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Self-steering partially coherent 
beams
Yahong Chen1,2, Sergey A. Ponomarenko3 & Yangjian Cai1,2

We introduce a class of shape-invariant partially coherent beams with a moving guiding center which 
we term self-steering partially coherent beams. The guiding center of each such beam evolves along a 
straight line trajectory which can be engineered to make any angle with the x-axis. We show that the 
straight line trajectory of the guiding center is the only option in free space due to the linear momentum 
conservation. We experimentally generate a particular subclass of new beams, self-steering Gaussian 
Schell beams and argue that they can find applications for mobile target tracing and trapped micro- 
and/or nanoparticle transport.

Optical trapping is a powerful tool for manipulation of micro-particles or micro-targets. Since the seminal work 
of Ashkin1 on trapping a particle through using radiation forces exerted by a Gaussian laser beam, the technique 
of optical trapping has been developed and is now widely applied in a variety of fields to manipulate micro-sized 
dielectric particles, cells, DNA and RNA molecules, neutral atoms, and living biological cells2–6. At the same time, 
it is well established now that under certain conditions, partially coherent sources can generate highly directional 
light beams with the same far-field intensity distributions as do fully coherent laser beams7,8. In this connection, it 
was found9 that partially coherent sources can give rise the same optical forces as those due to laser beams at any 
output plane of a generic ABCD optical system. Further, the same authors showed that partially coherent beams 
are superior to the laser beams in trapping biological samples because the former generate less thermal heating 
than the latter. To date, certain types of partially coherent beams have been shown to be especially beneficial in 
trapping neutral micro-particles10–14.

In this paper, we demonstrate that the evolution of a beam guiding center position Rc (z), defined as

∫
∫

ρ ρ ρ ρ

ρ ρ ρ
≡z

d W z

d W z
R ( )

( , , )

( , , )
,

(1)
c

plays an important role in tracking and manipulating micro- and/or nanoparticles with partially coherent beams. 
In Eq. (1), W(ρ1, ρ2, z) is a cross-spectral density (CSD) of the beam field at a pair of points ρ1 and ρ2 in the trans-
verse plane z.15. We notice that all partially coherent beams known to date have stationary guiding centers, which 
effectively precludes their use for transporting trapped particles. It is therefore instructive to explore the possibil-
ity of engineering shape-invariant partially coherent beams with mobile guiding centers which would enable one 
to transport trapped particles along prescribed trajectories. Such steering partially coherent beams can also find 
applications for tracing mobile military, meteorological and other targets.

We show how any shape-invariant partially coherent beam can be engineered into a self-steering one with its 
guiding center traveling along a straight line trajectory. The self-steering beam trajectory makes an angle with the 
x-axis that can be controlled by adjusting the beam phase at the source. We experimentally implement a subclass 
of new beams, self-steering Gaussian Schell (SSGS) beams and show that the lower the SSGS beam coherence the 
less susceptible the beam to speckle and/or spurious fringe formation on its propagation.

Results
Theory of self-steering partially coherent beams. We start by noticing that the intensity of any 
shape-invariant partially coherent beam is self-similar and can be related to the source intensity as16
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where I0[R] is the source intensity distribution, R ≡  (X, Y) is a dimensionless radius vector with X =  x/σI and 
Y =  y/σI, ρ ≡  (x, y) is a radius vector in the plane transverse to the beam propagation direction, σI denotes the 
beam waist, and σ(Z) is a propagation factor depending on beam intensity and coherence distributions at the 
source. We note that the intensity amplitude scaling in Eq. (2) guarantees beam power conservation,
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According to the complex Gaussian representation17, the CSD of any partially coherent beam at the source can 
be expanded into a complete set of pseudo-modes as18,
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Here P (α) is a nonnegative distribution function that guarantees non-negative definiteness of W and {Ψ α(R, 0)} 
are the complex Gaussian pseudo-modes. Further, α αα = ∏ =d d dRe{ } Im{ }S X Y s s
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pseudo-modes {Ψ α(R, 0)} are given by the expression
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Consider now a shifted P−  distribution such that

= − −u v u u v vP ( , ) P( , ), (6)SG 0 0

where P is the distribution of an original shape-invariant source. We will now demonstrate that this engineered 
partially coherent source gives rise to a self-steering shape-invariant beam.

Upon free-space propagation each pseudo-mode Ψ α(R, 0) satisfies the paraxial wave equation which can be 
readily solved yielding17,19,
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where Z =  z/zR with σ=z kR I
2, z being the propagation distance and k being the wavenumber. We stress here that 

Z is a normalized variable. The CSD in the Z plane can then be expressed as
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It follows at once from Eqs (6) and (8) that the self-steering beam intensity, ISG(R, z) ≡  WSG(R, R, Z), is given by
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and the guiding center of each mode evolves according to Rα(Z) =  u +  Zv. Thus, the self-steering beam inten-
sity can be viewed as an incoherent superposition of weighted Gaussian intensities with various guiding center 
positions. On substituting from Eq. (10) into (9), shifting the integration variables, and comparing with Eq. (4), 
evaluated at the same spatial point, one can see that the intensity profile of the beam is maintained up to a scaling 
factor such that
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where Rc (Z) =  u0 +  Zv0 which proves our assertion that any shape-invariant source with a shifted P−  distri-
bution generates the corresponding self-steering beam. Our result is completely general, except we require the 
knowledge of both the intensity and coherence distribution at the source to determine the explicit form of the 
propagation factor σ(Z).

To illustrate our general results, we consider the familiar case of a Gaussian Schell model (GSM) source whose 
shifted P−  distribution can be inferred from ref. 17 as
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where P0 is a nonnegative constant, and ζc =  σc/σI is a coherence parameter, σc being the source coherence length. 
The CSD of any SSGS beam at the source can be obtained from Eq. (4) as
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where I0 is a peak intensity of the beam. The corresponding intensity of SSGS beam can be obtained from Eq. (9) 
in the form
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which conforms to the general rule of Eq. (11) with the propagation factor σ ζ ζ= + + .Z Z Z( ) (1 ) 2 /c c
2 2 2  

Eq. (14) clearly shows that the linear phase shift v0 induces self-steering properties during propagation.
In Fig. 1 we display the SSGS guiding center evolution. In our numerical simulations, we chose the following 

parameters: σI =  1 mm, σc =  10 mm, λ =  632.8 nm and u0 =  (0, 0). It can be inferred from Fig. 1 that the SSGS 
guiding center can be shifted to any point in the transverse plane of the beam by adjusting v0. Thus an SSGS beam 
can serve as an effective tool for transferring a trapped particle to any desired location as well as for tracking a 
moving target.

Experimental generation of self-steering partially coherent beams. Next we show how to generate 
an SSGS source in practice. As follows from Eq. (13), the CSD of the SSGS source can synthesized by introducing 
a displacement u0 and a linear phase shift v0 to a conventional GSM source. Figure 2(a) shows a conventional 
optical system for generating the well-known GSM source, first reported in ref. 20. Figure 2(b) shows our optical 
system for generating an SSGS source with controllable parameters u0 and v0; the latter can be regarded as a mod-
ification of the former. In Fig.  2(b), a focused off-axis Gaussian beam with the electric field 

ωρ ρ ρ= − −E E( ) exp[ ( ) / ]0 0
2

0
2  illuminates a rotating ground-glass disk (RGGD), followed by the output beam 

passing through a thin lens with the focal length f2 and an off-axis Gaussian amplitude filter (GAF) with the trans-
mission function σ= − −T r r r( ) exp[ ( ) /2 ],I0

2 2  producing an SSGS source. Here ρ0 =  (ρ0x, ρoy) and ω0 are the 
off-axis displacement and the beam waist of the incident Gaussian beam, respectively, r0 =  (x0, y0) is the off-axis 
displacement of the GAF transmission function. In accord with the van Cittert-Zernike theorem15, the CSD of the 

Figure 1. Self-steering of novel beams in free-space. (a) SSGS beam intensity distribution at several 
propagation distances for v0 =  (− 2, 4). (b) SSGS beam intensity distribution at several propagation distances for 
v0 =  (0, 0). (c) SSGS beam intensity distribution at several propagation distances for v0 =  (3, − 2).
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SSGS source in related to the intensity of  the incoherent of f-axis  Gaussian beam (i .e. , 
ωρ ρ ρ= − −I E( ) exp[ 2( ) / ]0

2
0

2
0
2 ) just behind the RGGD as

∫ ρ ρ ρ ρ= .⁎W d I H Hr r r r( , ) ( ) ( , ) ( , ) (15)1 2 1 2

Here H(r,ρ) is the response function of the optical system between the RGGD and the GAF given by15,20–22
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Substituting I(ρ) and Eq. (16) into Eq. (15), we find that the CSD of the SSGS source has the form of Eq. (13) 
with the parameters u0 =  r0/σI and v0 =  2πσIρ0/(λf2). It follows that the displacement u0 of the generated SSGS 
source is related to the off-axis GAF displacement r0 and the linear phase shift v0 is determined by the off-axis 
displacement ρ0 of the incident off-axis Gaussian beam.

We carry out an experiment to generate and characterize the SSGS beam. In our experiment, the wavelength 
λ =  632.8 nm, the focal lengths of thin lenses L1 and L2 are equal to 100 mm and 200 mm, respectively, and the 
transverse beam width σI is equal to 1 mm. The off-axis displacement r0 of the GAF is equal to (0, 0), therefore we 
generate an SSGS source with u0 =  (0, 0). The generated beam from the SSGS source first passes through a thin 
lens with the focal length f =  400 mm, and then arrives at a charge-coupled device (CCD), which measures the 
focused intensity. The distance between SSGS source and the CCD is equal to z. In our experiment, we generate 
several SSGS beams with different initial coherence widths to examine the coherence impact on the self-steering 
effect. The initial coherence width is modulated by the beam spot size at the RGGD. In particular, we generate 
three SSGS sources with the initial coherence widths σc =  1.0 mm, 0.5 mm and 0.2 mm, respectively. The experi-
mental techniques for measuring the degree of coherence can be found in refs 23–25.

We display the experimental results in Fig. 3. Figure 3(a) shows the SSGS beam intensity distribution with 
the same v0 =  (5, 5) for different σc at several propagation distances, while Fig. 3(b) shows the same quantity 
for σc =  0.2 mm in the focal plane for different values of v0. It can be inferred from Fig. 3 that the guiding center 
motion can be controlled by adjusting the linear phase shift v0 at the source. We stress that although the apparent 
beam focusing in the figure is caused by the lens, the lens is not essential for beam self-steering. The latter results 
from the linear phase shift imparted to the beam at the source; the phase shift can be imprinted without a lens by 
using, for instance, a phase mask. The lens in our experimental setup serves primarily for convenience of imag-
ing. To quantitatively ascertain the beam coherence width effect on the guiding center dynamics, visualized in 
Fig. 3(a), we present in Fig. 4 the SSGS beam guiding center position as a function of the propagation distance z 
for three values of coherence width (σc =  1.0 mm, σc =  0.5 mm, σc =  0.2 mm). We find that the initial coherence 

Figure 2. Schematics for generating (a) conventional Gaussian Schell-model source, and (b) self-steering 
Gaussian Schell source with controllable parameters u0 and v0; L1 and L2 thin lenses, rotating ground-glass disk 
(RGGD), Gaussian amplitude filter (GAF).
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state of the beam has virtually no effect on its guiding center dynamics making our experimental results consist-
ent with the theory, c.f., Eq. (14).

Figure 5 shows a measured SSGS beam intensity distribution as the beam passes through a 2 ×  2 circular hole 
array for three cases corresponding to different source coherence states. It is found from Fig. 5 that the higher the 
beam coherence the greater the intensity profile distortion due to speckles and spurious fringes, making SSGS 
beams of low coherence preferable for trapped particle transport/manipulations and mobile target tracing.

Discussion
Finally, we show that the straight line guiding center trajectory is a generic property of any self-steering beams, 
either shape-invariant or not, rooted in the linear momentum conservation in free space. The simplest, and, 
perhaps, most elegant proof relies on the established analogy between paraxial beam propagation and Hilbert 
space time evolution of a quantum particle with the beam propagation distance being analogous to time; see, for 
instance refs 26 and 27. The coordinate and linear momentum of the equivalent quantum particle are analogous 
to the beam guiding center position angular spread, respectively. One can then show, following these references, 
that free space paraxial beam propagation is equivalent to free quantum particle evolution which conserves linear 

Figure 3. Experimental evidence of the beam guiding center evolution. (a) SSGS beam intensity distribution 
at several propagation distances given the same v0 =  (5, 5) and different values of the initial coherence width. (b) 
Same as in (a) in the focal plane with σc =  0.2 mm and different values of v0.
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momentum. As a result, the beam guiding center position must be either static or evolve linearly with the propa-
gation distance, implying a straight line trajectory.

In summary, we have introduced a class of partially coherent beams with their guiding centers propagating 
along straight line trajectories, controlled by the linear phase shift at the source. We generate the new beams 
experimentally and confirm all our theoretical predictions. The new beams are anticipated to find applications for 
trapped particle transport and mobile target tracing.
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