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Stochastic kinetics reveal 
imperative role of anisotropic 
interfacial tension to determine 
morphology and evolution of 
nucleated droplets in nematogenic 
films
Amit Kumar Bhattacharjee

For isotropic fluids, classical nucleation theory predicts the nucleation rate, barrier height and 
critical droplet size by ac- counting for the competition between bulk energy and interfacial tension. 
The nucleation process in liquid crystals is less understood. We numerically investigate nucleation 
in monolayered nematogenic films using a mesoscopic framework, in par- ticular, we study the 
morphology and kinetic pathway in spontaneous formation and growth of droplets of the stable phase 
in the metastable background. The parameter κ that quantifies the anisotropic elastic energy plays 
a central role in determining the geometric structure of the droplets. Noncircular nematic droplets 
with homogeneous director orientation are nucleated in a background of supercooled isotropic phase 
for small κ. For large κ, noncircular droplets with integer topological charge, accompanied by a 
biaxial ring at the outer surface, are nucleated. The isotropic droplet shape in a superheated nematic 
background is found to depend on κ in a similar way. Identical growth laws are found in the two 
cases, although an unusual two-stage mechanism is observed in the nucleation of isotropic droplets. 
Temporal distributions of successive events indi- cate the relevance of long-ranged elasticity-mediated 
interactions within the isotropic domains. Implications for a theoretical description of nucleation in 
anisotropic fluids are discussed.

A fluid exhibiting a first order phase transition can transit from an unstable to a stable phase through spinodal 
decomposition and coarsening, where irregular domains of the stable phase emerge spontaneously and com-
bine to minimize the surface energy. In contrast, transformations from a metastable state occur via nucleation 
and growth in which droplets of the stable phase are formed in the metastable state and these droplets grow 
and coalesce to increase the fraction of the stable phase in the system. A classic example of this phenomenon 
is supercooled water freezing into ice via nucleation and growth1. Nucleation in solid solutions is followed by 
Ostwald ripening2, while metallic alloys and bulk metallic glasses conventionally display dendritic growth due to 
anisotropic surface effects3.

Many fundamental problems in surface interfacial science are concerned with the morphology of the nucleated  
phase, its growth rate, the first passage time as well as the kinetic route to equilibrium. Questions about drop-
let morphology are especially pertinent in studies of nematogenic fluids, where the anisotropy associated with 
the tensorial structure of the order parameter is one of the important factors in the description of the nuclea-
tion process4,5. The microstructure of the nucleus is determined by a nontrivial interplay of competing energies:  
(i) the anisotropic elastic energy associated with deformations of the tensorial order in the bulk, (ii) the anisotropic  
interfacial tension related to the director anchoring at the interface between the two phases, and (iii) any external 
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forcing that may be present, e.g. equilibrium thermal fluctuations. Thus, aspherical shape of droplets, complex 
growth law etc. are to be expected and the nucleation rate may itself lack a precise definition6.

Recently, liquid crystalline phases have found a multitude of applications in nanoscience7. Droplet shapes 
play a crucial role in ink-jet technology8, switching and bistable devices9, photovoltaics as well as in bio-sensor 
applications with living liquid crystals10. Early experiments found evidence for aspherical spindle-shaped droplets 
called tactoids11. Such nuclei were later obtained in theoretical studies assuming homogeneous director distri-
bution inside the droplet12–14. Progress was hindered for several decades because experimental characterization 
of early-stage supercritical droplets was not possible. Recently, long carbon nanotubes have been used in optical 
microscopy to characterize nematic tactoids15.

Computer simulations have traditionally played an important role in the development of an understanding 
of the kinetics of nucleation and growth. Computer simulations of nucleation processes have to address prob-
lems in defining the droplets unambiguously and in developing algorithms to sample rare events. Monte Carlo 
(MC) studies of hard spherocylinders have been performed, where ellipsoidal clusters with homogeneous direc-
tor orientation are nucleated4,16. More recently, spherical nanodroplets with a radial hedgehog defect, accom-
panied by a Saturn-ring at the core and bipolar pole-centered boojum defects with uniform field structure have 
been reported17. It is worth mentioning that kinetic pathways in MC simulations can be misleading, as the algo-
rithm samples the Gibbs distribution in equilibrium without obeying the natural dynamics of the system. Slower 
growth following a diffusive kinetics are reported in molecular dynamics (MD) simulation and experiments18,19. 
Recent studies have examined the morphology of freely suspended aspherical nanodroplets20. Although MD 
provides a comparatively well-defined temporal evolution than MC, nematic ordering is often best discussed 
using coarse-grained methods for which a top-down approach works very well20 due to the scale invariance of the 
dynamical equations, allowing its applicability from astrophysical scales, e.g. the Kibble-Zurek mechanism21,22, 
down to nanoscales. We use this approach in our work.

Nematic order is described by a symmetric, traceless tensor Q, which in component form reads23 Qαβ =   
[S(3nαnβ −  δαβ) +  B2(lαlβ −  mαmβ)]/2, where (α, β) ≡  (x, y, z) denote the Cartesian directions in a local frame of 
reference with θ= −S cos 1/32  and θ φ=B sin cos22

2  the scalar degree of uniaxial and biaxial order, respec-
tively, (θ, φ) the polar and azimuthal angles and averaging is done over a sufficient large coarse-graining volume. 
[n, l, m] denote the director, codirector and secondary director forming an orthonormal triad. The 
Ginzburg-Landau-de Gennes (GLdG) free energy consists of a homogeneous bulk term and an elastic term rep-
resenting the free-energy cost of distortions due to inhomogeneity, namely   = +bulk elastic, where
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bulk  is displayed in Fig. 1(A) that exhibits an asymmetric well landscape characterizing the weakly first order 
nature of the isotropic-nematic phase transition. The phase diagram in Fig. 1(B) is derived from  bulk, where the 
temperature dependence is contained in the parameter A =  A0(1 −  T/T *) and the parameter B depends on the size 
disparity24. Minimizing bulk  with respect to S yields the equilibrium value

Figure 1. (A) Schematic illustration of the free energy with scalar order and (B) corresponding phase diagram 
with stable and metastable states. [I] and [UN] denote the isotropic and uniaxial nematic minima. Second order 
uniaxial-biaxial [UN-BN] line is also shown and the barrier height is marked in red (orange) for supercooling 
(superheating), with the spinodal temperatures31,63 denoted by T*, T**. Recall that T*, T** and the clearing 
temperature Tc correspond to A =  0, B2/24C and B2/27C respectively64. For example in 5CB, T* =  34.2 °C, 
T** =  34.47 °C and Tc =  34.44 °C.
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with the clearing point value Sc =  − 2B/9C.
The first two terms of elastic  correspond to isotropic and anisotropic elasticity with the final term being a 

higher order contribution. The elastic constants L1, L2, L3 are obtained from experimental measures of 
Frank-Oseen splay (K1), twist (K2) and bend (K3) elastic constants via the relation25,
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where κ =  L2/L1 and Θ  =  L3/L1 (L1 >  0). Third order terms can be neglected (Θ  =  0) leading to degenerate splay 
and bend with twist either large or small depending on the sign of κ23,26. Thus the GLdG theory loses its validity if 
bend and splay constants are very different. The one elastic constant approximation is often considered for analytic 
convenience, where K1 =  K2 =  K3 corresponds to κ =  0. However, experimental measures of elastic constants in 
units of 10−7 dyn and GLdG coefficients in units of Jcm−3 for (a) 5CB at 25 °C are K1 =  6.4, K2 =  3, K3 =  10, B =  7.2, 
C =  8.8 and (b) MBBA at 25 °C are K1 =  6, K2 =  4, K3 =  7.5, B =  2.66, C =  2.7627. Θ  =  0 gives for 5CB, L1 =  0.649, 
κ =  40.667 and for MBBA, L1 =  8.6534, κ =  1.2. This explains why the one elastic approximation is inappropriate 
in a description of certain nematogenic materials.

Using this free energy, the geometric structure of monolayered droplets has been studied analytically in 
the past two decades, either making several simplifying assumptions28–30, or through an exact computation31. 
Going beyond the Frank-Oseen description of the elastic energy32 and without enforcing any phenomenological 
Rapini-Papoular (RP) surface energy term33, noncircular nematic droplets with integer topological charge have 
been found to grow ballistically28 in a deterministic (no thermal noise) calculation.

Homogeneous nucleation kinetics can not be studied in the deterministic GLdG framework because droplets 
of the stable phase cannot spontaneously nucleate in a metastable medium in the absence of thermal fluctuations. 
Near the transition point, droplet growth is governed by capillary forces rather than the small free energy differ-
ence or volume driving force, where fluctuations play a crucial role34. To understand how fluctuations influence 
the dynamics and microstructural evolution, one needs (i) the theoretical formulation of a stochastic GLdG 
description of the dynamics and (ii) a numerical prescription to integrate the stochastic equation for the orien-
tation tensor35 paying special attention to the structure of the noise and satisfying the fluctuation-dissipation 
theorem (FDT). The first question was addressed by Stratonovich35 by writing an overdamped Langevin equation 
in model-A relaxational dynamics that excludes coupling to any external hydrodynamic flow as36,37
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where the coefficient of rotational diffusion Γ  controls the relaxation rate and the symmetric traceless tensorial 
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δ δ′− − ′t tx x( ) ( ) to ensure FDT and thus Gibbs distribution at equilibrium38. kB, T and brackets denote the 
Boltzmann constant, equilibrium temperature and average over the probability distribution of ξ. The first term in 

elastic  leads to L1∂ 2Q in equation (4), indicating an isotropic diffusion of Q. The second term in  elastic leads to 

 in the evolution equation, resulting in an orientation dependent Q-diffusion that leads to two diffu-
sion constants in the nematic phase. The anisotropy is controlled by the parameter κ defined above. An efficient 
method for numerical integration of this equation was developed in a recent work of the author37 that motivated 
the present study.

Classical nucleation theory (CNT) estimates the critical size of a droplet, the barrier height and the nucleation 
rate using the assumption that nucleation proceeds via the formation and expansion of spherical droplets39,40. The 
excess free energy of a droplet is obtained as  π ρ µ π σ∆ = − ∆ +R R4 /3 4N

3 2 , where R is the droplet radius, ρN is 
the density of the nucleated phase, µ∆ = ∆T T/ * is the chemical potential difference with  being the emitted 
latent heat due to a change in temperature Δ T and σ is the interfacial surface tension. Maximizing ∆  with 
respect to R yields Rc =  2σ/ρN|Δ μ| and the barrier height  πσ ρ µ= ∆16 /3 ( )c N

3 2 2. The nucleation rate is defined 
as = −I e k T/c B  where  is a kinetic prefactor often hard to measure in experiments, making the rate calculation 
a formidable problem.

For droplets formed in a nematogenic material, due to the inherent anisotropy in the field variables, the free 
energy takes the form


 ∫ ∫ρ µ σ ∂∆ = − ∆ +

∂
d x d x QQ[ ( )] [ ( )], (5)V N

3 2

where V and ∂  respectively denote the transformed volume and the enclosing surface. The complexity that 
renders an analytical insight difficult lies in the nontrivial coupling between principal values and principal axes of 
the Q-tensor. For an ellipsoidal droplet with homogeneous director distribution, analytic expressions can be 
derived from the above equation16,41 without considering a RP-term. However, for a noncircular droplet with an 
embedded defect, singular volume and surface integrals restrict the applicability of an analytic approach. The 
interfacial surface tension is thermodynamically defined as the excess surface energy per unit area. The first and 
second terms in elastic  contribute to the isotropic and anisotropic parts of the surface energy, respectively. The 



www.nature.com/scientificreports/

4Scientific RepoRts | 7:40059 | DOI: 10.1038/srep40059

excess anisotropic surface energy is controlled by the parameter κ defined earlier, that differentiates between 
strong and weak anchoring of the director at the interface.

Nucleation and growth are often characterized by the Johnson-Mehl-Avrami-Kolmogorov (JMAK)  
equation42–44 = −x t e( ) 1 t( / )m

, where x(t) is the volume fraction of the nucleated phase, m depends on the shape 
of the droplet and   is a constant related to the growth velocity v. For isolated spherical droplets with number 
density n, simple analysis shows that  π= =m nv3, (3/4 )3 1/3. However, if we consider expanding ellipsoidal 
droplets where the long and the short axes increase self-similarly, then the parameters turn out to be 

 π= =m nv3, (9/8 )3 1/3. Higher exponents and fractional exponents are also seen in experiments and conven-
tionally calculated through a plot of

− − = −ln ln x t mln t mln[ {1 ( )}] ( ) (6)

versus ln(t). While the exponent m is dictated by the dimensionality of the droplet, a departure from the predicted 
value suggests the inapplicability of simple theory and breakdown of CNT. In our results, droplet represents a 
quasi two-dimensional “raft”-like geometry formed in monolayered film.

Results
We first discuss the tensorial microstructure and evolution of thermally generated nematic droplets in a super-
cooled isotropic phase. This is done for varying anisotropic surface energy and the results are compared with the 
predictions of classical theories of nucleation to test their applicability. We probe the role of long range elasticity 
mediated interaction on the distribution of the first passage time between successive events. We also consider the 
nucleation of isotropic droplets in a superheated nematic phase. The numerical values of the parameters used in 
our simulations are tabulated in Table 1.

Nucleation in supercooled isotropic phase. Our central findings are summarized in terms of the droplet 
morphology, evolution of the Q-tensor and the free energy, growth law and temporal distribution of nucleation 
events. Figure 2 shows the supercritical droplet structure at the post-nucleation stage in terms of the uniaxial 
order S and the director distribution n, the biaxial order B2 and codirector distribution l, as well as the Schlieren 
texture for different values of κ chosen to ensure the positivity of the Frank elastic constants. The nucleated drop-
let in panel (B) is circular in the one elastic constant approximation (κ =  0) while the droplet in the weak anchor-
ing limit (small κ) shown in panels (A, C) is noncircular. As indicated by the orientation of n, homeotropic 
anchoring at the interface is preferred for κ =  − 1, corresponding to K2 =  2K1 (defined in eq. (3)), where the uni-
form director inside the droplet orients perpendicular to the long axis. For negative values of κ, its magnitude 
cannot be arbitrarily large as an unphysical correlation length is numerically unavoidable for the analytical lower 
bound κ >  − 645. On the other hand, planar anchoring is favoured for κ =  1 corresponding to K2 =  2K1/3, where 
the director orients parallel to the long axis. For a flat interface, the total energy is lowered for planar or homeo-
tropic director anchoring for K2 being smaller or larger than K1. This result is often termed as the de Gennes 
ansatz45. Though this ansatz does not hold for curved interfaces (shown in the Supplementary Information), our 
results agree reasonably well with it. This result is also in agreement with deterministic GLdG calculations for 
bubbles created by hand31 and MC, MD simulations4,20. This result, however, contradicts those of ref. 28, where 
encapsulated integer-charged defects are reported inside an artificially constructed droplet for κ in the range  
(− 4/7, 4/3) [parameter K in this study is related to κ by κ =  2K/(1 −  K)]. Uniformly white textured domains in 
panels (D–F) are indicative of the homogeneous director distribution in panels (A–C). Finally, panels (G–I) illus-
trate that B2 has a small value (the order is uniaxial without any codirector or secondary director ordering) except 
for κ =  − 1. Biaxial fluctuations are visible in the isotropic film as ≠B 02

2  due to the presence of stochastic 
forcing.

This picture, however, changes dramatically in the strong anchoring limit (κ ≫  0) as evident in the panels 
(J–L), where the microstructure at κ =  18, corresponding to K2 =  K1/10, is depicted. Nonuniform director orien-
tation inside the noncircular droplet corresponds to four-brush texturing that represents a hyperbolic hedgehog 
defect. The topological charge of − 1 is quantified through a Volterra process23. This reveals that there exists a 
threshold value of κ ≫  0, for which the surface anisotropy is large enough to distort the field structure inside the 

Fig. Γ(Poise−1) A(Jcm−3) B(Jcm−3) C(Jcm−3) L1(10−7 dyn) κ λ(μm)

(2, 3A–3D) 1 10−3 − 0.5 2.67 (0.025, 0.012, 0.012, 0.01) (− 1, 0, 1, 18) (3.38, 2.56, 3.31, 8.44)

(3E–3G, 4, 5) 1 10−3 − 0.5 2.67 0.01 (− 1, 0, 1, 18) (2.14, 2.34, 3.02, 8.44)

(6, 7A–7D) 1.25 ×  10−2 0.38019 − 4.0 1.67 (1.5, 0.895, 0.66, 0.4) (− 1, 0, 1, 6) (3.95, 3.35, 3.71, 5)

(7E–7G, 8) 1.25 ×  10−2 0.38019 − 4.0 1.67 0.4 (− 1, 0, 1, 6) (2.04, 2.24, 2.89, 5)

Fig. Υ* Fig. Υ* kBT(J) t*

(2, 3A–3D) (1.80, 1.04, 1.73, 11.3) ×  10−5 (3E–3G, 4, 5) (2.89, 8.66, 14.4, 113) ×  10−6 2.0807 ×  10−7 2.6 ×  10−3

(6, 7A–7D) (1.77, 1.27, 1.56, 2.83) ×  10−1 (7E–7G, 8) (4.72, 5.67, 9.44, 28.3) ×  10−2 6 ×  10−3 3.33 ×  10−3

Table 1.  Values of parameters used to obtain the plots shown in Figs 2, 3, 4, 5, 6, 7 and 8, where a box of size 
Lx = Ly = 96 μm with grid spacing Δx = Δy = 1 μm and time step Δt = 1 μs are considered. For 5CB, the data 
correspond to a temperature of 34.27 °C in Figs (2, 3, 4 and 5) and 34.46 °C in Figs (6, 7 and 8). Definition of the 
parameters are given in the Methods section.
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droplet to encapsulate a defect. While the generation and growth of a supercritical nucleus depends on the com-
petition between bulk and surface contributions, with the latter increasing with κ, the shape and director config-
uration inside the nematic region strongly depend on the surface interfacial anisotropy. The codirector l and the 
secondary director m (not shown) also have a singular structure with B2 reaching a maximum on a noncircular 
ring embedded in the outer region of the droplet. This is consistent with the understanding that a planar interface 
exhibits local biaxiality for large κ46. When approximating the droplets to be circular, the critical droplet size can 
be estimated in terms of the parameters in the GLdG free energy. As mentioned in the caption of Fig. 2, unreason-
able values of Rc are obtained as the droplets become more noncircular with a nonuniform director arrangement. 
However, no analytic formula for Rc can be obtained within a stochastic GLdG theory.

Next we address the various stages of the kinetics. Panels (A–D) of Fig. 3 illustrate the pre, post, intermediate 
and late stage structure of S and n for different κ and with large L1, implying droplets with a large surface energy. 
Increasing the barrier height results in a prolonged pre-nucleation stage and fewer supercritical droplets emerge 
in the post-nucleation period. Droplets grow self-similarly, coalesce at the intermediate stage and span the sys-
tem at the late stage without forming any defect-antidefect pair. However, for smaller surface energy and κ ≤  0, 
half-integer defects with two-brush textures emerge due to the coalescence of droplets that resembles a reduced 
uniaxial order within the defect core (see Supplementary Animation S1). The ordering kinetics proceeds via the 
annihilation of defects, thus reducing the total free energy of the film. For κ =  1, structures similar to boojum 
defects emerge at opposite poles of the droplet, where S has saturated to the equilibrium value without displaying 
any half-integer defects. For κ =  18, the nematic region gradually encroaches the isotropic domain with S satu-
rating relatively quickly as compared to the integer defect annihilation kinetics. The four-brush texturing persists 
even at a very late stage without generating any two-brush texturing (see Supplementary Animation S2).

To understand the role of κ in the kinetics, the growth and decay of average uniaxial and biaxial ordering 
for small L1 are depicted in panel (E). The sigmoidal profile of 〈 S〉  in the upper panel with higher intermediate 
slope inbetween two smaller slopes at early and late stages of the kinetics is a typical characteristic of nucleation 
followed by a growth process. For κ =  − 1, t <  103 is identified as the pre-nucleation stage where subcritical nuclei 
shrink to zero, while t >  103 denote the emergence of the supercritical nucleus and growth by agglomeration. 
Finally, the saturation of 〈 S〉  for t >  3 ×  103 corresponds to the defect annealing process. As anticipated, the nucle-
ation time is prolonged for increasing κ, resulting from increased surface energy and hence a higher barrier 
height. Thus the number of droplets decreases for higher surface anisotropy. The fraction of the stable phase, 
x(t) (0 <  x <  1) and the function Y =  ln[− ln{1 −  x(t)}] are computed from the profile of 〈 S〉  and fits to the JMAK 
equation (6) are displayed in the upper panel of (G). The intermediate slope indicated by the dashed grey lines 

Figure 2. Nematic droplet structure in terms of the uniaxial order parameter and director orientation for κ =  − 1 
at t =  4031τ (panel A), κ =  0 at t =  4623τ (panel B), κ =  1 at t =  6083τ (panel C) and κ =  18 at t =  8099τ (panel J)  
in the post-nucleation stage of the kinetics. Panels (D–F, K) display the corresponding Schlieren texture which 
is proportional to sin2(2θ) and panels (G–I, L) depict the degree of biaxiality and the codirector orientation. 
The critical radius for L1 =  0.01 and κ =  (− 1, 0, 1, 3, 6, 18) turns out to be Rc =  (7.72, 9.35, 11.05, 11.8, 4.4, 0.49). 
Scalar field values are rendered in false colour.
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with scaling exponent m >  2 indicates a breakdown of the simple theory and inapplicability of a CNT description. 
〈 B2〉  in the lower panel of (E) decreases in a step fashion as the nematic phase is approached. A nonzero biaxiality 
at equilibrium conveys a departure from a purely uniaxial nematic film, with the magnitude of 〈 B2〉  decreasing 
with increasing κ. 〈 B2〉  attains an intermediate maximum before a step decrease for κ ≫  0. This is related to the 
coalescence of the biaxial rings shown in Fig. 2(L).

The total (free) energy of the film and the contributions from bulk and elastic energies are displayed in the 
panel (F). total  decreases monotonically with time. elastic  is smaller than bulk  by about an order of magnitude. 
The elastic energy slowly increases and exhibits an overshoot before decreasing to attain the equilibrium value. 
The overshoot is maximized for κ =  − 1, arising from the coalescence of homeotropically anchored nematic drop-
lets leading to a maximum in elastic energy. The overshoot gradually decreases with increasing κ, as less elastic 
energy is needed in combining planar anchored droplets.

The growth of the first nucleated cluster 〈 Nc〉  and the average cluster size at the post-nucleation stage 
before coalescence are displayed in the middle panel of (G). The growth law follows a polynomial form  
〈 Nc〉  =  at2 +  bt +  c, where a, b, c are fit parameters. As 〈 Nc〉  scales as the square of the characteristic length L, the 
growth law for a tagged cluster is predicted to be

+ + .~L t at bt c( ) ( ) (7)2 1/2

Evolution of the length scale for a tagged cluster, along with the average cluster size, is plotted in the lower 
panel of (G). In a brief period of the post-nucleation stage, the at2 term in eq. (7) can be neglected to obtain a 
diffusive, thermally limited regime where curvature elasticity and capillary forces play a more significant role 
than the free energy difference or the volume driving forces. Furthermore, the Laplace pressure is large due 
to a small radius of curvature and the surface interfacial tension, as well as the noncircular morphology of the 
droplet, induce local shear effects26,34,47,48. A crossover to a ballistic volume driven growth regime at a later stage, 
marked with a grey vertical line in the middle panel, where the bt term in eq. (7) can be neglected, corresponds to 
a propagating interface front before droplet coalescence. The late stage ballistic growth in deterministic spinodal 
kinetics in confined circular films has been addressed earlier with a crystal growth equation supplemented to the 
deterministic GLdG framework34. Experiments in confined geometry, however, find diffusive dynamics at long 

Figure 3. Panel (A–D): Evolution of the scalar uniaxial order and director structure at pre, post, intermediate 
and late stages of the kinetics for higher surface energy and different κ (See Supplementary Animations S1 and 
S2). Panel (E) displays the average uniaxial order 〈 S〉  and biaxial order 〈 B2〉  while panel (F) shows the bulk, 
elastic and total free energy of the film. Plots of the JMAK eq. (6) are displayed in the upper panel (G) with 
exponents m =  (3.145, 3.425, 3.465, 3.98) for κ =  (− 1, 0, 1, 18) in ascending order. Finally, evolution of the 
number of points in a tagged cluster (coloured symbols) as well as the average cluster size (black dotted lines) 
for different κ are shown in the middle panel (G), while the lower panel (G) displays the evolution of the length 
scale obtained from the middle panel (G). 800 independent realizations are sampled to obtain the graphics in 
panel (E–G).
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times, which is incorporated in the deterministic GLdG formalism along with the equation for latent heat at the 
interface. As the heated interfacial temperature becomes comparable to that of the nematic bulk, growth reaches 
a diffusive steady state with an equal rate of generation and diffusion of latent heat6,19. However, when the film 
is not confined, the latent heat effects are unimportant due to faster expulsion of heat from the droplet surface, 
leading to a long time ballistic growth.

To evaluate the validity of the CNT, we compute the nucleation rate as a function of the barrier height as 
sketched in Fig. 4. A significant departure from a decaying exponential signals a breakdown of the CNT. The 
CNT deals with the rate of phase change and growth of the supercritical cluster without accounting for fission 
and coalescence. Moreover, the occurrence of exponential dependency is expected in the Becker-Döring limit, 
i.e. near the coexistence line and for steady state rates. While deformation of the tensorial field due to high elastic 
anisotropy results in the formation of noncircular droplets, the theory can be applicable in the κ →  0 limit where 
director deformation is negligible and a circular shape is retained. In the weak anchoring limit (small κ), the CNT 
can still be applied if a noncircular shape is incorporated in the standard theory16 and the kinetic prefactor can be 
obtained from experimental results. However the CNT has to be supplemented to accommodate singularity in n 
in order to make it applicable in the strong anchoring limit (κ ≫  0).

Finally to investigate the role of the isotropic medium on the temporal distribution of nucleation events, 
we study the spatiotemporal correlation between the first passage times of two consecutive nucleation events. 
Normalized histograms shown in Fig. 5 are sharply peaked for κ <  0 and the peak broadens for increasing κ. Also 
the distributions are correlated in time for κ <  0, although long-ranged elastic interactions are not present in the 
supercooled isotropic film. The reason for this correlation is not clear. The correlation disappears as κ is increased. 
Recall that in the isotropic phase, the correlation length is close to few grid spacings, so that events separated by 
more than that are unambiguously recognized as nucleation events. In the inset of panel (C), the spatial proximity 
of two such occurrences are shown. These events are temporally uncorrelated in spite of their spatial proximity. 
For κ =  18 both distributions coincide, indicating no memory of consecutive events.

Nucleation in the superheated nematic phase. The isotropic droplet morphology, evolution of the 
Q-tensor, growth kinetics and temporal distribution of nucleation events have also been examined for the case 
where thermal fluctuations nucleate droplets of the isotropic phase in a superheated nematic film. Within feasible 
computational effort, nucleation of isotropic droplets can be obtained only for κ ≤  6. Figure 6 displays the struc-
ture of supercritical droplets at the post-nucleation stage in terms of S and n for large L1 and different values of κ. 
Noncircular droplets nucleate for κ ≠  0, while in panel (B) the droplet shape remains nearly circular for κ =  0 (one 
elastic constant approximation). The director distribution is randomized inside the droplet, indicating isotropy 
with no observable biaxiality. Unlike colloidal inclusion in a nematic medium49 or in nematic shells50, homeo-
tropic anchoring at the interface by forming defects outside the droplet is not preferred.

To characterize the evolution process, panels (A–D) of Fig. 7 portray the pre, post, intermediate and late stage 
structure of S and n at a higher surface energy. Subcritical droplets form and collapse in the pre-nucleation stage 
while a supercritical droplet nucleates and expands self-similarly in the post-nucleation period. Droplet coales-
cence converts the film into a fluctuating isotropic state at the late stage of the kinetics. In a shallow quench where 
the surface energy and the barrier height is reduced, many small droplets are formed and they coalesce with each 
other. At a late stage, uniform regions of nematic order are squeezed and removed from the isotropic film. Rather 
surprisingly, 〈 S〉  in panel (E) depicts of an unusual two-step decay process, while 〈 B2〉  displays two minima. We 
interpret this observation in the following way (see Supplementary Animation S3). Quenching a uniform nematic 
medium to metastability at a higher temperature induces fluctuations that decrease the scalar order parameter. 
The plateau in 〈 S〉  corresponds to its “quasi-equilibrium” value in the superheated metastable state. For smaller 
surface energy and a reduced barrier height, the typical size of regions of fluctuation-induced melting is compa-
rable to the critical droplet size. Therefore, the subcritical droplets do not shrink to zero but persist for sufficient 
amount of time at the pre-nucleation stage, until fluctuations induce the formation of a supercritical droplet. 

Figure 4.  Nucleation rate as a function of barrier height for various κ. 400 realizations for each κ are sampled 
to obtain the graph.
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Several other mechanisms for the slowing down of the decay of 〈 S〉  may be present, for instance (i) fluctuation 
induced broadening of the zero curvature value of the superheating line in Fig. 1, (ii) higher Laplace pressure 
arising from small droplets, (iii) curvature elasticity and capillary force effects. Local heating due to the emission 
of latent heat at the droplet surface can be ignored, while such effects become important at higher droplet radius 
in confined geometry19,47. As the minimum in 〈 S〉  corresponds to the maximum in 〈 B2〉 , two minima separated by 
a plateau occurs in the lower panel of (E). The post-nucleation droplet growth due to agglomeration is displayed 
in the upper panel of (G) which is characterized by the JMAK equation, with the slope sketched in grey dashed 
lines. Scaling exponents m >  2 indicate to a breakdown of the CNT description.

Figure 5. (A–D) Normalized probability distribution P(τ1) of the first nucleation event ‘1’ is displayed along 
with the probability distribution P(τ2) of the consecutive event ‘2’ for increasing κ =  (− 1, 0, 1, 18). The spatial 
proximity of two events is shown in the inset of panel (C). 800 temporal points are sampled to obtain the 
histograms.

Figure 6. Isotropic droplet structure in terms of the uniaxial order parameter and director arrangement in the 
post-nucleation stage of the kinetics, for (A) κ =  − 1 at time t =  22051τ, (B) κ =  0 at time t =  52211τ, (C) κ =  1 at 
time t =  21903τ and (D) κ =  6 at time t =  147839τ. Scalar field values are rendered in false colours.
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Further support of the two-stage growth process is provided in the evolution of energy as highlighted in panel 
(F). elastic slowly decreases after exhibiting two overshoots, with the prominent one at a late stage before saturat-
ing to the equilibrium value. The overshoot corresponds to a maximum in the elastic energy during droplet coa-
lescence. Both bulk and total free energies display a plateau where growth remains temporally frozen. As is 
evident, the plateau increases with increasing κ, indicating that more surface energy slows down the formation of 
supercritical nuclei. These effects are more evident when higher surface energy is considered (see Supplementary 
Animations S3 and S4) where due to increased barrier height, the critical radius is large compared to the 
fluctuation-induced melted droplets and subcritical droplets disappear quickly from the film.

To quantify the growth process, we explore the evolution of a tagged cluster and the average cluster size 〈 Nc〉. 
Middle and lower panels of (G) display them for κ =  1 and 6. For κ <  1, it was impossible to keep track of single 
clusters due to very small correlation length. Evolution of the average cluster length, shown in the inset of the 
middle panel, is found to follow the tagged cluster dynamics. The growth law is observed to obey eq. (7) with a 
change of an early diffusive to a late stage ballistic growth before coalescence.

To examine the role of spatial long-ranged interactions in the first passage times of consecutive events, we 
study the spatiotemporal correlation between the events. Figure 8 sketches the normalized histograms for differ-
ent κ. The distribution is sharply peaked within a small temporal domain for κ =  − 1, and the span of the distri-
bution increases by two orders of magnitude with significant broadening as κ is increased. The first and second 
events are always correlated due to the long range elastic interaction in the nematic film. The bimodality exhibited 
by the distributions for κ =  1 is surprising. As seen in the amplified plot in the inset of panel (C), the second 
peaks are also correlated. The reason for bimodality can be physically understood as the limit in which the size 
of the regions of fluctuation induced melting becomes less than the critical droplet size. Thus the first peak in the 
histogram in panel (C) results from the initial formation of subcritical droplets that disappear in time. However, 
supercritical droplets nucleate at a later stage displayed in the upper inset, with two consecutive events marked as 
‘1’ and ‘2’ that are spatially distant but temporally correlated. This should be compared with the inset of Fig. 5(C), 
where although events ‘1’ and ‘2’ are spatially proximate, they are temporally independent. Due to higher surface 
energy for κ ≫  0, a single droplet nucleates and the events in panel (D) are monomodal, but still correlated with a 
much wider temporal distribution compared to that in the weak anchoring limit, shown in panel (A–C).

Figure 7. Panel (A–D): Evolution of uniaxial order and director orientation at different stages for higher surface 
energy and different values of κ (see Supplementary Animation S3 and S4). Panel (E) displays the evolution of 
the average uniaxial and biaxial order while panel (F) shows bulk, elastic and total energy of the superheated 
film. The upper Panel in (G) presents fits to the JMAK equation with exponents m =  (2.862, 2.952, 3.197, 4) for 
κ =  (− 1, 0, 1, 6) in ascending order. Middle and lower panels in (G) depict evolution of 〈 Nc〉  for κ =  1 and 6. The 
x-axis corresponds to (t −  τ1) ×  102 for κ =  1 (middle panel) and (t −  τ1) ×  103 for κ =  6 (lower panel). Growth 
of tagged cluster size (black line) and average cluster size (red dotted line) are shown in the inset of the middle 
panel in (G). Total 100 independent realizations are sampled to procure the graphics.
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Discussion
We have performed an extensive study of homogeneous nucleation kinetics in a freely suspended monolayer 
of metastable liquid crystalline film using stochastic nematodyamics. In the case of a supercooled film in the 
metastable isotropic phase, we have shown that the presence of a large surface interfacial anisotropy quanti-
fied by a large value of the parameter κ leads to the appearance of a noncircular droplet of the nematic phase 
with an encapsulated hyperbolic hedgehog defect and a biaxial interfacial ring as seen in 5CB microdroplets19. 
Noncircular droplets exhibit homogeneous orientation of the director field for smaller values of κ. The growth 
of the nuclei at small volumes is found to exhibit a polynomial dependence on time. The regime of applicability 
of classical nucleation theories in the small κ limit is determined. Also, successive nucleation events are found 
to be uncorrelated even if they are spatially proximate, due to the absence of long ranged elastic interactions in 
an isotropic film. On the other hand, a two step growth process is observed in isotropic droplet nucleation in a 
superheated nematic film. In this case, spatially distant nucleation events are temporally correlated due to the long 
ranged elastic interactions in the nematic film. These findings are consistent with available results in three spatial 
dimensions51, but are markedly different from the results of studies of confined films where coverslips affect the 
director component in the third direction28.

The kinetic pathway of ordering from an unstable isotropic phase to a stable nematic phase through spinodal 
decomposition and coarsening in a deterministic GLdG framework has been extensively studied31,51–55 in the 
past. In this case, the development of diffusive domains and late-stage defect pair kinetics (Porod law regime) 
take place at a much faster time scale compared to nucleation kinetics. When a nematic film is heated to a tem-
perature above the superheating line, disordered isotropic domain coarsening leads to a stable isotropic state19. A 
comparison of existing results for late-stage domain growth in these cases with those obtained from the stochastic 
GLdG framework considered here is outside the scope of the present study. Also, electrokinetic56 and flexoelectric 
effects57 as well as coupling of the orientation tensor to a hydrodynamic flow field58 for a thermal system can be 
considered in the future. Other choices for describing biaxial order59 may be explored in future investigations. 
Experimental verification of the results reported here would be welcome, although avoiding heterogeneous nucle-
ation when sampling rare events in a narrow temperature window is a challenging task.

Methods
Numerical integration of stochastic GLdG equation. A two dimensional monolayer of nematogenic 
material is considered, where orientation in three Cartesian directions is retained, but spatial variations are 
restricted to a plain. The Q-tensor equation is solved on a regular square lattice with periodic boundary condition 
to neglect confinement effects. A direct numerical integration is forbidden as using similarity transformation, 
any symmetric traceless tensor cannot be diagonalized at every grid point. By utilizing a property that the tensor 
can be expanded in a basis of five 3 ×  3 matrices T60, a legitimate way is to project the equations as Q =  ∑iaiTi and 

Figure 8. (A–D) Normalized probability distributions [P(τ1), P(τ2)] of first and subsequent nucleation events 
at times τ1 and τ2 for ascending values of κ =  (− 1, 0, 1, 6). The second peak of the bimodal distribution is 
amplified in the inset of panel (C) where the spatial separation of events ‘1’ and ‘2’ is also portrayed. Histograms 
are made with 800 independent points for panel (A–C) while 500 points were sampled to obtain panel (D).
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ξ =  ∑iζiTi (i =  1, … , 5), so as to contain the dynamics in the basis coefficients ai(x, t) and ζi(x, t)37. Major advan-
tage is gained in constructing the symmetrized detraced noise ξ with five ζi, that corresponds to zero mean unit 
variance independent Gaussian white noise processes. This thus validates discrete FDT spectrum in all Fourier 
modes and we obtain reasonable agreement in static and dynamic correlations of Q with analytic formula both in 
isotropic and nematic phase37. Eq. (4) in the basis coefficients takes the form

 (8)

where 〈 ζi(x, t)ζj(x′ , t′ )〉  =  2kBT Γ δijδ(x −  x′ )δ(t −  t′ ).
Laplacian and mixed der ivat ives  are  spat ia l ly  discret ized as  ∂ = + +a m n a m n( , ) [ ( 1, )m

2  
− − ∆a m n a m n m( 1, ) 2 ( , )]/( ) ,2  ∂ ∂ = + + − + −a m n a m n a m n( , ) [ ( 1, 1) ( 1, 1)m n  −  − +a m n( 1, 1), 

+ − − ∆ ∆a m n m n( 1, 1)]/4  where m, n denote Cartesian indices. We adopt second order accurate stochastic 
method of lines (SMOL) integrator for explicit temporal update61. SMOL semi-discretization scheme develops on 
discretizing spatial part of partial differential equations to yield ordinary time-dependent equations, which are 
integrated on unstructured grid maintaining accuracy, stability and computational overload.

The distortion free energy, length and time are resolved by transforming the deterministic part  
o f   e q .   ( 4 )  i n  n on - d i m e ns i on a l i z e d  for m  to  o bt a i n  κ= + + Θκ>

⁎l CL B5 18 (1 2{ }/3) /3 ,( 0) 1  
κ= + + Θκ<

⁎l CL B5 18 (1 { }/6) /3 ,( 0) 1   = = Γ ϒ =κ κ≠ ≠
⁎ ⁎ ⁎ ⁎ ⁎ ⁎CS t F S l9 /16, / ,c c

4 2
( 0) ( 0)

2 ,  w h e r e 
κ≠
⁎ ⁎ ⁎l t, ,( 0)   and ϒ κ≠

⁎
( 0) are non-dimensional length, bulk energy, time and surface energy. Dimensional  

qu ant i t i e s  for  e x ampl e ,  c or re l at i on  l e ng t h  and  re l a x at i on  t i me  c an  b e  c ompute d  as 
λ τ= + − = ∆κ≠

⁎ ⁎l AC B t t32 /3(1 1 24 / ),( 0)
2 . To avoid numerical artifact, 

⁎t 1 and λ ≫  Δ x are strictly 
maintained. Also ϒ κ≠ 

⁎ k TB( 0)  is ensured to avoid the medium to attain the stable phase in one computational 
step.

Cluster labelling procedure. To sample nucleation clusters, we record results on every computational step 
within a time window within which the cluster eventuates. We apply Hoshen Kopelman (HK76) algorithm62 to 
label connected clusters on the grid which are above (below) certain threshold. To identify nematic nuclei, we 
choose threshold value at 70% of Seq and implement periodicity in both directions to overcome double count-
ing of connected clusters through periodic boundaries. In case of isotropic nucleation, the algorithm performs 
reversely and we choose the threshold value at 30% of Seq. The algorithm particularly finds usefulness in counting 
the total number of grid points pertaining to a tagged cluster that temporally amplifies as the cluster swells. Thus 
a length scale can be simply extracted to quantify growth law, without computing the length scale from direct 
correlation functions31 that also captures Porod law scaling of defect annealing kinetics after droplet coalescence.
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