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Integrating Information in 
Biological Ontologies and 
Molecular Networks to Infer  
Novel Terms
Le Li1 & Kevin Y. Yip1,2,3,4

Currently most terms and term-term relationships in Gene Ontology (GO) are defined manually, which 
creates cost, consistency and completeness issues. Recent studies have demonstrated the feasibility of 
inferring GO automatically from biological networks, which represents an important complementary 
approach to GO construction. These methods (NeXO and CliXO) are unsupervised, which means 1) they 
cannot use the information contained in existing GO, 2) the way they integrate biological networks may 
not optimize the accuracy, and 3) they are not customized to infer the three different sub-ontologies of 
GO. Here we present a semi-supervised method called Unicorn that extends these previous methods 
to tackle the three problems. Unicorn uses a sub-tree of an existing GO sub-ontology as training part to 
learn parameters in integrating multiple networks. Cross-validation results show that Unicorn reliably 
inferred the left-out parts of each specific GO sub-ontology. In addition, by training Unicorn with an old 
version of GO together with biological networks, it successfully re-discovered some terms and term-
term relationships present only in a new version of GO. Unicorn also successfully inferred some novel 
terms that were not contained in GO but have biological meanings well-supported by the literature.
Availability: Source code of Unicorn is available at http://yiplab.cse.cuhk.edu.hk/unicorn/.

Gene Ontology (GO)1 is the most widely-used biological ontology. It systematically summarizes current knowl-
edge of gene products and their relationships across a wide range of species. GO contains standardized terms in 
three sub-categories, namely biological processes (BP), cellular components (CC), and molecular functions (MF). 
These terms are organized hierarchically in directed acyclic graphs (DAGs), which are tree-like structures that 
allow a node to have multiple parents, corresponding to the specialization of a term from multiple general terms. 
A gene can be annotated by multiple GO terms. If a gene is annotated by a GO term, it is also annotated by all its 
ancestral terms automatically. GO has been extensively used in various applications, such as assessing functional 
similarity of genes2–4, predicting gene functions5–7, and interpreting biological data8–10.

Most of the term-term relationships in GO are defined manually, assisted by text-mining of the literature. 
There are several limitations to this manual curation process. First, with the rapid expansion of biological knowl-
edge, both the number and complexity of biological publications have become difficult to handle even with the 
help of text-mining. Second, the same biological concept can be described in different ways in different publi-
cations, which creates a challenge for different curators to represent the concept in a consistent manner. Finally, 
there is considerably more research on a subset of well-studied genes and their relationships, leading to unbal-
anced levels of detail in different parts of GO.

One complementary approach to GO construction is to infer terms and term-term relationships automatically 
from biological networks. This approach is attractive given the large amount and variety of network data already 
available, and the relative low cost of creating new networks and expanding existing ones using high-throughput 
experimental methods. The feasibility of inferring GO automatically from biological networks has been recently 
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demonstrated11. In this study, a method called Network-eXtracted Ontology (NeXO) was proposed to cluster 
genes hierarchically based on their connections in the networks and subsequently transform the resulting clus-
tering tree into a DAG. By using four types of molecular networks as input, NeXO was able to recover around 
40% of the terms in GO based on an alignment of the terms in the NeXO and GO DAGs. Later, another method 
called Clique eXtracted Ontology (CliXO) was proposed to further improve the accuracy of the automatically 
constructed ontology12. This method identifies cliques of different sizes in an integrated biological network by 
progressively loosening the stringency for an edge to be drawn between two genes in the networks. Each iden-
tified clique forms a term that annotates the composing genes, and a new term becomes a parent of an existing 
term if the clique corresponding to the new term is a superset of the existing term. A major novelty of CliXO was 
its ability to use quantitative measures in the biological networks, such as the confidence score of the existence 
of an edge, in the ontology inference process. The best DAG constructed by CliXO achieved about 40% in both 
precision and recall when compared to the actual GO DAG.

These two studies clearly show that existing biological networks, though incomplete and noisy, contain use-
ful information that can be used to automatically infer GO with a reasonable accuracy. On the other hand, one 
limitation of both NeXO and CliXO is that they infer DAGs purely based on the input network (either a single 
biological network or a network integrated from multiple biological networks), which implies that 1) they are 
unsupervised methods that cannot make use of the information contained in the existing GO, 2) the way of 
integrating the biological networks is not guaranteed to optimize the accuracy of ontology construction, and 3) 
given a fixed set of input networks, both methods cannot infer different DAGs specifically for the three different 
sub-ontologies of GO.

Here we extend these previous works by describing a semi-supervised method called Unicorn (Unification of 
Discordant Networks), which integrates multiple biological networks in a way tailored for inferring a particular 
sub-ontology of GO. The key idea is that each existing GO sub-ontology contains parts that are highly accurate 
and complete, which can be used as a training set to find out the best way to integrate biological networks for 
inferring the whole sub-ontology. The resulting DAG inferred by Unicorn is then expected to supplement parts 
of the sub-ontology not as well constructed. By using training data from a particular sub-ontology, the way to 
integrate the biological networks is specific to this sub-ontology. Unicorn is semi-supervised because it considers 
both the training part of GO and the natural distribution of edge weights in the biological networks during data 
processing and integration.

One major challenge of integrating different biological networks is their different distributions of edge weights 
and semantics, such as expression correlations in a co-expression network and similarity scores in a functional 
network. Unicorn uses a novel discretization procedure to turn edge weights into nominal values such that they 
are highly correlated with the gene-gene similarity values based on the training set of the GO sub-ontology. The 
resulting discretized values in the different networks can then be integrated easily.

We tested Unicorn by 1) evaluating its accuracy on left-out parts of the GO sub-ontologies not involved in 
training, 2) constructing a DAG by using an old version of GO for training, and comparing the newly discovered 
terms with a new version of GO, and 3) surveying the literature for supports of novel terms discovered by Unicorn 
that are not in existing GO. These tests showed that Unicorn can construct specific GO sub-ontologies accurately 
and identify biologically meaningful new terms.

One recent study has also engaged multiple biological networks to infer gene ontology in a supervised man-
ner13. Our work is fundamentally different from it in that the method in this study does not attempt to find 
the optimal way to integrate networks, that it assumes edge weights in different networks can be combined 
in a straightforward manner, that it does not discover novel terms, and that it cannot be evaluated using a 
training-testing procedure. Another recent study has attempted to extend existing GO by using biological net-
works14, but the method cannot infer GO automatically. Finally, there is a method that groups related terms based 
on genes that they annotate15, which can also discover term-term relationships as we do, but does not aim at 
inferring novel terms or constructing the ontology.

In the followings we describe the details of Unicorn and the empirical tests we have performed using data 
from S. cerevisiae.

Methods
The overall pipeline of Unicorn for integrating multiple biological networks and inferring a GO sub-ontology is 
illustrated in Fig. 1. There are seven main steps, the details of which will be given in the corresponding sections 
below. Step 1: A sub-tree of a GO sub-ontology is selected as the training part. Step 2: For every pair of genes both 
annotated by a term in the training part (a “training gene pair”), their similarity in the sub-ontology is computed 
based on a simplified version12 of the Resnik semantic similarity measure16. Step 3: For each biological network, 
the edges are filtered based on the ontological similarity values of the training gene pairs, with a goal of removing 
edges irrelevant to the GO sub-ontology. Step 4: The weights of the retained edges are discretized in a concerted 
manner such that the different networks can be easily integrated. Step 5: The discretized networks are integrated 
to maximize the correlation between the discretized edge weights in the integrated network and the ontological 
similarity values of the training gene pairs. Integrating networks in this way is expected to make the resulting edge 
weights of the gene pairs not in the training set (the “left-out gene pairs”) useful for inferring their ontological 
relationships. Step 6: The CliXO method12 is run on the integrated network to infer a DAG based on all the genes. 
Step 7: The terms in the inferred DAG and the actual DAG of the GO sub-ontology are aligned11 to evaluate the 
similarity of the two DAGs based on the left-out gene pairs, and to discover novel terms in the inferred DAG.

The first 5 steps are novel to Unicorn, at the end of which a single integrated biological network is created and 
supplied as the standard input to CliXO. The semi-supervised nature of Unicorn allows it to make good use of the 
information in existing GO as compared to CliXO (Table S1).
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Selection of training part (Step 1). There are two key considerations when choosing the training part 
from a GO sub-ontology, namely 1) the size of it should be big enough to capture sufficient information for 
guiding the network filtering, discretization and integration steps, and 2) the left-out part should not be too frag-
mented for otherwise it would be difficult to have terms in the inferred ontology that are not directly due to the 
training part, thereby making it hard to evaluate the effectiveness of Unicorn objectively. Consequently, for each 
GO sub-ontology, we select every sub-tree with a root between the 2nd and 5th levels as a training part, and use 
each of them to infer a DAG in turn.

Filtering edges in biological networks (Steps 2 and 3). Existing biological networks contain a lot 
of interactions discovered by high-throughput experiments, including some low-confidence interactions that 
could be false positives. There are also interactions irrelevant to the target GO sub-ontology. To prevent these 
interactions from misleading the ontology inference process, previous studies have filtered them using arbi-
trary edge weight thresholds or requiring each network to have the same final number of interactions11,12. In 
our semi-supervised pipeline, we instead use the training part to determine an appropriate threshold for each 
network individually.

We first compute an ontological similarity value for each training gene pair. As in a previous study12, we define 
the similarity between two genes ga and gb by a simplified Resnik measure based on the training part of the target 
sub-ontology:

′ = = − | | | |s g g IC LCA G G( , ) ( ) log( / ), (1)a b ab LCA tot
def

ab

where LCAab is the lowest common ancestor term of genes ga and gb in the training part of the GO DAG, 
IC(LCAab) is its information content, | |GLCAab

 is the number of genes annotated by this lowest common ancestor 
term, and |Gtot| is the total number of genes annotated by the terms in the training part (the “training genes”). A 
normalized score between 0 and 1 is then defined by dividing the simplified Resnik score by its maximum possi-
ble value: =
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. Basically, if two genes are commonly annotated by a term that does not also 

annotate many other genes, they will receive a large similarity value based on this measure.
Gene pairs receiving a normalized score no less than a threshold ts are considered semantically similar. 

Throughout the whole study, we set ts to 0.3, which roughly corresponds to defining two genes as similar if they 
are commonly annotated by a term that annotates no more than 500 genes.

We then use these pairs of similar genes to filter the edges in each biological network (including both the train-
ing and left-out gene pairs), such that a large fraction of the retained edges are between semantically similar genes. 
Specifically, for each network, we retain only edges with an edge weight no smaller than a threshold tw, defined as 
the smallest value that leads to at least 50% of the retained training edges being semantically similar:
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Figure 1. The overall pipeline of Unicorn for integrating multiple heterogeneous networks and inferring 
a GO sub-ontology. In the matrix representation of each network, a darker color indicates a larger value. 
Diagonal entries are ignored by CliXO and are always set to 0. The colors of the matrix entries after Step 4 are 
the new edge weights after discretization (explained in Fig. S4).
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where wab is the weight of the edge between gene ga and gene gb in the network, T is the set of training gene pairs, 
and 𝟙 is the indicator function, i.e., 𝟙(true) =  1 and 𝟙(false) =  0. Assuming that the general relationships between 
network edge weights and ontological similarity values are the same for the training and left-out gene pairs, this 
filtering can effectively retain only the more relevant network edges in the left-out part for inferring the DAG of 
the sub-ontology. The reason to search for the smallest w that satisfies the requirement in Eq (2) is to retain as 
many edges in the network relevant to the GO sub-ontology as possible. To identify this tw, we set w to the largest 
edge weight in the whole network at the beginning, and progressively reduce it to the next largest edge weight 
until the requirement in Eq (2) is satisfied. To handle the issue that the requirement in Eq (2) sometimes cannot 
be satisfied, or can only be satisfied with an extremely large value of tw, if the percentage of semantically similar 
training gene pairs does not increase for 5 consecutive reductions of w, the value of w before these 5 reductions 
would be used as tw.

Unification of heterogeneous networks by discretizing edge weights (Step 4). Before the filtered 
networks can be integrated, one issue that we need to first handle is the very different distributions of edge weight 
values in these different networks. We have tried various standard ways to process these values, such as linearly 
scaling all edge weights to the range of 0 to 1. However, the resulting distributions of the different networks were 
still very different, and direct integration of these networks would place more emphasis on the networks with 
more edge weights closer to 1. On the other hand, methods such as quantile normalization destroy the original 
distribution of edge weights in each network and led to serious information loss.

We found a good strategy to unify these heterogeneous networks is to discretize the edge weights in each net-
work into comparable numbers of discrete levels, such that 1) the order of edges based on their original weights 
is respected, and 2) for the training gene pairs, the consistency between their discretized weights and ontological 
similarity values is maximized.

To achieve these two goals, we designed a novel discretization algorithm. Given a set of training gene pairs 
and a biological network, the algorithm searches for a discretization M of the edge weights (i.e., a mapping of the 
original edge weights to the discrete levels) such that the following objective function is minimized:
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In the objective function, d is the direction function defined as d(x, y) =  1 if x >  y, d(x, y) =  0 if x =  y and d(x, y)  
=  − 1 if x <  y. This objective function aims at minimizing the number of gene pairs that have different orders 
according to the discretized edge weight levels and according to their ontological similarity in the GO 
sub-ontology. Since in Step 6 of our pipeline CliXO is used to infer an ontology, and CliXO considers the order of 
edges in its clustering process rather than their absolute weights, our discretization procedure promotes gene 
pairs that are ontologically similar to be clustered earlier by CliXO.

We designed a searching algorithm to identify discretizations with a good objective score (Fig. S4). Initially, 
all training gene pairs are sorted based on their edge weights and random partition points are added to divide 
them into k (set to 200 by default) ordered levels, where gene pairs with the same edge weights must be put in the 
same level. The algorithm then repeatedly refines the levels by randomly either moving some top gene pairs of a 
level (i.e., gene pairs with the largest original edge weights) to the next higher level, or moving some bottom gene 
pairs to the next lower level. If the objective score is improved, the new discretization is kept; Otherwise, the dis-
cretization is kept with a probability that reduces over time (min{0.1/iteration_number, 0.001}), an idea similar to 
simulated annealing. The searching process stops after a maximum number of iterations (set to 10,000 by default), 
and the whole process is repeated multiple times using different random initial partitions. The discretization with 
the best objective score is then retrieved, and all edges in a level are given a new weight equal to the average of 
their original weights. Finally, some neighboring levels are combined to form 10–20 levels to avoid over-fitting in 
data integration step.

Integration of multiple biological networks (Steps 5 and 6). After discretizing the edge weights of 
each network individually, we integrate the networks by finding a linear combination of them that maximizes the 
Pearson correlation coefficient (PCC) with the semantic similarity values of the training gene pairs. Specifically, 
we find the coefficient vector a that maximizes PCC(Mat, s) subject to the constraint that ∑ == a 1i

N
i1 , where N is 

the total number of merged discrete levels in the different networks, M is a |T| ×  N matrix of discretized edge 
values of the |T| training gene pairs, and s is a vector of the ontological similarity values of these training gene 
pairs. Each column in matrix M corresponds to one merged discrete level of one of the networks. Element (i, j) 
takes the value of the discretized edge weight of gene pair i if it belongs to the level represented by j, or 0 
otherwise.

Since this optimization problem is a special case of canonical correlation analysis (CCA)17 for finding the most 
correlated linear combinations of two sets of variables, we use a standard routine for CCA in Matlab to determine 
the coefficients a.

After this step, all the biological networks are integrated into a single network with a new edge weight assigned 
to every (training and non-training) edge. This integrated network is then used as the input of CliXO to infer 
a DAG in which each node is formed by a cluster of genes and corresponds to a potential term in the target 
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sub-ontology. CliXO is a hierarchical clustering method for grouping genes into potential terms. It starts by 
treating each gene as a node. Different nodes are merged to form a parent node of them if the genes contained in 
these nodes all have a similarity higher than a threshold with each other, where gene-gene similarity is defined 
based on the input biological network. If an edge is drawn between every two genes with a similarity higher than 
the threshold, each node is essentially a clique (i.e., a complete graph), which explains the name of the method 
(CliXO - Clique Extracted Ontology). The similarity threshold is set at a large value at the beginning, and is 
reduced progressively in rounds to allow more and more nodes to be merged together. CliXO also has additional 
steps to prune uninformative cliques and to allow for errors in the similarity values or imperfect cliques. These 
extra steps make the final output of CliXO not necessarily a tree, but a DAG in general.

Data and Experiment Settings (Step 7). Biological networks. We used four public yeast networks that 
had also been used for inferring GO in previous studies11,12, namely 1) correlation network of genetic interac-
tions from DRYGIN (http://drygin.ccbr.utoronto.ca/DOWNLOAD/sgadata_costanzo2010_correlations.txt.gz)18, 
co-expression network from Stanford Microarray Database (SMD)(Provided by Michael Kramer)19, probabilis-
tic functional gene network from YeastNet (v3)(http://www.inetbio.org/yeastnet/download.php?type= 1)20, and 
network of physical interactions (of types “direct interaction” and “physical association”) from BioGRID (http://
thebiogrid.org/downloads/archives/Release%20Archive/BIOGRID-3.3.122/BIOGRID-ORGANISM-3.3.122.
mitab.zip)21. We considered only genes with at least one GO annotation. Some statistics of the four resulting 
networks are given in Table S2.

Since the edges in the BioGRID network were binary, we used a diffusion kernel22 to produce numeric edge 
weights between 0 and 1, which resulted in larger weights for genes more (directly or indirectly) connected to 
each other.

Gene ontology definition and annotation files. We downloaded the gene ontology and annotation files from 
the Gene Ontology Web site (http://geneontology.org/). We processed these files in the same way as in previous 
studies11,12 (Supplementary materials).

We downloaded two versions of GO ontology and annotation files. The first version (Ontology: 2-Dec-2014; 
Annotation: 29-Nov-2014) was the most updated version at the time we started the project and downloaded the 
files, which will be referred to as the 2014 version. The second version (Ontology: 31-Mar-2009; Annotation: 
14-Mar-2009), which will be referred to as the 2009 version, represents an older version of GO that we used to test 
whether we could infer terms in the new version by combining the information in the old version and the biolog-
ical networks. Some statistics of these two GO versions are given in Table S3. In addition to these two versions, in 
the part of our work that studied novel terms inferred by Unicorn, we also checked whether some of these terms 
were included in the latest version of GO at the time of paper writing (Ontology: 31-May-2016). This version will 
be referred to as the 2016 version.

For the 2014 version of GO, using the criteria we defined for selecting training parts described in Section 
Selection of training part, we got 12, 12 and 9 training parts from BP, CC and MF, respectively.

Ontology alignment and performance evaluation. We used a slightly modified version (explained below) of the 
method described previously11 to align an ontology inferred by Unicorn with the actual GO sub-ontology. Briefly, 
a mapping of the terms in the two ontologies was produced to align highly similar terms based on the genes they 
annotate, with the constraints that 1) each term in the inferred ontology could be aligned to at most one term in 
the GO sub-ontology, and 2) the aligned term pairs could not crisscross. We used a false discovery rate of 5% as 
the cutoff to define a pair of terms to be aligned.

To objectively evaluate the performance of our inferred ontology using information not involved in the train-
ing process, we designed the following evaluation procedure (Fig. S1). Given a target GO sub-ontology OG and 
a chosen sub-tree of it OT, we first inferred an ontology OG′ from all genes using Unicorn with OT as the training 
part. Next, we considered only the genes annotated by terms in OT to infer another ontology OT′ using OT as the 
training part, and aligned it with OG′. For any term in OG′ aligned to a term in OT′, we considered it a term inferred 
due to information directly from the training part. Finally, we aligned OG′ and OG, and used only the aligned 
terms in OG′ not considered to be due to the training part to evaluate the performance of the inferred ontology. 
Specifically, if A(Ox, Oy) is the set of aligned term pairs from ontologies Ox and Oy, we defined Hit as the number 
of terms in OG′ aligned to OG but not due to the training part, i.e., Hit =  |{(tG′, tG) ∈  A(OG′, OG):tG ∉  OT ∧  ¬  ∃  tT′s.t.
(tG′, tT′) ∈  A(OG′, OT′)}|. Three performance metrics were then defined accordingly:

=
−′ ′ ′
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O A O O( , )

,
(4)G G T

=
−
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,
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− =
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+
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where |Ox| is the number of terms in an ontology x and |OG −  OT| is the set of terms in the GO sub-ontology not 
in the training part.

In the original alignment algorithm11, the similarity between two terms from the two ontologies is based on 
both the genes they annotate (their “intrinsic similarity”) and their parent and child terms (their “hierarchical 
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similarity”). In our case, when we aligned OG′ and OG, some of the parent/child terms were those considered 
to be due to the training part. In order to remove any effects of the training part in our performance evalua-
tion, we modified the alignment algorithm to consider only the intrinsic similarity between two terms in all our 
experiments.

Results
Edge filtering increased fraction of informative edges. In the filtering step of Unicorn (Step 3), some 
edges are removed such that among the training gene pairs with a retained edge, a larger fraction of them are 
informative (i.e., having an ontological similarity larger than threshold ts) after the filtering. We checked whether 
the filtering also increased the fraction of informative edges among the left-out genes as judged by their actual 
ontological similarity according to the GO sub-ontology (which was not disclosed to Unicorn). As shown in 
Table 1, indeed for all three GO sub-ontologies and all four biological networks, the filtering increased the frac-
tion of informative edges among left-out gene pairs, thus verifying the effectiveness of the filtering step.

Unicorn improved accuracy of ontology inference. We then checked the accuracy of ontology infer-
ence of Unicorn based on the left-out parts. CliXO contains two key parameters, namely α (for reducing noise by 
adding a margin to the similarity threshold when forming cliques) and β (for inferring missing edges by allowing 
near-complete graphs as new terms). We set β to 0.5 as previously suggested12, and varied the value of α such 
that each set of results contained points from one extreme (high precision, low recall) to the other extreme (high 
recall, low precision).

Figure 2 shows the overall F-measure of Unicorn as compared to running CliXO on individual networks and 
a simple benchmark method, averaging over the parameter values. In this benchmark method, the weight of an 
edge in the integrated network is simply the summation of its weight in the original networks, which assumes 
equal importance of the input networks. It is seen that when inferring BP, information from BioGRID was most 
useful followed by YeastNet. On the other hand, when inferring CC, YeastNet was most useful followed by 
DRYGIN and BioGRID. Finally, when inferring MF, YeastNet was most useful followed by BioGRID. These results 
indicate that the different networks should be integrated differently when inferring the three sub-ontologies. 
Indeed, a simple summation of the four networks led to improved F-measure only for CC but not in the cases 
of BP, MF and the overall average. On the other hand, by having a semi-supervised framework that processes 
and integrates the networks specific to the target GO sub-ontology, Unicorn was able to achieve better average 
F-measure values both when inferring each sub-ontology and averaging over all three sub-ontologies overall, as 
compared to using individual networks as input.

Figure 3 shows some examples of the comparison results in the form of precision-recall graphs. In each graph, 
each approach is represented by a curve joining different points that correspond to the results when running 
CliXO with different α values. The dotted curves in the background are contour lines that connect points with 

  DRYGIN SMD YeastNet BioGRID

 BP 
Before filtering 11.75% 19.20% 40.44% 40.39%

After filtering 47.79% 70.43% 67.84% 53.41%

 CC 
Before filtering 3.47% 7.17% 21.43% 26.75%

After filtering 41.38% 73.46% 59.62% 58.00%

 MF 
Before filtering 3.73% 5.46% 16.05% 13.42%

After filtering 15.66% 74.70% 57.23% 32.90%

Table 1.  Average fraction of informative edges in the biological networks among the left-out genes before 
and after edge filtering. These values were obtained by averaging over all the training parts of each sub-
ontology.

Figure 2. The average F-measures of CliXO with either Unicorn-produced integrated network, a single 
biological network, or a simple summation of the input networks. Each reported F-measure is the average 
among the results from all the training parts of one GO sub-ontology (in the case of “BP”, “CC” and “MF”) or 
across all three sub-ontologies (in the case of “Overall”), over all parameter values of CliXO.
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the same F-measure score. From the graphs, the left-out parts of the ontologies inferred by Unicorn have higher 
F-scores in general, as seen by their positions closer to the upper-right corner.

Figure 4 gives an example illustrating the importance of integrating the biological networks. It shows the 
ability of different networks in inferring the sub-tree of the CC sub-ontology rooted at the CC term GO:0000502 
(proteasome complex) when the sub-tree rooted at the term GO:0043226 (organelle) was used as the training 
part. As seen in the figure, while each individual network was sufficient to infer part of the sub-tree, only when 
the networks were integrated was it possible to infer all the terms.

Re-discovering terms in new version of GO by combining information in an old version of GO 
with biological networks. While the above results have confirmed the accuracy of Unicorn using left-out 
parts of GO not involved in the training process, the ultimate use of Unicorn is to infer novel terms not already 
contained in GO. The first way we attempted to test this possibility was to combine the information in the biolog-
ical networks and an old (2009) version of GO, to see if Unicorn could infer terms that were only in a new (2014) 
version of GO.

By running Unicorn with the 2009 version of GO as input, the inferred DAG contained nodes that could not 
be aligned to any term in this version of GO. Based on the CliXO procedure, each of these nodes contained a set 
of genes and was connected to other nodes in the inferred DAG. Each such node can therefore be considered a 
potential novel term that annotates these genes and are related to other existing terms in the 2009 version of GO 
based on their connections in the inferred DAG. We then aligned all the terms in the inferred DAG with the 2014 
version of GO, and found some of the nodes not aligned to the 2009 version of GO actually aligned to some nodes 
in the 2014 version. Specifically, we identified 3–19, 6–10 and 1–6 cases in BP, CC and MF, respectively for differ-
ent values of α when running CliXO. Figure 5 and Fig. S2 show some of the examples.

In these examples, we see that Unicorn is able to infer both general (upper-level) and specific (lower-level) 
terms present only in the 2014 version of GO. It is possible that some of the Unicorn-inferred terms that cannot 
be aligned to either the 2009 or 2014 version of GO (the ones in gray) are biologically meaningful novel terms. 
In fact, for some of them (the nodes in gray with GO term IDs) we actually find nodes in the 2016 version of GO 
connecting to the corresponding parent and child terms as in our inferred DAG. For the remaining novel terms, 
we further explore their potential meanings in the next section.

Figure 3. Ontology inference left-out accuracy of Unicorn and single biological networks. The training 
parts were the sub-trees rooted at GO:0051179 (localization), GO:0016020 (membrane) and GO:1901363 
(heterocyclic compound binding) for BP, CC and MF, respectively.

Figure 4. Ability to infer the sub-tree rooted at GO:0000502 (proteasome complex) by single biological 
networks and Unicorn with the sub-tree rooted at GO:0043226 (organelle) as the training part . The colors 
represent successfully inferred (red), missed (gray) and novel (yellow) terms and term-term relationships as 
compared to the 2014 version of GO.
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Discovery of biologically meaningful novel terms. Unicorn inferred a large number of novel terms not 
contained in either the 2009, 2014 or 2016 version of GO. To investigate their potential meanings, we extracted 
the list of genes annotated by them and looked for descriptions of these gene groups in the literature. Some exam-
ples with supports from the CYC 2008 protein complex database23 are shown in Fig. 6.

In the first example (Fig. 6a), Unicorn identified a sub-complex of the replication fork protection complex 
(GO:0031298) involving three proteins Csm3p, Mrc1p and Tof1p. These three proteins form the replication 
fork-pausing complex (FPC)24,25, which is associated with replication sites and prevents genomic instability 
through mediating checkpoint signaling in stationary-phase cells26.

In the second example (Fig. 6b), Unicorn identified a sub-complex of the peroxisomal importomer complex 
(GO:1990429) involving three proteins Pex2p, Pex10p and Pex12p. These three proteins form the RING fin-
ger peroxin complex27–29, which was considered to function in peroxisomal matrix protein import by recycling 
receptors27.

Six additional novel terms are shown in Fig. S3 and their literature supports are given in the supplement. We 
also provide on our supplementary Web site a list of unverified novel terms with either a parent or child term 
aligned to a GO term with score > 0.8.

Discussion
In this paper, we proposed a semi-supervised framework to integrate multiple biological networks for better 
automatic inference of Gene Ontology. The results based on the left-out parts of GO not involved in training con-
firmed the accuracy of the inferred ontologies. The better performance of Unicorn as compared to CliXO in some 
of the experimental results were due to the semi-supervised nature of Unicorn, which allowed it to integrate both 
the information in the biological networks and in the training part of GO. These training data helped Unicorn to 
1) determine the most relevant network edges to retain, 2) discretize network edges such that multiple heteroge-
neous networks can be easily integrated, and 3) determine the best way to integrate these networks by maximizing 
the correlation between the edge weights in the resulting integrated network and the ontological similarity of the 
training part. All these novel components contributed to the construction of an integrated network more suitable 
for CliXO to infer GO from.

We were also able to rediscover terms in a new (2014) version of GO based on information in an old (2009) 
version, and discover novel terms that were shown to be biologically meaningful. Unicorn can thus be used to 
propose new terms for further manual validation and curation.

We selected four biological networks in our study based on the successful use of them in inferring GO in some 
previous work11,12. We showed that these four networks contributed unequally, and for each GO sub-ontology 

Figure 5. Some terms inferred by Unicorn by combining the information in the biological networks and 
the 2009 version of GO. The colors represent terms and term-term relationships only present in the 2014 
version of GO but not the 2009 version (red), present in both the 2009 and 2014 versions of GO (blue), and 
absent in both the 2009 and 2014 versions of GO (gray), but present in the 2016 version. These two terms were 
all inferred from BP.

Figure 6. Some biologically meaningful novel terms inferred by Unicorn. In each panel, the terms on the 
right were inferred by Unicorn.
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the way to use them should be customized, which highlights the advantage of a supervised or semi-supervised 
approach as compared to previous unsupervised approaches.

It is useful to explore the integration of more types of biological network such as those based on the evolution-
ary relationships of the genes, and the possibility to apply Unicorn to other species and other types of biological 
ontology.

One of the main uses of GO is functional enrichment analyses. The DAGs constructed by Unicorn provide 
a putative set of terms potentially useful for explaining the functional relationships between some genes. An 
advantage of using these Unicorn-constructed terms is that the molecular basis of them can be easily traced back 
from the similarity of the genes in the integrated network, with the importance of each network indicated by its 
respective coefficient in the integration formula.
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