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Eyeblink Synchrony in Multimodal 
Human-Android Interaction
Kyohei Tatsukawa1,3, Tamami Nakano2, Hiroshi Ishiguro1,3 & Yuichiro Yoshikawa1,3

As the result of recent progress in technology of communication robot, robots are becoming an 
important social partner for humans. Behavioral synchrony is understood as an important factor in 
establishing good human-robot relationships. In this study, we hypothesized that biasing a human’s 
attitude toward a robot changes the degree of synchrony between human and robot. We first examined 
whether eyeblinks were synchronized between a human and an android in face-to-face interaction and 
found that human listeners’ eyeblinks were entrained to android speakers’ eyeblinks. This eyeblink 
synchrony disappeared when the android speaker spoke while looking away from the human listeners 
but was enhanced when the human participants listened to the speaking android while touching the 
android’s hand. These results suggest that eyeblink synchrony reflects a qualitative state in human-
robot interactions.

Over the past several years, communication robots have become the locus of a considerable amount of interest. 
Such communication robots are expected to be used in a wide range of fields, such as department store customer 
service1,2 and even for some clinical functions3,4. Although the design and function of these robots will depend 
on their purposes, all of these robots will be developed to interact with humans. Because it has been shown that 
building rapport contributes to smooth interactions in human communication5, we believe it is important to 
establish some design principles that help build human-robot rapport.

In the case of human-human interaction, interpersonal synchrony—the coordination of behavior between 
communication partners—is known to contribute to establishing rapport6–8. This notion also holds true for 
some forms of human-robot/computer interactions as well. Several studies have reported that humans evaluated 
robots/virtual agents highly when these agents showed synchrony with humans9–12. Studies have also been con-
ducted involving synchrony from humans to robots13,14 that showed that humans will synchronize with robots 
under certain conditions. However, there was a possibility that androids—humanoid robots with a human-like 
appearance—may not be accepted as a target of synchronous behavior due to certain negative characteristics that 
androids display, such as the “uncanny valley”15. For these androids to be recognized as reliable social entities, it 
is worth investigating whether humans show synchrony toward androids.

In human-human interactions, a receptive attitude toward a conversational partner is an important factor 
in facilitating synchrony. Bernieri et al. reported that when a pair of participants participated in a cooperative 
task, the ratings for synchrony and rapport were positively correlated. On the other hand, when the participants 
performed competitive tasks, this correlation was not observed16. Another study by Nagaoka et al. noted that 
displaying a receptive attitude leads to synchronization in response to the latency of dialogues17. Considering 
these studies, it appears that the degree of synchrony may be altered by biasing the conversation partner’s attitude 
in such a manner that he/she becomes receptive. We adopted this idea in the human-robot interaction context 
and examined the way in which biasing the conversation partner’s attitude affected the degree of synchrony by 
utilizing a robot that is capable of controlling its non-verbal actions.

However, no method has yet been established to reliably and quantitatively evaluate synchrony between 
humans and robots. In this regard, Nakano et al. introduced a method that quantitatively evaluates synchrony 
during human-human interactions by focusing on eyeblink synchrony18. These authors reported that eyeblink 
synchrony between a speaker and listeners occurred at the break points in speech but not during vocalization. 
Using this study as a model, in Experiment 1, we first examined whether eyeblink synchrony can be replicated 
between a human listener and an android speaker. Next, to examine whether the non-verbal expression of an 

1Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, 1-3 
Machikaneyama, Toyonaka, Osaka, 560-8531, Japan. 2Graduate School of Frontier Biosciences, Osaka University, 
1-3 Yamadaoka, Suita, Osaka 565-0871, Japan. 3JST ERATO Ishiguro Symbiotic Human Robot Interaction Project, 
Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan. Correspondence and requests for 
materials should be addressed to K.T. (email: tatsukawa.kyouhei@irl.sys.es.osaka-u.ac.jp)

Received: 09 August 2016

Accepted: 25 November 2016

Published: 23 December 2016

OPEN

mailto:tatsukawa.kyouhei@irl.sys.es.osaka-u.ac.jp


www.nature.com/scientificreports/

2Scientific RepoRts | 6:39718 | DOI: 10.1038/srep39718

android can bias humans’ attitudes and alter their degree of synchrony, we examined the manner in which the 
android’s gaze (when looking away from the human listener) can alter the degree of synchrony (Experiment 2). 
Because gaze is known to be capable of expressing mental states, such as affection and interest19, we hypothesized 
that gaze can also be used as a means of biasing the conversation partner’s attitude. Furthermore, in Experiment 3,  
we introduced touch as another means of generating alterations in attitude. Previous studies have demonstrated 
the manner in which touch can be used to improve an impression toward the toucher20,21. Therefore, we expected 
that touch would lead a listener to have a positive attitude regarding the android. In our experiment, the partici-
pants listened to the android’s speech while placing their hand on top of the android’s hand.

Results
Experiment 1: Human-Android Eyeblink Synchrony. The first experiment was performed to exam-
ine whether eyeblink synchrony occurred between a human listener and an android speaker. Each participant 
listened to two speeches given by the android sitting in front of them (Fig. 1a). When the android blinked only 
at the breakpoints of speech (Offset Condition), the participants’ eyeblink rate significantly increased after the 
android’s eyeblinks with a delay of 0.5~0.75 sec (Fig. 1b, z =  3.47, p <  0.01, one sample Z test). By contrast, when 
the android blinked during vocalization (On Condition), a significant increase in the listeners’ eyeblink rate was 
observed 1.0~1.25 sec after the android’s eyeblink (Fig. 1c, z =  3.02, p <  0.05, one sample Z test).

Experiment 2: Biasing Human Attitude with Gaze. The second experiment was performed to exam-
ine whether shifting the android’s gaze away from the listener affects the degree of eyeblink synchrony. In this 

Figure 1. Experiment 1. (a) Geminoid-F: an android robot with a human-like appearance. (b,c) Eyeblink 
synchronization of the speaker in the Offset Condition and in the On Condition. The blue graph represents 
the mean of the blink frequency when transformed into Z scores. The difference over zero reflects the degree 
of eyeblink synchronization. The error bars illustrate the standard errors among the participants. (N =  27) 
*p <  0.05 **p <  0.01.
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experiment, the android gave a speech while directing its gaze away from the human listener throughout (Fig. 2a). 
In contrast with Experiment 1, a significant increase in the listeners’ eyeblink rate was not observed at any time 
point, regardless of whether the android blinked at the breakpoints of the speech (Fig. 2b) or during vocalization 
(Fig. 2c).

Experiment 3: Biasing Human Attitude with Touch. In Experiment 3, we investigated whether touch 
has any influence on the degree of eyeblink synchrony. In this experiment, a human listener listened to two 
speeches, one while putting his hand on top of the android’s (Touch Condition), as shown in Fig. 3a, and another 
without touching the android (No-Touch Condition). In the Touch Condition, a significant increase in the listen-
ers’ eyeblink rate was observed 0.5~0.75 seconds after the android’s eyeblink (Fig. 3b, z =  5.25, p <  0.01, one sam-
ple Z test). Conversely, there was no significant increase in the eyeblink rate in the No-Touch Condition (Fig. 3c). 
The listeners’ eyeblink rate 0.5~0.75 sec after the android’s eyeblink in the Touch Condition was higher than the 
rate in the No-Touch Condition but did not reach the level of significance (t =  − 1.88, p =  0.07, paired t test).

Discussion
The present study clearly shows that eyeblink synchrony does occur between human listeners and android speak-
ers in face-to-face interaction. Now that we know that the degree of eyeblink synchrony can be quantitatively 
evaluated, we will consider utilizing this metric to evaluate how firm rapport is established. To do so, we will need 
to further investigate the degree to which eyeblink synchrony contributes to building rapport. Recently, Nomura 
& Kanda have published a scale to evaluate human-robot rapport22, which may be useful in investigating the 
extent to which eyeblink synchrony contributes to building rapport.

We conducted Experiments 2 and 3 to investigate whether the nonverbal features that the android expresses 
generate a bias in humans’ attitudes, thus leading to an alteration in the degree of eyeblink synchrony. The results 

Figure 2. Experiment 2. (a) Android’s gaze during Experiment 2. (b,c) Eyeblink synchronization of the speaker 
in the Look Away Offset Condition (N =  14) and the Look Away On Condition (N =  12).
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of these two experiments showed that our conjecture appears to be correct. When the android displayed an 
unpleasant expression—when looking away from the human listener—the synchronous eyeblinking in humans 
was inhibited. We presume that this is the case because the shift in the gaze induced a non-receptive attitude. In 
contrast, when the human listener touched the android’s hand, an action aimed at biasing the listener’s attitude 
toward receptivity, the degree of eyeblink synchrony was higher than that in the No-Touch Condition. These 
results are in line with those of a previous study that has shown how a receptive attitude toward others leads to 
synchronous behavior17. Furthermore, Bernier et al. have noted that synchrony and rapport are positively cor-
related when interactions are evaluated under a receptive attitude16. Therefore, there is a possibility that rapport 
may have been established more strongly under the Touch Condition. To further understand the relationships 
among receptive attitude, synchrony, and rapport, an additional experiment involving psychological evaluations 
may be of value.

Notably, although Nakano et al. have reported that eyeblink synchrony between listeners and speakers 
occurs at the breakpoints of the speech but not during vocalization, an increase in the listeners’ eyeblink rate was 
observed in the present study not only during the offset of vocalization but also during vocalization. We speculate 
that the increase in eyeblink rate during vocalization has more to do with mimicry than synchrony. Nakano et al. 
have suggested that the eyeblink synchrony observed in their study was more related to behavioral coordination 
at speech junctions rather than the chameleon effect, in which a mere perception of another’s behavior triggers 
an unconscious mimicry7. In the present study, the android was controlled to move its eyelids and mouth but not 
any other body part, whereas in the previous research, the video speaker made various movements. We presume 
that because the android’s eyeblink attracted more attention and because the listeners’ choice of which modality to 
mimic was limited in our study, it was effective in triggering the eyeblink mimicry. Another possible distinguish-
ing feature may involve the difference in the type of media used to display the speaker’s eyeblinks (3D vs. 2D).  

Figure 3. Experiment 3. (a) The participant touching the android’s hand. (b,c) Eyeblink synchronization of the 
speaker in the Touch Condition and in the No-Touch Condition. (N =  30) **p <  0.01.
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A previous study has shown that trust is established more quickly when humans interact face-to-face (3D) rather 
than through video conferencing (2D)23. Because Lakin and Chartland have stated that mimicry may increase 
when a person has a desire to affiliate24, eyeblink mimicry may have been more effectively induced by the android 
speaker (3D) compared with Nakano et al.’s 2D video of a speaker. Further investigation is necessary to confirm 
this conclusion.

In Experiment 3, the setting of the No-Touch Condition was almost identical to the Offset Condition of 
Experiment 1. However, a contrasting result was observed in these conditions. Although a significant increase in 
the listeners’ eyeblink rates was observed in the Offset Condition, this increase was not observed in the No-Touch 
Condition. We suspected that the inconsistency of the results was caused by the difference in the distances 
between the listener and the android. According to a study on human proximity, 120 cm is the approximate 
border of personal space that should not be violated by non-friends25. From another previous study on personal 
space, it is known that the intrusion of personal space can cause discomfort in human-human interactions26 as 
well as in human-robot interactions27. The distances between the listener and android in our experiments were 
approximately 120 cm in Experiment 1 and 80 cm in Experiment 3. We presume that the distance was too small 
in the No-Touch Condition, such that it invaded the listener’s personal space and created discomfort. Under 
the assumption that a person’s attitude can affect the occurrence of synchrony into account17, the feeling of dis-
comfort may have biased the listeners’ attitude toward being non-receptive and may have led to the inhibition of 
synchrony. To further investigate the effect of proximity on the degree of synchrony, it would be worthwhile to test 
our experiment using a variety of distances and to evaluate the stress of participants to confirm the links across 
distance, discomfort and synchrony.

To establish eyeblink synchrony as a widely applicable way to evaluate rapport, we would need to investigate 
whether the eyeblink synchrony seen in this work can be replicated using other robots that do not closely resem-
ble humans. It still remains unclear what feature of the android was instrumental in obtaining the present results. 
It would also be valuable to conduct the same experiment task using a human speaker so that we could better 
compare how participants react to a human speaker versus an android speaker.

As mentioned in the introduction, synchrony has a connection with rapport6–8. To establish strong rapport, it 
would be valuable to further investigate ways to synchronize more often. Ford et al. have reported a co-occurrence 
between eyeblinking and other non-verbal communicative behaviors, such as gaze and facial expression28. Thus, 
we may be able to predict when humans will exhibit eyeblinks, thus providing the android more opportunities 
to synchronize its eyeblinks. It would be valuable to test this idea by supplying our android with many different 
motions and to observe how human’s eyeblinks would behave. Additionally, we suspect that by adding a number 
of other motions and modalities, the number of channels for synchrony to occur would expand, and the interplay 
of multiple motions/modalities might help to induce further synchrony. Therefore, we believe that this possibil-
ity should be examined by analyzing human-robot interactions in which the robot has implemented multiple 
motions and modalities, to investigate how synchrony and different motions/modalities relate to one another in 
detail.

In summary, we investigated how synchrony between humans and androids is influenced by biasing humans’ 
attitudes. In Experiment 1, we examined whether the eyeblink synchrony between the human listener and human 
speaker in a video shown in Nakano et al. can be replicated between a human and android in the presence of one 
another. The results revealed that the listener’s eyeblink rate increased directly after the android’s eyeblinks, which 
occurred at the breakpoints of speech. This result is in line with the results of Nakano et al., indicating that the 
listener is likely to perform eyeblinks at a consistent rate not only for human speakers but also for android speak-
ers. Additionally, the increase of the listener’s eyeblink rate was also observed immediately after the android’s 
eyeblinks during vocalization, although this increase was not observed in the previous study, which implies that 
humans may have a tendency to unconsciously mimic the android’s eyeblink. We then investigated the effects 
of the non-verbal expression that the android has on the degree of synchrony. The results show that when the 
android looked away from the listener, eyeblink synchrony was inhibited, whereas when the listener made phys-
ical contact with the android, the listener was more likely to exhibit synchronous eyeblinks. These results suggest 
that some non-verbal expressions that an android display may serve as a powerful means of biasing human atti-
tudes, leading to an alteration in the degree of synchrony. It is probable that there are many other ways to bias 
human attitudes. Therefore, we believe it is important to seek out other non-verbal expressions for robots that 
contribute to inducing synchrony.

Method
Participants. Thirty-three participants (14 males and 19 females) were recruited for Experiment 1. Four 
participants were excluded from the analysis due to their failure to detect eyeblinks. The mean eyeblink rate at this 
point was 32.1 min−1 (SD =  15.5). Two other participants were excluded from the analysis because of excessive 
eyeblink rates (two standard deviations away from the mean). Consequently, we analyzed the data acquired from 
27 participants (12 males and 15 females). The participants’ mean age was 21.1 years old, and the mean eyeblink 
rate was 29.5 min−1.

Experiment 2 utilized the same 33 participants who were recruited for Experiment 1. Of the 33 participants, 
6 participants were excluded from the analysis due to a failure to detect eyeblinks and 1 participant was excluded 
due to an excessively high eyeblink rate. Thus, 26 participants remained (12 males, 14 females, mean age of 21.0 
years), and their mean eyeblink rate was 31.2 min−1.

For Experiment 3, 32 new participants were recruited. Of these, 2 participants were excluded from the analy-
sis, one due to a failure in eyeblink detection and another for an excessive eyeblink rate. The mean eyeblink rate 
of the 30 participants (14 males, 16 females) was 32.8 min−1.
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All participants gave written informed consent. The study was approved by the Graduate School of 
Engineering Science at Osaka University and the methods were carried out in accordance with the approved 
guidelines.

Android. In this experiment, we used Geminoid-F (Fig. 1a), a female android resembling an actual person in 
appearance. Geminoid-F has a total of 12 pneumatic actuators embedded inside its body. Each actuator is acti-
vated by channeling air from an external air compressor. The motion of Geminoid-F is controlled by receiving 
signals indicating the desired positions of the actuators that are sent from an external computer at a sampling rate 
of 20 Hz. Various motions can be generated by changing the values of the signals. The generated motions can be 
saved in a text file and used to reproduce the same motions. We call this file the Motion File. In this experiment, 
we generated the motions using only the eyelid and mouth, while the remaining actuators were set as static. In 
addition, the motion for shifting the android’s gaze away from the participants was generated for the second 
experiment.

The mouth motion was generated using a conventional method for approximating the speaker’s mouth 
motion based on the voice29. To create the appearance of speech for Geminoid-F, the sound of the speech was 
played in sync with the generated mouth motion. The sound was broadcast by an external audio speaker that was 
set directly behind Geminoid-F. Three speeches were used in this experiment, all of which were acquired from 
a Japanese radio program in which a female radio personality speaks. The lengths of the speeches were: Speech 
A =  225 sec, Speech B =  227 sec, Speech C =  227 sec. The lengths were edited to match the lengths used in Nakano 
et al.’s study as closely as possible18. Speeches A and B were used in the first and third experiments. Speech C was 
used in the second experiment. We additionally edited a speech (85 sec) from the same radio program to be used 
in a practice session for the experiments.

We generated two eyeblink motions, one that occurred only at the breakpoints of speech and another that 
occurred only during vocalization. To generate eyeblink motions that occurred only at the breakpoints of the 
speech, we defined the timing of the breakpoint of speech as “50 msec before the start of interval of time when 
Geminoid-F’s mouth is closed for more than 400 msec.” By timing the eyeblinks according to the above definition, 
the total eyeblinks during each speech was 54 (Speech A), 66 (Speech B) and 56 sec (Speech C). To generate an 
eyeblink motion during vocalization, eyeblinks were set to occur when Geminoid-F’s mouth was in motion to 
avoid blinking at the breakpoints of speech. The number of eyeblinks in the On Condition was the same as in the 
Offset Condition.

Data Acquisition. Vertical electrooculograms (EOGs) were used to measure participants’ eyeblinks. The 
electric potential difference between the cornea and retina that were caused by the eyeblinks were recorded using 
two active surface electrodes attached above and below the eye. POLYMATE2 of the TEAC Corporation was used 
to record the EOG at a sampling rate of 1000 Hz.

Procedure. Experiment 1 was conducted one participant at a time. Each participant was instructed to lis-
ten to the three speeches given by the android. After listening to each speech, they were asked to answer a few 
simple questions regarding the content the speech. They were also informed that their eye movements would be 
recorded but were unaware that their eyeblinks were being recorded. The participants were asked to sit in front 
of Geminoid-F (Fig. 1a), a female android, and electrodes were attached to their faces to record their eyeblinks. 
When the machine was ready to record, the participants listened to the three speeches. The first speech was given 
as a practice round. The participants listened to a short speech given by the android and answered a few multi-
ple choice questions. The android’s eyeblinks were regulated to occur once every three seconds at random. The 
second and third speeches and quizzes were performed using the same procedure. The timing of the android’s 
eyeblinks during the second and third speeches were timed to occur only at the breakpoints of the speech (Offset 
Condition) or while vocalizing (On Condition). The combination of the order and the two conditions were coun-
terbalanced across participants such that each participant experienced both the Offset and On Conditions. The 
mean score of the quizzes was 98.7% (SD =  2.6%), suggesting that the participants were focused on the speeches 
and understood the content.

Experiment 2 was conducted with the same participants and performed in the same setting as the previous 
experiment, directly after they finished answering the third quiz. Participants listened to the speech given by the 
android in either the Look Away Offset Condition, in which the android blinked only at the breakpoints of the 
speech, or the Look Away On Condition, in which the android blinked only during vocalization. The android 
shifted its gaze away from the participant a few seconds before it began to speak and maintained this position 
throughout the speech. A multiple choice quiz was given after the speech, and the results showed that the partic-
ipants understood the content of the speeches well (mean score =  98.0%, SD =  5.3%).

In Experiment 3, the setting and procedure were identical to Experiment 1, except for the manner in which the 
participants listened to the second and third speeches. The participants were instructed to listen to the speeches 
under two conditions, the Touch Condition and the No-Touch Condition. In the Touch Condition, the partic-
ipants placed their hand on top of the android’s hand while listening to the speech (Fig. 3a). In the No-Touch 
Condition, the participants listened to the speech without touching the android’s hand, which served as a control 
condition. In both conditions, the android’s eyeblinks were fixed to occur only at the breakpoints of speech. The 
order of the two conditions were counterbalanced across participants. The mean score of the quizzes was 97.7% 
(SD =  3.9%), once again suggesting that the participants were focused on the speeches.

Data Analysis. We followed the data analysis method used in Nakano et al.18.
The participants’ eyeblink onset times were detected by processing the EOG signals30. Geminoid-F’s blink 

onset times were detected by referring to the Motion File.
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To investigate the degree of synchrony between the android’s and the participants’ eyeblinks, we examined the 
linkage of the participants’ eyeblink rate with the android’s eyeblinks (1.25 sec before and 1.75 sec after the eye-
blink onset). We divided this interval into 12 equally sized bins and counted the number of participants’ eyeblinks 
that occurred in each bin. If there was a significant increase in the participants’ eyeblink rate in a specific bin, it 
can be interpreted that the android’s and the participants’ eyeblinks occurred in synchrony. To examine their rela-
tion, we conducted a one-sample Z test and compared the observed participants’ eyeblink rate in the experiments 
and the eyeblink rate that occurred at random.

We randomized the time series of the observed eyeblinks by shuffling the inter-blink intervals, generating 
1000 pieces of surrogate data. These surrogate data can be considered the participants’ eyeblink rate that occurred 
by chance31. Using these surrogate data in the same procedure described above, we counted the number of gener-
ated eyeblinks that occurred in relation to the android’s eyeblinks and calculated the sum and standard deviation 
of the numbers in each bin. The number of observed eyeblinks was than transformed to a Z score using the mean 
and standard deviation of the numbers derived from the surrogate data. The same procedure was performed for 
the data acquired from all participants, thus generating a Z score from each participant. To examine whether 
the observed eyeblink rate was greater than the level of chance, we took the Z scores of each bin and applied a 
one-sample Z test. Bonferroni corrections were applied to generate multiple comparisons.
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