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The dynamic monitoring of aeolian 
desertification land distribution and 
its response to climate change in 
northern China
Lili Feng, Zhiqing Jia & Qingxue Li

Aeolian desertification is poorly understood despite its importance for indicating environment change. 
Here we exploit Gaofen-1(GF-1) and Moderate Resolution Imaging Spectroradiometer (MODIS) data 
to develop a quick and efficient method for large scale aeolian desertification dynamic monitoring in 
northern China. This method, which is based on Normalized Difference Desertification Index (NDDI) 
calculated by band1 & band2 of MODIS reflectance data (MODIS09A1). Then we analyze spatial-
temporal change of aeolian desertification area and detect its possible influencing factors, such as 
precipitation, temperature, wind speed and population by Convergent Cross Mapping (CCM) model. It 
suggests that aeolian desertification area with population indicates feedback (bi-directional causality) 
between the two variables (P < 0.05), but forcing of aeolian desertification area by population is weak. 
Meanwhile, we find aeolian desertification area is significantly affected by temperature, as expected. 
However, there is no obvious forcing for the aeolian desertification area and precipitation. Aeolian 
desertification area with wind speed indicates feedback (bi-directional causality) between the two 
variables with significant signal (P < 0.01). We infer that aeolian desertification is greatly affected by 
natural factors compared with anthropogenic factors. For the desertification in China, we are greatly 
convinced that desertification prevention is better than control.

Desertification is a type of land degradation in which a relatively dry land region becomes increasingly arid, 
typically losing its bodies of water as well as vegetation and wildlife. It is caused by a variety of factors, such as 
climate change and human activities1. Meanwhile aeolian desertification is the most important desertification 
type in China with serious environmental and socioeconomic problems in arid, semi-arid, and dry sub- humid 
zones. Continuous aeolian desertification has a serious influence on the biosphere. It is also highly related to 
issues such as declining productivity, biodiversity loss, land degradation, and declining ecosystem services2–6. 
Many studies showed that desertification was resulting from various processes and reasons including natural and 
anthropogenic factors7–11. Here we used Convergent Cross Mapping (CCM) model to explore the causality of 
aeolian desertification. The result shows that natural factors are the primary reason for aeolian desertification in 
northern China during the past 15 years.

In China, desertification area survey was conducted once every five years since 1994. Desertification lands 
occupy an area about 2.61 million km2 and spread across 18 provinces accounting for 27.20% of the country’s 
land area by 201412. This survey takes a lot of manpower, material and financial resources with a lack of sequen-
tial dynamic monitoring. In this study, a remote sensing method was used to obtain the aeolian desertification 
land distribution in northern China. A new spectral index called Normalized Difference Desertification Index 
(NDDI) derived from MODIS surface reflectance data was used to acquire the aeolian desertification land dis-
tribution. Results will provide a basis for combating desertification. In northern China, natural vegetation is 
being transformed into agricultural lands at a faster rate, endangering ecosystem services and increasing soil-loss 
potential, which may trigger land degradation. This region is sensitive to climate change and human intervention. 
It becomes an original region of sandstorms. To alleviate the multifaceted environmental degradation, Chinese 
government has implemented several ecological restoration programs that have deeply affected the structure and 
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function of grassland ecosystems. Understanding desertification processes and causes are important to provide 
reasonable and effective control measures for preventing desertification. The study area of this paper is located 
in northern China (31°09′ N- 53°23′ N, 73°40′ E- 126°04′ E) (Fig. 1). It includes Xinjiang Uyghur Autonomous 
Region, Qinghai Province, Gansu Province, Ningxia Hui Autonomous Region and Inner Mongolia Autonomous 
Region with eight famous deserts in China. Generally, a semi-arid or desert climate prevails in Xinjiang. The 
entire region is marked by great seasonal differences in temperature. This region includes Gurban Tunggut 
Desert, Taklamakan Desert and Kumtag Desert. Qinghai has quite cold winters, mild summers, and a large diur-
nal temperature variation. Significant rainfall occurs mainly in summer, while precipitation is very low in winter 
and spring, and is generally low enough to keep much of the province semi-arid or arid. This region includes 
Qaidam Basin Desert. Gansu generally has a semi-arid to arid continental climate with warm to hot summers 
and cold to very cold winters. Most of the limited precipitation is delivered in the summer months. This region 
includes Badain Jaran Desert, Tengger Desert and Kumtag Desert. Ningxia Hui Autonomous Region has a con-
tinental climate with average summer temperatures rising to 17 to 24 °C in July and average winter temperatures 
dropping to between − 7 to − 15 °C in January. Annual rainfall averages from 190 to 700 millimetres, with more 
rain falling in the south of the region. This region includes Tengger Desert in Shapotou. Inner Mongolia has a 
wide variety of regional climates. The winters in Inner Mongolia are very long, cold and dry. The spring is short, 
mild and arid, with large, dangerous sandstorms, whilst the summer is very warm to hot and relatively humid 
except in the west where it remains dry. Autumn is brief and sees a steady cooling, with temperatures below 0 °C 
reached in October in the north and November in the south. It includes Badain Jaran Desert, Tengger Desert, 
Kubuqi Desert and Ulan Buh Desert.

Results
Automatic monitoring of aeolian desertification land. Taking a part of GF-1 data as the experimental 
data (Fig. 2), three fusion algorithms as commonly used in the image fusion experiments were applied. Mean 
and standard deviation values of fusion image using multiplicative algorithm are far from raw image (Fig. 3a,b).  
Entropy and correlation coefficient values of fusion image using PCA algorithm are greater than Brovey 
Transform (Fig. 3c,d). It shows that Principal Component Analysis (PCA) image fusion algorithm is the best 
choice for GF-1 data fusion (Table 1). Then PCA image fusion algorithm was finally used on entire GF-1 data.

GF-1 remote sensing image was classified by Support Vector Machine (SVM) classification algorithm. The 
main land cover type obtained by this algorithm is shown in Fig. 4. Results show that the SVM classification algo-
rithm can meet the precision requirements based on visual interpretation of GF-1.

It is a problem to achieve the combination of high and low resolution remote sensing data. In this study, the 
first step was to establish a 1 km ×  1 km grid frame (consistent with the resolution of re-sampled MODIS) with 
vector format and each grid was identified with a unique identity (Fig. 4). The second step was to use this frame to 
respectively perform statistical analysis for SVM classification result by GF-1 data in each grid. Finally, calculate 
the proportion of each land use type in each grid frame. Taking the proportion of aeolian desertification area was 
greater than 70% as the pure pixel for aeolian desertification land, the proportion of vegetation (others) area was 
greater than 90% as the pure pixel for vegetation (others). Then changes of reflectance values for different land use 
types were acquired. Total correlation index(r) value of all types between band1 and band2 was the lowest. Band1 
and band2 exhibited a large disparity in their spectral responses of different land covers. So these two bands were 
used to derive Normalized Difference Desertification Index (NDDI) in this study.

Aeolian desertification area was extracted through above-mentioned method by using GF-1data. Mean value 
of MODIS-NDDI time series curves for different land use types are shown in Fig. 5. Filtered MODIS-NDDI time 
series curve of aeolian desertification land is shown in Fig. 6.

Mean Absolute Distance (MAD)13 was used to compare the MODIS-NDDI time series image of aeolian deser-
tification land with the MODIS-NDDI image of the study area for each pixel. A lower image value illustrated a 
closer MAD, which indicated a greater possibility of aeolian desertification. A threshold was set on the MAD 

Figure 1. Location of study area generated from ArcGIS 9.3 software developed by ESRI (Environmental 
Systems Research Institute). ArcGIS 9.3 software was downloaded from http://arcmap.software.informer.
com/9.3/. It includes Xinjiang Uyghur Autonomous Region, Qinghai Province, Gansu Province, Ningxia Hui 
Autonomous Region and Inner Mongolia Autonomous Region with eight famous deserts in China.

http://arcmap.software.informer.com/9.3/
http://arcmap.software.informer.com/9.3/
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map based on the prior knowledge, by considering the official data of aeolian desertification area. The difference 
between the estimated aeolian desertification area and the official data was smallest when the threshold value is 
0.051. In this study, a p-tile algorithm was adopted for threshold selection14. Aeolian desertification distribution 
of northern China in 2001 to 2015 is shown in Fig. 7. The eolian desertification land area estimated from MODIS 
and investigation data are shown Table 2.

Factor analysis. Generally, desertification means the ratio of annual precipitation to potential evapotran-
spiration falls within the range from 0.05 to 0.65; and evapotranspiration is highly related to temperature. Wind 
is the power of desertification. Meanwhile, population is one of the most important anthropogenic factors of 
desertification. So temperature, precipitation and wind speed as the natural factors and population as the anthro-
pogenic factor in combination of CCM model were used to analyze cause-and-effect relationship in this study 
(Fig. 8).

Based solely on the relationship between library length and Pearson correlation coefficient, results for this 
CCM test suggest that aeolian desertification area with population indicates feedback (bi-directional causality) 
between the two variables (P <  0.05; Fig. 9a), but forcing of aeolian desertification area by population is weak. 
Based on the same diagnostic tests as we used above, we find aeolian desertification area is significantly affected 
by temperature, as expected (Fig. 9b). However, there is no obvious forcing for the aeolian desertification area and 
precipitation (Fig. 9c). Aeolian desertification area with wind speed indicates feedback (bi-directional causality) 
between the two variables with significant signal (P <  0.01; Fig. 9d).

Discussion
Land degradation and desertification has been ranked as a major environmental and social issue in the com-
ing decades in China. It has received a great attention, especially the northern China. Desertification area in 
China has increased since the 1950s and reached its maximum during the 1970s and early 1980s. Since then 

Figure 2. Image fusion results of GF-1 data based on three commonly used algorithms generated from 
ArcGIS 9.3 software developed by ESRI (Environmental Systems Research Institute) and ERDAS IMAGINE 
9.1 software developed by Leica Geosystems Geospatial Imaging, LLC. ArcGIS 9.3 software was downloaded 
from http://arcmap.software.informer.com/9.3/. ERDAS IMAGINE 9.1 software was downloaded from http://
erdas-imagine.software.informer.com/9.1/. The result shows that Principal Component Analysis (PCA) image 
fusion algorithm is the best choice for GF-1 data.

http://arcmap.software.informer.com/9.3/
http://erdas-imagine.software.informer.com/9.1/
http://erdas-imagine.software.informer.com/9.1/
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desertification area has decreased continuously to the present15–17. It suggests that reforestation/afforestation policy  
has played a significant role in controlling the desertification in China. Small field experiments prove that veg-
etation in desertified/degraded land could recover if isolated from human activities. Since 1998, natural recov-
ery has become one powerful national force to prevent land desertification and recover natural vegetation17, so 
anthropogenic factors are not the main factor exacerbating the desertification distribution during 2001 to 2015 in 
northern China. Numerous scientists have claimed that land desertification in China is primarily due to human 
impacts. Wang et al.15 suggested that desertification in China has been primarily caused by climate change15. We 
also believed that desertification in northern China is mainly controlled by natural factors during the past 15 
years. In addition, although overall land desertification area decreases year by year, desertification situation in 
some regions shows the worsened tendency, such as regions around rivers and lakes. We must pay more attention 
to environment deterioration of rivers, lakes and the nearby areas in the future. In this study, the proposed NDDI 
is able to obtain the aeolian desertification land distribution on a large scale and assess the aeolian desertification 
area variability simply and effectively. The results show that aeolian desertification area with population indicates 

Figure 3. Parameter values change for different fusion algorithms. Mean and standard deviation values of 
fusion image using multiplicative algorithm are far from raw image. Entropy and correlation coefficient values 
of fusion image using PCA algorithm are greater than Brovey Transform.

Evaluation Indexes Fusion method Band1 Band2 Band3 Band4

Mean

Raw multispectral image 401.69 509.26 485.89 421.18

PCA 304.13 357.76 324.97 377.71

Multiplicative 183197.55 233098.74 222776.04 191002.31

Brovey Transform 163.55 155.58 137.56

Standard deviation

Raw multispectral image 61.94 95.99 102.44 53.69

PCA 38.72 59.23 61.76 52.82

Multiplicative 49340.83 69639.47 70646.69 44755.76

Brovey Transform 25.89 26.74 28.55

Entropy

Raw multispectral image 6.52 6.74 6.89 6.28

PCA 6.24 6.30 6.26 6.64

Multiplicative 6.94 6.98 7.04 6.62

Brovey Transform 5.89 6.50 5.89

Correlation coefficient

PCA 0.712404 0.710485 0.716641 0.933822

Multiplicative 0.913198 0.932240 0.937543 0.833164

Brovey Transform 0.703736 0.778586 0.651411

Table 1.  Comparison of different fusion algorithms.
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feedback (bi-directional causality) between the two variables (P <  0.05). Forcing of aeolian desertification area 
by population is weak (P =  0.046). However, aeolian desertification area forcing population has more significant 
signal (P =  0.02). In fact, land desertification in northern China is affected by anthropogenic factors with small 
fluctuation. Once the land desertification happens, it will bring population migration with population growth 
pressure around desertification regions. Based on the same diagnostic tests as we used above, we find aeolian 
desertification area is significantly affected by temperature, as expected. However, there is no obvious forcing for 
the aeolian desertification area and precipitation. We supposed several situations about this: (i) there is a small 
fluctuation for the precipitation in northern China during the past 15 years, so we derived no obvious causal-
ity; (ii) precipitation is not the root cause of land desertification. Aeolian desertification area with wind speed 
indicates feedback (bi-directional causality) between the two variables with significant signal (P <  0.01). In con-
clusion, we infer that aeolian desertification is greatly affected by natural factors compared with anthropogenic 
factors. From the result, aeolian desertification area covers a large area in northern China threatening human 
life. If the desertification land area continues to grow, it will reduce the habitable zone and lead to a large number 
of population migration and growth18. It is also a big dust origin in northern China. For the desertification in 
China, we are greatly convinced that desertification prevention is better than control. We should pay more atten-
tion to the impact of climate change on the desertification distribution. Further, there are still many challenges 
in estimation of eolian desertification land area. The simulation time only chooses 15 years (2001–2015), and 

Figure 4. Boundary of GF-1 data and classification result generated from ArcGIS 9.3 software developed 
by ESRI (Environmental Systems Research Institute). ArcGIS 9.3 software was downloaded from http://
arcmap.software.informer.com/9.3/. The raw GF-1 image is shown on the left; classification image is shown on 
the right.

Figure 5. MODIS-NDDI time series curves of different land use types. These time series curves are based on 
the classification result of GF-1 data and time series curves of MODIS- NDDI.

http://arcmap.software.informer.com/9.3/
http://arcmap.software.informer.com/9.3/
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limited impact factors including precipitation, temperature, wind speed and population were used to analyze 
the cause-and-effect relationship. More field survey data in combination of more high spatial resolution images 
should also be adopted in the further research.

Figure 6. MODIS-NDDI time series curves of aeolian desertification land. Thin line is the raw MODIS-
NDDI time series curve of aeolian desertification land; thick line is the filtered time series curve of aeolian 
desertification land using Savitzky-Golay algorithm to reduce noise.

Figure 7. Aeolian desertification land distribution in northern China generated from ArcGIS 9.3 software 
developed by ESRI (Environmental Systems Research Institute) and ERDAS IMAGINE 9.1 software 
developed by Leica Geosystems Geospatial Imaging, LLC. ArcGIS 9.3 software was downloaded from http://
arcmap.software.informer.com/9.3/. ERDAS IMAGINE 9.1 software was downloaded from http://erdas-
imagine.software.informer.com/9.1/. Yellow parts are the aeolian desertification land distribution regions.

http://arcmap.software.informer.com/9.3/
http://arcmap.software.informer.com/9.3/
http://erdas-imagine.software.informer.com/9.1/
http://erdas-imagine.software.informer.com/9.1/


www.nature.com/scientificreports/

7Scientific RepoRts | 6:39563 | DOI: 10.1038/srep39563

Methods
In this study, the main processes to effectively estimate aeolian desertification land distribution include: (1) two 
aeolian desertification sensitive bands (band1 and band2) of MODIS09A1 were selected to calculate Normalized 
Difference Desertification Index (NDDI); (2) standard image of aeolian desertification land was generated by 
mean MODIS-NDDI time series curve of aeolian desertification land; (3) Mean Absolute Distance(MAD) was 
calculated between the MODIS-NDDI time series image and the standard image of aeolian desertification land; 
(4) aeolian desertification distribution from 2001 to 2015 was obtained; then spatial-temporal change of aeolian 
desertification area and its possible influencing factors were analyzed, such as precipitation, temperature, wind 
speed and population by Convergent Cross Mapping (CCM) model.

MOD09A1 data. MOD09A1 data were downloaded for tiles h25v03, h26v03, h23v04, h24v04, h25v04, 
h26v04, h27v04, h23v05, h24v05, h25v05, h26v05 (h for horizontal, v for vertical) from 2001 to 2015 from the 
National Aeronautics and Space Administration (NASA) (http://earthdata.nasa.gov/). It provides eight days com-
posite with a 500 m spatial resolution data. The red bands such as band1 (620–670 nm), near-infrared bands such 
as band2 (841–876 nm), blue bands such as band3 (459–479 nm), green bands such as band4 (545–565 nm) of 
MODIS for each date and tile were extracted, mosaicked, clipped to the extent of study area and resampled to 
1000 m resolution data.

Gaofen-1 (GF-1) data. Gaofen-1(GF-1) was launched on April 26, 2013 from the Jiuquan Satellite Launch 
Center. The civilian High-Definition Earth Observation Satellite (HDEOS) program was proposed in 2006 and 
received approval in 2010. Gaofen-1 is the first of six planned HDEOS spacecraft to be launched between 2013 
and 2016. The satellite’s primary goal is to provide Near-Real-Time (NRT) observations for disaster prevention 
and relief, climate change monitoring, geographical mapping, environmental and resource surveying, as well as 
precision agriculture support. The GF-1 multispectral data have four bands with spatial resolution of 8 m and 
panchromatic data with spatial resolution of 2 m. Data fusion and geometric correction was carried using ERDAS 
software with multispectral and panchromatic data of GF-1.

Meteorology and population data. Temperature, precipitation and wind speed data of 42 stations and 
population data of 41 counties from 2001 to 2015 in northern China were collected from the National Climatic 
Data Center and Statistics Division of China. Mean temperature, precipitation and wind speed data of each 

Year
Aolian Desertification Land 

Area Estimation (Km2)
Aolian Desertification Land 

Area Investigation (Km2) Relative Error (%)

2004 1714806 ~1726700 ~0.69

2009 1758942 ~1706700 ~3.06

2014 1724094 ~1701600 ~1.32

Table 2.  Aolian desertification land area estimated from MODIS and investigation data.

Figure 8. Possible influencing factors for desertification in northern China. Three-dimensional image 
generated from ArcGIS 9.3 software developed by ESRI (Environmental Systems Research Institute). ArcGIS 
9.3 software was downloaded from http://arcmap.software.informer.com/9.3/. Desertification means the 
ratio of annual precipitation to potential evapotranspiration falls within the range from 0.05 to 0.65; and 
evapotranspiration is highly related to temperature. Wind is the power of desertification. Meanwhile, 
population is one of the most important anthropogenic factors of desertification.

http://earthdata.nasa.gov/
http://arcmap.software.informer.com/9.3/
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county from 2001 to 2015 were used in this study (Fig. 10). And 33 fieldwork investigation points as interpreta-
tion key were used to perform SVM classification for GF-1 data.

SVM classification. SVM is a range of classification and regression algorithm that has been formulated from 
the principles of statistical learning theory developed by Vapnik19. This type of classification method for remote 
sensing images has many advantages. The most direct advantages are that the internal structure is uniform, the 
boundaries between different categories are more obvious, and the classification accuracy is improved20–22. In this 
study, the kernel type is polynomial and the degree of kernel polynomial is two for the SVM algorithm.

Normalized Difference Desertification Index (NDDI) calculation. In order to effectively monitor 
aeolian desertification distribution, band1 and band2 of MODIS were selected to calculate NDDI using the fol-
lowing equation23.

Figure 9. Predictive-skill curves based on Pearson correlation coefficients for convergent cross-mapping 
of aeolian desertification land area with the possible influencing factors. Dotted lines on either side of the 
predictive-skill curves represent the ± standard deviation of estimate assessed from bootstrapping based on 
1000 iterations. Convergent cross-mapping is based on procedures written in the R-programming language 
initially developed by Clark et al.25. Pearson correlation coefficient represents the correlation between two 
variables. Library length is the number of historical observations, including observation time and number of 
spatial replicates included in the composite time series24,25.
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NDDI MODIS MODIS
MODIS MODIS
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Where NDDI is the Normalized Difference Desertification Index; MODIS1 is band1 of MODIS; MODIS2 is band2 
of MODIS.

Mean Absolute Distance (MAD) calculation. Mean Absolute Distance (MAD) was calculated by the 
equation (2).

∑= −
=

d̄
m

x x1
(2)ij

k k

n

ik jk
1

Where i is the line number of the pixel, j is the column number of the pixel, d̄ij  is the MAD, mk is the number of 
pixels in the k serie, xik and x jk are the image values in the k serie, and n is the total number of MODIS-NDDI time 
series (n =  46).

Convergent cross mapping (CCM) model. Convergent cross mapping (CCM) model is a statistical test 
for a cause-and-effect relationship between two time series variables that, like the Granger causality test, seeks to 
resolve the problem that correlation does not imply causation. While Granger causality is best suited for purely 
stochastic systems where the influences of the causal variables are separable (independent of each other), CCM is 
based on the theory of dynamical systems and can be applied to systems where causal variables have synergistic 
effects. The test was developed in 2012 by the lab of George Sugihara of the Scripps Institution of Oceanography, 
La Jolla, California, USA24.
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