statistical learning theory40. SVM is insensitive to the number of 
dimensions and requires a small number of samples for training26.
∈-support vector regression estimates an unknown continuous-valued function based on a finite number set 

of noisy samples. SVM regression performs linear regression in the high-dimension feature space by using insen-
sitive loss and attempts to reduce model complexity by minimizing the empirical risk.
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The model output α*−​α is the result. Using MATLAB (R2011b, Mathworks Inc., Natick, MA, USA), where 
relevant inherent functions and the library LIBSVM41 are available, we used the algorithm of SVM to analyze the 
statistical relationship between the spectral reflectance acquired from different sensors and rice LNC. The radial 
basis function (RBF) was employed as a kernel function of SVM. The penalty parameters c and γ in RBF kernel 
were settled through five-fold cross validation, and these parameters differed in different regression models.

Statistical parameters.  Altogether 220 rice samples were collected in 2014 and 2015. They were divided ran-
domly into two datasets: 80% (176) as the training dataset and the remaining 20% (44) as the validation dataset 
for predicting LNC. The coefficient of determination (R2), root mean square error (RMSE), and relative error (RE) 
were calculated as shown below to evaluate the performance of the estimation models:
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Figure 3.  Optical layout of the employed hyperspectral LiDAR (HSL) system (OFP: optical fiber probe; OF: 
optical fiber; M1, M2: completely reflecting mirror; PMTs: photomultipliers). 
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where ŷi, yi, and y are the estimated, observed, and average observed rice LNC, respectively; n is the number 
ofsamples; and RE is the relative difference between the predicted and observed values.

Results and Discussion
Relationship between reflectance and rice LNC.  The spectral reflectance of rice leaves was influenced 
strongly by the foliar chlorophyll concentration, which shares a close relationship to foliar N levels2,17,31. Therefore, 
observing leaf VIS and NIR reflective characteristics was a viable means to assess plant N concentration. The can-
opy structure, such as leaf area index (LAI) and canopy height, must be considered for green vegetation canopy 
reflectance8. Different LNC levels of rice can be approximately distinguished on the basis of the different spectral 
characteristics obtained using the investigated sensors (Fig. 4). The overall trend of the curves at the same N 
level was similar. In addition, the exact reflectance values detected by different sensors were not equal because of 
the differences in their measuring principals and systematic factors, where the reflectance detected by MSL was 
extremely close to that of the HSL system in different N levels.

Regression analysis results among ASD, MSL, HSL reflectance and rice LNC.  In SVM regres-
sion, all training and validation datasets were randomly partitioned. The descriptive statistics for 2014 and 2015 
are listed in Table 1, where samples were also split by calibration and validation. Table 1 shows that the overall 
LNC level of Yangliangyou 6 (mean value >​ 19 mg/g) was higher than that of Yongyou 4949 (mean value about 
13 mg/g). In addition, the large standard deviation and range of value (max – min) indicated that Yongyou 4949 
had more variation in LNC than the other cultivar. This result can be attributed to the divergence in different 
paddy cultivars and growing locations.

Figure 5 shows the comparison of the linear regression results between the observed and predicted rice LNC 
with the three detectors. The additional spectral information improved the R2 from 0.56 with MSL to 0.74 with 

Figure 4.  Rice leaf reflectance spectra under different leaf nitrogen concentration (LNC) levels 
and detected by different sensors (ASD: ASD FieldSpec Pro FR (Analytical Spectral Devices, field 
spectroradiometer, full-range, Inc., Boulder, USA); MSL: multispectral LiDAR; HSL: hyperspectral LiDAR; 
N1–N3 indicate different LNC levels). 
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HSL (RMSE: 2.80 vs 3.65 mg/g, RE: 16.82% vs 21.94% in Table 2). The HSL system can estimate rice LNC with 
similar accuracy to ASD, with an R2 of 0.74 vs 0.73 and an RMSE of 2.80 vs 2.82 mg/g (Table 2). Compared 
with the HSL system, the ASD had more bands (601 in this study vs 32) with finer spectral resolution However, 
HSL is an active sensor, and had a smaller FOV (less than 3 mrad) than ASD (FOV 440 mrad). The discrep-
ancy in reflectance curves of different N levels in Fig. 4 was more obvious with HSL than with ASD and MSL. 

Season Site Cultivar Dataset
Sample 

Size

Leaf nitrogen concentration

Mean SDa Min Max

2014 Suizhou Yongyou 4949
Training 72 13.22 6.94 4.70 35.61

Testing 18 12.80 6.12 3.87 25.26

2015 Wuhan Yangliangyou 6
Training 104 19.80 4.00 8.69 31.87

Testing 26 19.26 2.97 14.46 24.18

Table 1.   Basic statistical information of the LNC conditions of rice samples in support vector regression in 
2014 and 2015. aSD: standard deviation.

Figure 5.  Relationship between the observed leaf nitrogen concentration (LNC) and the predicted LNC 
based on active and passive detectors with a support vector machine (the dashed line represents 1:1 line) 
based on validation dataset (n = 44) (ASD: ASD FieldSpec Pro FR (Analytical Spectral Devices, field 
spectroradiometer, full-range, Inc., Boulder, USA); MSL: multispectral LiDAR; HSL. hyperspectral LiDAR; 
N1–N3 indicateac different LNC levels).

Equation R2 RMSE (mg/g) RE (%)

ASD y =​ 0.69x +​ 5.06 0.73 2.82 16.96

MSL y =​ 0.61x +​ 6.97 0.56 3.65 21.94

HSL 0.47x +​ 10.13 0.74 2.8 16.82

Table 2.   Assessment of the support vector machine models developed with data from active (MSL: 
multispectral LiDAR, HSL: hyperspectral LiDAR) and passive sensors (ASD: ASD FieldSpec Pro FR)  
(R2: coefficient of determination, RMSE: root mean square error, RE: relative error).
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This result suggested the sensitivity of HSL in detecting the foliar biochemical conditions compared with the 
two other means. Our result with HSL for rice LNC (R2 =​ 0.74) was similar to that of Eitel, et al.42, who used a 
dual-wavelength LiDAR to estimate the foliar nitrogen of winter wheat (R2 =​  0.71–0.76).

The scatter of the predicted and observed rice LNC compared with the 1:1 line (Fig. 5) suggested that the 
accuracy of using the spectral reflectance from 400–1000 nm as predictors tended to overestimate lower rice LNC 
(<​10 mg/g), and underestimate higher LNC (>​20 mg/g), though this phenomenon was less obvious in ASD and 
HSL. This finding agrees with earlier findings by Eitel, et al.43 who found that the accuracy of laser-derived dry 
mass per unit area (W in t ha−1) estimates in winter wheat decreased when the actual W was large. The saturation 
effect described above with increasing LNC still exists even when using the complete range of reflectance instead 
of red light-dependent or NIR-based indices44. The sensitivity of reflectance signals in predicting chlorophyll 
concentrations can decrease in red and blue regions45. The diurnal changes in photosynthetic photon flux density, 
which affects various pigments, may be the cause for the saturation result when the plant LNC is high.

Spectral indices have been widely applied detect crop N status. For example, Eitel, et al.46 reported that an 
index based on ratio (MCARI/MTVI2) could best estimate LNC of winter wheat (R2 ranging from 0.45 to 0.69 
for narrow bands). Chen, et al.2 showed that a new index named double-peak canopy nitrogen index performed 
best in N detection, with an R2 of 0.72 for corn and 0.44 for wheat. Erdle, et al.44 reported that R760/R730 was 
the most powerful index for detecting wheat N status. Tian, et al.47 found that R553/R537 was the best index to 
assess rice LNC under different conditions. The normalized difference nitrogen index (NDNI =​ [log (1/R1510) − 
log (1/R1680)]/[log (1/R1510) +​ log (1/R1680)]) correlated with the foliar N concentration of native shrub vegetation 
(r =​ 0.582, P =​ 0.004)48. To the best of our knowledge, no index is proved universally effective for crop LNC esti-
mation, because of the different spatial, temporal and measurement conditions. Further research is necessary 
to examine the performance of HSL measurements to predict LNC under various circumstances. The observa-
tion toward crop N status is also influenced by certain factors (e.g., leaf inner structure, leaf area index), which 
demands a thorough and detailed study in the future.

Conclusion
Based on a systematic analysis of the quantitative relationships between LNC and reflectance characteristics, the 
capability of an HSL system with 32 channels to estimate rice LNC was evaluated through comparisons with the 
passive hyperspectral sensor ASD FieldSpec Pro FR (using the reflectance spectra from 400 to 1000 nm) and an 
MSL system with four bands. Through the regression results of SVM, rice LNC was best predicted by HSL. ASD 
provided comparable results with HSL in this study. Limited by the number of wavelengths, the MSL provided a 
moderate regression.

HSL demonstrated its potential as a rapid and non-destructive tool for assessing rice LNC, which can facilitate 
real-time N management decisions. Additional studies should be carried out to test the monitoring relationships 
further using independent datasets, which can help to test the reliability under a range of conditions. In addition, 
the HSL system shows promise for other agronomic applications, such as examining other crop biochemical 
properties and soil parameters, which merits exploration in future research.
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