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Method for Removing Spectral 
Contaminants to Improve Analysis 
of Raman Imaging Data
Xun Zhang1, Sheng Chen1, Zhe Ling1, Xia Zhou1, Da-Yong Ding1, Yoon Soo Kim2 & Feng Xu1

The spectral contaminants are inevitable during micro-Raman measurements. A key challenge is how 
to remove them from the original imaging data, since they can distort further results of data analysis. 
Here, we propose a method named “automatic pre-processing method for Raman imaging data set 
(APRI)”, which includes the adaptive iteratively reweighted penalized least-squares (airPLS) algorithm 
and the principal component analysis (PCA). It eliminates the baseline drifts and cosmic spikes by 
using the spectral features themselves. The utility of APRI is illustrated by removing the spectral 
contaminants from a Raman imaging data set of a wood sample. In addition, APRI is computationally 
efficient, conceptually simple and potential to be extended to other methods of spectroscopy, 
such as infrared (IR), nuclear magnetic resonance (NMR), X-Ray Diffraction (XRD). With the help of 
our approach, a typical spectral analysis can be performed by a non-specialist user to obtain useful 
information from a spectroscopic imaging data set.

Using Raman imaging technique to obtain colourful chemical images is just a beginning for studying the chem-
ical properties of a sample1. Chemists are more interested in interpreting the secrets locked within the spectral 
imaging data. Further data analysis, e.g. multivariate methods, allows the convoluted information content to be 
sorted according to the hypothesis that the original data is reconstructed from a limited number of significant 
factors2. However, such analysis is particularly sensitive to the presence of outliers, so that the original spectra 
involving spectral contaminants cannot be analyzed directly3.

Generally, there are two major contaminants that spill over into the Raman channels along with the actual sig-
nals: (1) sample and background fluorescence, as well as thermal fluctuations of the charge coupled device (CCD), 
can markedly affect the spectral baseline resulting in baseline drifts4; (2) cosmic rays are sporadic background 
artifacts detected by sensitive detectors, which manifest in spectra as narrow-bandwidth spikes5. These samples 
or instrument dependent contaminants are inevitable during the measurement. Therefore, it is essential that the 
spectral data should be pre-processed by commonly used methods, which are available in instrumentation soft-
ware or analysis programs before other algorithms are implemented (Table S-1).

Methods for handling baseline drifts and spikes are two independent subjects. The diverse sources of back-
ground and additive noise make it hard to correct baseline for experimental spectral data6. Wavelet transform7, 
derivative8, robust local regression9 and polynomial fitting10 were introduced to eliminate the varying back-
ground. Some drawbacks, however, such as poor performances in low signal-to-noise ratio environments and 
dependence on a given user’s experience, have to be eliminated because they may lead to poor reproducibility 
of the calibration results. The approaches for removing spikes commonly fall into two categories depending on 
how the algorithm is designed. Methods in first category try to exclude the spikes on a single-scan spectrum via 
filtering algorithms such as wavelet processing, median filters and polynomial filters11. These methods suffer 
from serious limitations since they rely on an assumption of maximum spike bandwidth. Spectral distortion 
occurs when the bandwidth of spikes is comparable to spectral features of interest12. The alternative category 
suppresses spikes by comparing measured similar spectrum (referential spectrum). A typical example is “nearest 
neighbor correlation algorithm”, which firstly confirms a referential spectrum by comparing the cross-correlation 
coefficient between spectra of adjacent and secondly eliminates the spikes by setting a threshold value on the 
basis of the user’s experience13. The core of this category is how to confirm the referential spectrum, while the 
cross-correlation coefficient is inadequate to describe the features of numerical value. Moreover, the threshold 
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value set by experience will also lead to unstable results. As a result, although this algorithm provides a new idea 
to resolve this issue, most of the applications are still limited to simulation data. Practical examples of this method 
are particularly scarce.

Here, we propose a novel approach for intelligently removing the spectral contaminants to improve analysis 
of Raman imaging data named “automatic pre-processing method for Raman imaging data set (APRI)” (Fig. 1). 
APRI consists of two complementary algorithms: (a) the adaptive iteratively reweighted penalized least-squares 
(airPLS algorithm) for baseline correction (Fig. 2a); (b) despiking algorithm on the basis of principal compo-
nent analysis (PCA-despiking algorithm, Fig. 2b). Our method is neither dependent on the sample character-
istics nor the measurement conditions. With the use of APRI, a typical spectral analysis can be performed by a 
non-specialist user to obtain useful information from a spectroscopic imaging data set.

Methods
Materials. An inclined 10-year-old poplar tree (Populus nigra L.) was provided by the arboretum of Beijing 
Forestry University, China. A small sample block was cut out from the seventh annual ring of the xylem. Without 
any embedding routing, a 10-μ m-thick transverse section was prepared on a sliding microtome (Leica 2010R). It 
was then placed on a glass slide with a drop of D2O and sealed with a coverslip for micro-Raman measurement. In 
Raman spectrum, D2O can reduce the fluorescence of lignin and has a marked peak at 2490 cm−1.

Micro-Raman system. The Raman imaging data set was acquired by using a micro-Raman system (LabRam 
Xplora, Horiba Jobin Yvon) equipped with a confocal microscope (Olympus BX51) and a motorized stage. The 
measurement was performed at room temperature (25 ±  3 °C). The entire optical system is diffraction-limited 
up to an object-side numerical aperture (NA) of 1.40 (Olympus, 100× , oil) and, consequently, is provided with 
a high spatial resolution in axial and lateral dimensions. Linear polarized laser (λ  =  532 nm) was focused with a 
small spot size (theoretical 1.22λ /NA). Its power on the sample surface was around 8 mW. The Raman light was 
collected by a semiconductor-cooled charge coupled device (CCD) detector behind a grating spectrometer (1200 
groves/mm). We selected 0.5 μ m as the step for mapping and each pixel corresponds to one scan. The spectrum 
of each scan was obtained by averaging 4 s cycles. The confocal aperture was set at 100 μ m. The reported depth 
resolution for the 100 μ m confocal hole, based on the silicon (standard) phonon band at 520 cm−1, was ~ 4 μ m.

Data processing. The instrumentation software LabSpec (Horiba Jobin Yvon) was utilised to setup and con-
trol the micro-Raman system. The .ngc file, which is the format of the original Raman imaging data, was con-
verted to .mat file for further data processing. Our software, APRI, is available as a Matlab script. The open-source 
code for APRI is available in Supplementary Materials.

Baseline correction method: airPLS algorithm. Conventional notation was adopted throughout this 
paper: uppercase bold face letter for matrices (as X), lowercase boldface for vectors (as X), italicized subscript 
characters for vector index (as xi or zi), and lowercase italicized letters for scalars (as xi(j)). Superscripts are 
assigned as follows: T, vector or matrix transpose; and − 1, matrix inverse. A Raman imaging data can be regarded 
as a matrix X of dimension m by n, in which the digitized Raman spectrum of each recorded position corresponds 
to a row vector in the data table:

=












…
…

…












   

x x x n
x x x n

x x x n

X

(1) (2) ( )
(1) (2) ( )

(1) (2) ( ) (1)m m m

1 1 1

2 2 2

where m is the number of spectra traces in this data set and n is the number of data points per spectrum along the 
wavenumber (or any other spectral variable) axis, respectively.

Wavenumbers (cm−1) Components Assignments

1095 C, H heavy atom CC and CO stretching vibration

1123 C, H heavy atom CC and CO stretching vibration

1163 C, H heavy atom CC and CO stretching vibration plus HCC and HCO bending vibration

1275 L aryl-O of aryl OH and aryl O− CH3; guaiacyl ring with C= O group

1331 L, C, H HCC and HCO bending vibration

1378 C, H HCC, HCO, and HOC bending vibration

1460 L, C, H HCH and HOC bending vibration

1603 L aryl ring stretching vibration, symmetrical vibration

1656 L ring conjugated C= C stretching vibration of coniferyl alcohol; C= O stretching vibration of coniferaldehyde

2889 C, H CH and CH2 stretching vibration

2940 L, C, H CH stretching vibration in OCH3 asymmetric vibration 

Table 1.  Raman peak positions and bands assignments for major structures of poplar. C: Cellulose; H: 
Hemicellulose; L: Lignin.
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The adaptive iteratively reweighted penalized least-squares (airPLS) algorithm was first proposed by Zhang 
Z.M. in 201014. It works by treating the Raman imaging data set X as vectors in Hilbert space. We assume that  

Figure 1. An overview of Raman imaging and APRI: The sample is measured by a micro-Raman system 
which couples an optical microscope to a Raman high-resolution spectrometer with a charge coupled 
device (CCD) detector. The bright field image obtained by the optical microscope is used to record the spatial 
information of the sample. The spectra are recorded as a matrix and corrupted by the contaminants from sample 
and CCD. The Raman image is achieved by integrating a specific Raman peak. Here we set a integrating plane 
around 1600 cm−1 to generate the Raman image of lignin. It can be used to locate the lignin semi-quantitatively.
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x is the row vector of initial spectral data and z is the fitted vector. The fitted vector z is calculated by balancing the 
fidelity of z to x and the roughness of z:

λ λ= + = − +Q F R x z Dz (2)2 2

where Q is the balancing result, F is the fidelity expressed as the sum of squared errors between x and z, R is the 
roughness computed as the first derivative (matrix D) of z, λ is a parameter for controlling smoothness of the fit-
ted vector (balancing coefficient), respectively. By finding the vector of partial derivatives and equating it to zero, 
i.e. ∂ Q/∂ z =  0, the solution of minimization problems of equation (2) is given as follows:

λ= + −z I D D x( ) (3)T T 1 T

A weight vector of fidelity W, which is a diagonal matrix with wi on its diagonal, is introduced for baseline correc-
tion. Thus equation (2) and equation (3) change to:

λ= + −z W D D Wx( ) (4)T T 1 T

Without setting zeros to the weight vector at positions corresponding to peak segments, the equation (4) can be 
categorized as a smoothing algorithm. Subsequently, the adaptive iteratively reweighted procedure is performed 
to calculate the weights and adds a penalty item to control the smoothness of the fitted baseline. Each step of the 
adaptive iteratively reweighted procedure involves solving a weighted penalized least squares problem of the 
following form:
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The weight vector w is obtained adaptively using an iterative method. One should give an initial value w0 =  1 at 
the starting step. After initialization, the w of each iterative step t can be obtained using the following expressions:

=









≥

<

−

−
−

−w
x z

t x z

0

e (6)
i
t i i

t

z x

d i i
t

1

1
i
t

i
t

1

Vector dt consists of negative elements of the differences between x and zt−1 in the tth iteration step. The fitted 
value zt−1 in the previous (t− 1)th iteration is a candidate of baseline. If the value of the ith point is greater than 
the candidate of baseline, it can be regarded as part of a peak. Thus its weight is set to zero to ignore this point at 
the next iteration of fitting. In airPLS algorithm, the iterative and reweight approaches are utilized to gradually 
and automatically eliminate the points of peaks and preserve the baseline points in the weight vector w. Iteration 
will stop either with the maximal iteration times or when the terminative criterion is reached. The terminative 
criterion is defined by:

∑< .
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Figure 2. The flow chart of APRI: (a) adaptive iteratively reweighted penalized least-squares (airPLS) algorithm 
for baseline correction; (b) a despiking algorithm on the basis of principal component analysis (PCA-based 
despiking). Each step is corresponding to the equation in the Theory section.
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The vector dt also consists of negative elements of the differences between x and zt−1 (Fig. 3a). The corrected 
data x* is achieved by subtracting finally fitted baseline z from original data x (Fig. 3b). Here, the maximum itera-
tive time and λ are respectively set to 20 and 107 by considering the computation time and the required smooth-
ness of the corrected result. The original algorithm is open source software available in https://code.google.com/
archive/p/airpls/downloads.

Spikes removal method: PCA-despiking algorithm. Principle component analysis (PCA) is one of the 
multivariate methods and has been widely used with large multidimensional data sets15. The use of PCA allows 
the number of variables in a multivariate data set to be reduced, while retaining variation present in the data. The 
correlation coefficient array Rj(l) of the baseline corrected data X* is calculated as follows:

σ σ
=

×

= …

⁎ ⁎

⁎ ⁎
R l x j x l

j l n

( ) cov( ( ), ( ))

, 1, 2, , (8)

j
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where cov(x*(j), x*(l)) is the covariance of column vectors x*(j) and x*(l), σ ⁎x j( ) is the standard deviation of x*(j), 
and σ ⁎x l( ) is the standard deviation of x*(l), respectively.

Then the eigenvalues and eigenvectors are determined from the correlation coefficient array,

λ− =R I V( ) 0 (9)k m k

where λk—eigenvalues and λ∑ == nk
n

k1 ; Vk =  [vk(1), vk(2), … , vk(n)]T—eigenvectors corresponding to the eigen-
values λk.

The eigenvectors are aligned in descending order with respect to their eigenvalues, i.e. λk >  λk+1. The uncorre-
lated principal component is formulated as:
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where Pk is termed as the principal component. When applying PCA to the data, a significant factor is how many 
principal components to keep. This is determined by using the proportion of total population variance. The pro-
portion (PR) of kth principal component (Pk) is shown as follows:

λ
λ λ λ

=
+ + … +

PR
(12)P

k

n1 2
k

Figure 3. The procedure of APRI for a single spectrum. (a) The two spectral contaminants (baseline drift 
and spike) are observed in original spectrum. The baseline is calculated by using airPLS algorithm. (b) The 
baseline corrected spectrum (BCS) is corrected by subtracting the baseline from the original spectrum. (c) The 
most similar spectrum (MMS) is confirmed by PCA. (d) Linear fitting operation is necessary to reduce the 
large differences between BCS and MSS. Here, the spectrum of linear model is similar to that of MSS since the 
differences among BCS and MSS are not so apparent. (e) The standard residual vector is available by subtracting 
linear model of MSS from BCS. (f) The residual matrix is obtained by stacking the entire residual vectors 
together. This matrix is applied to determine the threshold vector. (g) The position of spike is located based on 
the residual vector and the threshold vector. (h) The two spectral contaminants are suppressed in the final pre-
processed result.

https://code.google.com/archive/p/airpls/downloads
https://code.google.com/archive/p/airpls/downloads
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where λk is the eigenvalue (variance) of kth eigenvector. This represents the explanation of kth principal component 
for the spectral data set. In APRI, the first q principal components are retained when the cumulative PR exceeds 
85%, which means that 85% of the data variance was explained. The selected principal components can reflect the 
original data very well and thus the dimension of the data is reduced to save the running time in subsequent cal-
culation of the distances. A principal components matrix PC (dimension m by q) is then achieved. In this matrix, 
each row of PC is treated as the feature of corresponding Raman spectrum.

The squared Euclidean distance array Di(j) between each two features is calculated as:

∑= −
=

D j PC k PC k( ) [ ( ) ( )]
(13)i

k

q

i j
1

2

where PCi(k) and PCj(k) are the features of ith and jth spectrum in kth principal components. The most similar 
spectrum (MSS, = …⁎ ⁎ ⁎ ⁎y y yy [ , , , ]n1 2 ) of each spectrum (y =  [y1, y2, … , yn]) is determined by finding the minimal 
Euclidean distance between the features of baseline corrected spectrum (BCS) and referential spectra (Fig. 3c). 
Since all of the spectra are taken into consideration, it should be noted that the procedure of confirming MSS will 
cost a lot of time if the size of original data set is too large.

A linear model is proposed by the least-squares algorithm to further reduce the variation between y and y* 
(Fig. 3d). The linear regression spectrum yre is generated by y*, and the sum squares errors S between y and yre is 
given as follows:

= +⁎a by y (14)re

= − = − −⁎S a by y y y (15)re
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where a is the scaling factor and b is the offset, respectively. By calculating the vector of partial derivatives and 
equating it to zero, i.e. ∂ S/∂ a =  0, ∂ S/∂ b =  0, the solution of a and b is achieved,
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where yi and ⁎yi  are elements of y and y*, respectively. The residual vector e is calculated as follows:

= −e y y (18)re

This procedure is applied to magnify the intensity of existing spikes and makes them more obvious targets for 
locking their positions (Fig. 3e). The residual vector e is normalized by:

σ=e e/ (19)std e

where σe is the standard deviation of e. The normalization can ensure that the residual vector is independent of 
the numerical range of the spectral intensities. It is particularly important for extending our method to other sam-
ples. The determination of spike positions is based on a residual matrix E0 achieved by stacking all of estd together 
(Fig. 3f). A threshold vector is required for filtering the spike signals in E0. Since the spike has features including 
narrow-bandwidth, relative high intensity, positive (unidirection) and random occurrences in spectral data, the 
spike signals in each channel should be positive numbers and far away from normal signals. We first obtain a new 
residual matrix E by ranking the values of each column in E0 are ranked from largest to smallest. The threshold 
vector t is then automatically generated at the point of abrupt change in each channel based on the derivative of E 
(Figs 3g and 4). The shape and width of spikes depend heavily on instrument/measurement mode and manufac-
turer software. In our experiment, a spike zone generally contains 20 to 40 variables in spectrum. Thus we select 
the spike range as 41 variables to ensure that all affected variables are included. Without consideration of the 
shape of the spike, the PCA-despiking algorithm is finished by replacing the spike zone with the corresponding 
yre (Fig. 3h). It should be noted that a wider spike range means more variables are corrected, while introducing 
MSS can guarantee the shape of corrected spectrum shape won’t be distorted much. According to the principle of 
the algorithm, bad replacement may appear in final result if the spike zone of corresponding MSS also has spike 
noise. In this case, instead of the first referential spectrum, the spectrum with next minimal distance as the MSS 
is selected.

Our algorithm relies on the differences between BCS and MSS, which may lead to unsatisfactory results when 
the spikes of them appear at the same position. Although the probability of this event is low, it limits the per-
formance of the algorithm to a certain extent. Since the MSS of each spectrum changes dynamically during the 
iterative procedure so that the appearances of spikes at the same position are evitable, our solution is to perform 
the APRI once again.

Results and Discussion
Raman spectroscopy can provide chemical information about organic and inorganic substances quickly and non-
destructively with little to no sample preparation. The analysis of organic compounds is much more difficult and 
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complicated than that of inorganic ones. In this study, the experiments are performed on a transverse section of 
poplar xylem (a biological sample) to verify the validity of our method. The poplar cell wall is organized in several 
layers formed at different periods during cell differentiation with different proportions of components, including 
cellulose, hemicellulose and lignin. Figure 5 shows a typical Raman spectrum of poplar and its band assignments 
are displayed in Table 1 on the basis of previous literature16,17. As a typical biological material, the vibrational 
spectra of poplar are rather complex with overlapping bands. In particular, cellulose and hemicellulose are hard 
to discern in spectrum because of their similar chemical bonds18.

We collected 12,870 spectra from a 65 ×  49.5 μ m region with a spatial resolution 0.5 μ m/pixel. It can be 
regarded as a matrix of 12,870 by 977 dimensions. The plots of original Raman spectral data are shown in Fig. 6a. 
We notice that the original data have significant baseline drifts and spikes. As previously mentioned, these spec-
tral contaminants are caused by sample fluorescence and CCD. In plants, lignin is known to exhibit fluorescence 
under laser with specific wavelength, which interferes strongly with the determination of spectral peaks19. Many 
efforts have been undertaken by predecessors to eliminate these interferences, such as using near-infrared laser, 
but the problems are still considerable20.

The common used instrumentation software, such as LabSpec (Horiba Jobin Yvon) and OPUS (Bruker), pro-
vides the polynomial fitting algorithm and the median filtering algorithm to cope with the baseline drifts and the 
spikes problems, respectively. Polynomial fitting algorithm attempts to estimate the unknown background and 

Figure 4. Automatic generation of the threshold vector t. For channel j of the new residual vector E, we just 
consider the values that are positive based on the positive nature (unidirection) of spikes. Threshold tj should 
satisfy that ti =  Eij, (dEj <  − 1).

Figure 5. Typical Raman spectrum of poplar in presence of D2O, D2O can reduce the fluorescence of 
lignin and has a marked peak at 2490 cm−1. 
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abolish the sloped or oscillatory baselines based on user-defined polynomial degree and points21. However, it 
suffers from a very loose baseline if the degree of polynomial is not set properly. In addition, the unknown back-
ground of the spectrum is often too complicated to be fitted by a simple polynomial function in practice thereby 
rendering unsatisfactory corrected results. As shown in Figs 5c and 6b, changing the degree of polynomial will 
achieve different correction results. When the degree is set to 2, it is found that the correction of baseline is 
incomplete. If we enlarge the degree number to 8, significantly spectral distortion are observed, such as appear-
ance of negative parts and changes in spectral shape. The median filtering algorithm requires the user to specify 
the maximum number of spike bandwidth and height as the references for determination of spikes, indicating 
that the algorithm is effective in detecting the sharp or high spikes but is unable to remove the spikes with low 
intensity11. Figure 5f and 6e show that the median filtering algorithm only can remove parts of the spikes.

The principle of APRI is fundamentally different, allowing automated operation by the applications of airPLS 
and PCA-despiking algorithm. The airPLS algorithm works by iteratively changing the weights of fitted spectrum 
to confirm the baseline function. Compared to the conventionally used algorithms of baseline correction, air-
PLS algorithm achieves a smoother result without adjustable parameters because the baseline is determined by 
balancing fidelity and roughness of the fitted spectrum. The PCA-despiking algorithm performs PCA to extract 
the main features (i.e. scores) of the baseline corrected spectra (BCS). For each BCS in the spectral data, the 
algorithm searches the most similar spectrum (MSS) from all the feature signatures (using the Euclidean dis-
tance) and excludes the spikes by comparing the differences between the BCS and MSS. The final results show 
that the spectral contaminants are perfectly removed (Fig. 6d and g). In order to prove that the results were 
not idiosyncratic to the particular Raman data set, other examples pre-processed by APRI can be found in 
Supplementary Information (Figures S-1 to S-5). The core of spike corrections is how to confirm the MSS. Here, 
we employ PCA and Euclidean distance to find out the MSS. Other judgment methods, such as Mahalanobis dis-
tance or Pearson correlation coefficient, also can be applied to determine the MSS. Mahalanobis distance is simi-
lar to our method (PCA plus Euclidean-Distance): both of them take into account the correlations of the data. The 
calculated amount of our method is less than Mahalanobis distance because the original data has been condensed 

Figure 6. Data pre-processing results achieved by instrumentation software and APRI. (a) The plots of the 
original Raman imaging data. (b) Baseline correction by polynomial fitting (degree =  2). (c) Baseline correction 
by polynomial fitting (degree =  2). (d) Baseline correction by APRI (degree =  2). (e) Despiking operation by 
median filtering on the basis of (b). (f) Despiking operation by median filtering on the basis of (c). (g) Despiking 
operation by APRI on the basis of (d).
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by PCA. Using Pearson correlation coefficient, by contrast, requires only a low calculation cost. However, it is 
independent of scaling and thus may distort the final corrected spectra.

To further analyze the Raman spectral data, a standard PCA is performed on original and corrected data. The 
first 20 row vectors (loadings) of PCA results were selected to generate their mapping images (Figures S-6 to S-25).  
For the original data results, the baseline drifts exist in the 1–9 spectra with high spatial resolved mapping pro-
files, while the spikes are visible in the 11–20 spectra with low image resolution. This means that the PCA not only 
can extract and condense the features of contaminants in the Raman imaging data set, but also can be potentially 
used as an evaluation of the correction quality. It is found that both the baseline drifts and the spikes disappear 
in the PCA results of APRI corrected data. Moreover, the mapping profiles show a higher spatial resolution than 
the original ones, which suggests that the loadings of corrected data are more representative. Although APRI 
is a powerful tool for removing the spectral contaminants, it may not be suitable in certain applications. Our 
algorithm for spike correction depends crucially on the availability of a closely similar spectrum without spike at 
the same position. Spectral distortion may occur when the sample size is too small (generally spectral amounts 
less than 10, depending on the measurements). Large differences will be found between BCS and MSS thereby 
providing incorrect determination of the spikes. In such case, filtering algorithms that exclude the spikes on a 
single-scan spectrum is more appropriate. Additionally, APRI is computationally faster for large-scale Raman 
imaging data. It takes less than 4 minutes to correct 10,000 spectra on a standard desktop computer (Win7 OS, 
Intel Core i5-3.2Ghz CPU and 8GB RAM).

The spectral contaminants induced by sample or instrumental perturbations are not only common in Raman 
spectroscopy but also in other methods of spectroscopy, such as infrared (IR), nuclear magnetic resonance 
(NMR), X-Ray diffraction (XRD). More information can be gleaned from the spectral data by applying various 
multivariate methods, whilst the unknown background or unwanted peaks may complicate the subsequent anal-
ysis of their data. The uniqueness of APRI is the self-adaptive nature of airPLS and PCA-despiking algorithms, 
which removes the contaminants on the basis of the spectral features themselves. Therefore, APRI is potential to 
be an effective, freely available tool for pre-processing the data of other spectroscopic techniques to improve the 
quality of data analysis.

References
1. Butler, H. J. et al. Using Raman spectroscopy to characterize biological materials. Nat. Protoc. 11, 664–687 (2016).
2. Shinzawa, H., Awa, K., Kanematsu, W. & Ozaki, Y. Multivariate data analysis for Raman spectroscopic imaging. J Raman Spectrosc 

40, 1720–1725, doi: 10.1002/jrs.2525 (2009).
3. Notingher, I. et al. Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells. J. Mol. Struct. 744, 179–185 

(2005).
4. Barman, I., Kong, C.-R., Singh, G. P. & Dasari, R. R. Effect of photobleaching on calibration model development in biological Raman 

spectroscopy. J. Biomed. Opt. 16 (2011).
5. Zhang, L. & Henson, M. J. A practical algorithm to remove cosmic spikes in Raman imaging data for pharmaceutical applications. 

Appl. Spectrosc. 61, 1015–1020 (2007).
6. Baek, S. J., Park, A., Ahn, Y. J. & Choo, J. Baseline correction using asymmetrically reweighted penalized least squares smoothing. 

Analyst 140, 250–257 (2015).
7. Zhang, Z.-M., Chen, S. & Liang, Y.-Z. Peak alignment using wavelet pattern matching and differential evolution. Talanta 83, 

1108–1117 (2011).
8. O’Grady, A., Dennis, A. C., Denvir, D., McGarvey, J. J. & Bell, S. E. Quantitative Raman spectroscopy of highly fluorescent samples 

using pseudosecond derivatives and multivariate analysis. Anal. Chem. 73, 2058–2065 (2001).
9. Leger, M. N. & Ryder, A. G. Comparison of derivative preprocessing and automated polynomial baseline correction method for 

classification and quantification of narcotics in solid mixtures. Appl. Spectrosc. 60, 182–193 (2006).
10. Cobas, J. C., Bernstein, M. A., Martín-Pastor, M. & Tahoces, P. G. A new general-purpose fully automatic baseline-correction 

procedure for 1D and 2D NMR data. J. Magn. Reson. 183, 145–151 (2006).
11. Ehrentreich, F. & Summchen, L. Spike removal and denoising of Raman spectra by wavelet transform methods. Anal. Chem. 73 

(2001).
12. Li, S. & Dai, L. An improved algorithm to remove cosmic spikes in Raman spectra for online monitoring. Appl. Spectrosc. 65 (2011).
13. Behrend, C. J., Tarnowski, C. P. & Morris, M. D. Identification of outliers in hyperspectral Raman image data by nearest neighbor 

comparison. Appl. Spectrosc. 56, 1458–1461 (2002).
14. Zhang, Z. M., Chen, S. & Liang, Y. Z. Baseline correction using adaptive iteratively reweighted penalized least squares. Analyst 135, 

1138–1146 (2010).
15. Geladi, P. & Grahn, H. In Encyclopedia of Analytical Chemistry (ed Robert A. Meyers) 13540–13562 (John Wiley & Sons, Ltd, 2000).
16. Agarwal, U. P. Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose 

in black spruce wood (Picea mariana). Planta 224 (2006).
17. Zhang, X. et al. Method for automatically identifying spectra of different wood cell wall layers in Raman imaging data set. Anal. 

Chem. 87 (2015).
18. Gierlinger, N. & Schwanninger, M. Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant Physiol. 140, 

1246–1254 (2006).
19. Donaldson, L. A. & Radotic, K. Fluorescence lifetime imaging of lignin autofluorescence in normal and compression wood. J. 

Microsc. 251, 178–187 (2013).
20. Agarwal, U. P., Reiner, R. S. & Ralph, S. A. Cellulose I crystallinity determination using FT-Raman spectroscopy: univariate and 

multivariate methods. Cellulose 17, 721–733 (2010).
21. Mazet, V., Carteret, C., Brie, D., Idier, J. & Humbert, B. Background removal from spectra by designing and minimising a non-

quadratic cost function. Chemometr. Intell. Lab. 76, 121–133 (2005).

Acknowledgements
This work was funded by the Chinese Ministry of Education (113014A), the China National Funds for 
Distinguished Young Scientists (31225005) and the Fundamental Research Funds for the Central Universities 
(BLYJ201620).



www.nature.com/scientificreports/

1 0Scientific RepoRts | 7:39891 | DOI: 10.1038/srep39891

Author Contributions
F.X. and X.Z. initiated the project. F.X. and X.Z. designed the pre-processing method. X.Z. and S.C., implemented 
the software. B.W. and X.Z. prepared the poplar sample. Z.J. collected the image data. X.Z. performed the analysis 
and wrote the manuscript. F.X. and Y.S.K. contributed to suggestions to the experiments, the analysis of the results 
and their discussion. All authors read and approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Zhang, X. et al. Method for Removing Spectral Contaminants to Improve Analysis of 
Raman Imaging Data. Sci. Rep. 7, 39891; doi: 10.1038/srep39891 (2017).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2017

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Method for Removing Spectral Contaminants to Improve Analysis of Raman Imaging Data
	Introduction
	Methods
	Materials
	Micro-Raman system
	Data processing
	Baseline correction method: airPLS algorithm
	Spikes removal method: PCA-despiking algorithm

	Results and Discussion
	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                Method for Removing Spectral Contaminants to Improve Analysis of Raman Imaging Data
            
         
          
             
                srep ,  (2016). doi:10.1038/srep39891
            
         
          
             
                Xun Zhang
                Sheng Chen
                Zhe Ling
                Xia Zhou
                Da-Yong Ding
                Yoon Soo Kim
                Feng Xu
            
         
          doi:10.1038/srep39891
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep39891
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep39891
            
         
      
       
          
          
          
             
                doi:10.1038/srep39891
            
         
          
             
                srep ,  (2016). doi:10.1038/srep39891
            
         
          
          
      
       
       
          True
      
   




