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Increased Fetal Thymocytes 
Apoptosis Contributes to Prenatal 
Nicotine Exposure-induced Th1/Th2 
Imbalance in Male Offspring Mice
Ting Chen*, You-e Yan*, Sha Liu, Han-xiao Liu, Hui-yi Yan, Li-fang Hou, Wen Qu & Jie Ping

Nicotine, a definite risk factor during pregnancy, is an immunomodulator. This study was designed 
to investigate the effects of prenatal nicotine exposure (PNE) on the balance of Th1/Th2 in offspring, 
and further explore the developmental origin mechanisms from the perspective of fetal thymocytes 
apoptosis. Pregnant Balb/c mice were administered 1.5 mg/kg nicotine subcutaneously twice per day 
from gestational day (GD) 9 to GD18. Results showed that PNE could cause a Th2 shift in male offspring, 
manifested as increased ratio of IgG1/IgG2a, IL-4 production in serum, and IL-4/IFN-γ expression ratio 
in spleen. Increased apoptosis of total thymocytes and CD4SP and reduced cell proportion of CD4SP 
were found in PNE male offspring on postnatal day (PND) 14 and PND 49. In the fetuses, decreased 
body weight and organ index of fetal thymus, histological changes in fetal thymus, reduced CD4SP 
proportion and increased fetal thymocyte apoptosis were observed in nicotine group. The increased 
mRNA expression of genes involved in Fas-mediated apoptotic pathway and protein expression of Fas 
were also detected. In conclusion, PNE could cause a Th2 shift in male offspring mediated by reduced 
CD4+ T cells output, which may result from the increasing apoptosis of total thymocytes and CD4SP.

Epidemiological studies showed that immune and inflammatory disorders had become a growing health problem 
worldwide1,2. In recent years, increasing evidence suggest that immune and inflammatory disorders may develop 
from in utero insults3. The exposure to adverse intrauterine environment had been shown to be associated with 
some immune diseases in offspring after birth, such as asthma. Prenatal tobacco smoke exposure is a definite 
risk factor for adverse intrauterine environment. During pregnancy, approximately 25~29% of pregnant women 
continued smoking and about half of reproductive-aged women were exposed to second-hand smoke4,5. Nicotine, 
the major alkaloid of tobacco, is thought to be the main toxic component harming health6. In addition, nicotine 
can easily cross the placental barrier because of its low molecular weight and high lipid solubility7. Both epidemi-
ological and experimental animal studies showed that the increased risks of adult immune diseases was related 
to prenatal tobacco smoke or nicotine exposure8,9. Therefore, prenatal nicotine exposure (PNE) is one of the risk 
factors for developmental origins of immune diseases.

The balance of helper T cell 1(Th1)/Th2 is necessary to maintain the immune homeostasis. The disruption of 
this balance is suggested to be one of the potential mechanisms of the immune dysfunction10. The body is prone 
to autoimmune diseases when there was a Th1 shift or increased Th1 cells secreting interferon-γ  (IFN-γ )11,12, and 
allergic diseases were susceptible due to a Th2 skewing. Studies showed that a Th2 skewing enhanced the suscep-
tibility of airway inflammation, bladder cancer or colorectal cancer and so on13–15. Moreover, it was reported that 
tobacco smoke and nicotine exposure during prenatal and postnatal life could alter the immune responses and 
cause a Th2 shift, which could increase the prevalence of wheezing during childhood16. Therefore, the imbalance 
of Th1/Th2 induced by PNE is closely related to the susceptibility to immune diseases in offspring. However, the 
underlying mechanism responsible for the intrauterine programming of Th1/Th2 skewing remains unclear.

The development of Th1 and Th2 were originated from thymocytes. The thymus is the earliest developed 
immune organ in fetus, and it is the primary site of T cell production. The normal development of thymus is 
essential to establish the competent immune function during the fetal and postnatal stage. Based on the 
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expression of cell surface markers CD4 and CD8, the differentiation progress of thymocytes can be divided into 
a series of stages: immature CD4−CD8− double negative cells (DN) differentiate into CD4+CD8+ double positive 
cells (DP), which then give rise to single positive cells (SP) that only express CD4 or CD817. After migrating out 
of the thymus, the mature native T cells differentiate into effector T cells (such as Th) under the stimulation of 
cytokines in periphery. Several studies showed that the abnormal development of the thymus, such as reduced 
output or changed proportion of phenotypes, could lead to the dysfunction of peripheral effector T cells18–20. 
Owing to the high lipid solubility, nicotine can be easily absorbed and accumulated in the fetus after crossing the 
placental barrier. The thymus is one of the toxic target organs of nicotine, and the development of thymocytes 
might be disturbed by nicotine. By using the fetal thymus organ culture (FTOC), researchers found that nicotine 
could increase immature thymocytes and decrease the mature thymocytes21. Furthermore, nicotine also could 
hamper the adhesion and growth of thymic epithelial cells22. Previously we had confirmed that tobacco smoke or 
nicotine exposure during middle and late pregnancy could lead to intrauterine growth retardation (IUGR)23. Lots 
of studies suggested that IUGR was accompanied by thymic hypoplasia, such as decreased total number of thy-
mocytes and percentages of CD4+SP and CD8+SP24. Thus we speculated that fetal thymic hypoplasia induced by 
PNE might be involved in mediating the abnormal immune responses of peripheral effector T cells in offspring.

Apoptosis is crucial during the development process of thymocytes. Increased apoptosis of thymocytes in 
fetal stage could reduce the output and change the phenotypes of thymocytes. Nicotine is an activator for nico-
tinic acetylcholine receptor (nAChR), which might regulate the development of thymocytes. Fetal thymocytes 
express multiple nAChRs. Studies showed that T cell nicotinic responsiveness occurred through α 7 subunit25. 
Researchers found nicotine interacted with α 7 nAChR, which might mimic TCR signals. And the thymocytes 
would be lost due to their lack of a TCR specific for self-MHC. So the interaction between nicotine and α 7 
nAChR could induce the apoptosis of thymocytes21. Fas was involved in the apoptotic signal pathway in T cells. 
In addition, nicotine could trigger an influx of extracellular Ca2+ following α 7 nAChR stimulation, which could 
activate the signaling pathway involved in Fas21. Therefore, we speculated that nicotine might impair the develop-
ment of fetal thymocytes by inducing the thymocyte apoptosis through α 7 nAChR/Fas pathway.

In this study, we investigated the effects of PNE on the development of fetal thymocytes and the balance of 
Th1/Th2 in male offspring after birth, and further explored the possible developmental origin mechanisms by 
detecting the thymocytes apoptosis and the gene expressions of apoptotic pathway in fetal thymus. The present 
study will provide evidence for elucidating the developmental toxicity of nicotine on fetal thymus and be condu-
cive to better understand the developmental origin of immune dysfunction in nicotine-exposed offspring.

Results
Results of offspring after birth. Developmental parameters of male offspring. Body weight is an impor-
tant index for development. The results showed that the body weights of male offspring in PNE group were lower 
than those of controls from postnatal day (PND)0 to PND49 (P <  0.01, P <  0.05, Fig. 1A,B), but the growth rates 
were higher compared with the control (P <  0.01, Fig. 1C).

Levels of IgG1, IgG2a and interleukin (IL)-4 in serum. In mice, Th1 immune responses produce IgG2a, and 
Th2 immune responses promote the production of IgG1. The ratio of IgG1/IgG2a is usually used to reflect the 
tendency of immune response. S. pneumoniae, belongs to T cell-dependent antigen, was used to induce the body 
to produce memory cells and IgG antibodies. The results showed that there were no changes in IgG1, IgG2a, the 
ratio of IgG1/IgG2a and IL-4 in serum before and after immunization with S. pneumoniae in control offspring 
(Fig. 2A–D). But in the PNE group, the levels of IgG2a were significantly decreased (P <  0.01, Fig. 2B), and levels 
of IgG1 and the ratio of IgG1/IgG2a were significantly increased (P <  0.01, Fig. 2A,C) when compared with the 
control after immunization. Moreover, the levels of IL-4 in serum of PNE male offspring were significantly higher 
than the controls both before and after immunization (P <  0.01, Fig. 2D).

The mRNA expression of IL-4 and interferon-γ (IFN-γ) in spleen on PND14 and PND49. As the specific cytokine 
for Th2 and Th1, the mRNA expression of IL-4 and IFN-γ  we detected in spleen. On PND14, the levels of IL-4, 
IFN-γ  mRNA expression and the ratio of IL-4/IFN-γ  in PNE male offspring were significantly higher compared 

Figure 1. Effects of prenatal nicotine exposure (PNE) from gestational day (GD) 9 to GD18 on body weight 
at postnatal day 0 (PND0), body weight and growth rate of male offspring from PND0 toPND49. (A) Body 
weight at PND0; (B) Changes of body weight in male offspring mice; (C) Body weight growth rate in male 
offspring mice. Mean ±  SD, n =  20. *P <  0.05, **P <  0.01 vs control.



www.nature.com/scientificreports/

3Scientific RepoRts | 6:39013 | DOI: 10.1038/srep39013

with the control (P <  0.01, P <  0.05, Fig. 2E–G). On PND49, the mRNA expression of IFN-γ  was significantly 
decreased (P <  0.01, Fig. 2I), the mRNA expression of IL-4 and the ratio of IL-4/IFN-γ  were significantly 
increased after immunization in PNE group (P <  0.01, Fig. 2H,J). However, there were no changes of the mRNA 
expression of IFN-γ  and the ratio of IL-4/IFN-γ  in the control after S. pneumoniae immunization (Fig. 2I,J).

Thymocyte phenotypes in offspring on PND14 and PND49. Because the immune responses in peripheral depend 
on the effector T cells, which mainly originate from thymocytes. We examined the thymocyte phenotypes 
at PND14 and PND 49. On PND14, the percentage of DP in PNE male offspring was significantly increased 
(P <  0.05, Fig. 3A,C). And the percentage of CD4SP showed a decreased tendency (P =  0.053, Fig. 3A,C) in PNE 
group. On PND49, as compared with the control, the percentages of DN and CD8SP were significantly decreased, 
and the DP was significantly increased (P <  0.05, P <  0.01, Fig. 3B,D). Moreover, the CD4SP had a decreasing 
trend in PNE group (P =  0.053, Fig. 3B,D).

Thymocyte apoptosis in male offspring on PND14 and PND49. Further, we detected thymocytes 
apoptosis to observe the correlation between apoptosis and phenotype. On PND14, the apoptosis percent-
ages of total thymocytes, DP, CD4SP and CD8SP in PNE male offspring were higher than those in the controls 
(Fig. 3E,G). On PND49, the apoptosis percentages of total thymocytes and each phenotype in PNE male offspring 
were also increased compared with the controls (P <  0.01, P <  0.05, Fig. 3F,H).

Results of fetus
Developmental parameters of fetus. The fetal body weight, fetal thymus weight and fetal thymus organ 
index in PNE group were significantly lower than those in control (P <  0.01, P <  0.05, Fig. 4A–C).

Histological changes in fetal thymus. Hematoxylin and eosin (HE) staining detection showed that 
there was obvious hemorrhage (red arrow) in PNE group, and the number of cells around the hemorrhage was 
decreased (black arrow) (Fig. 4E,G) compared with control (Fig. 4D,F). In addition, the boundary between cortex 
and medulla in PNE group is indistinct (blue arrow) (Fig. 4E).

Thymocyte phenotypes in fetus. As compared with the control, the percentages of DN and CD4SP in 
PNE group were significantly lower, and DP was significantly higher (P <  0.05, Fig. 5A,B). Moreover, the percent-
age of CD8SP had a decreasing trend (P =  0.051, Fig. 5A,B).

Figure 2. Effects of prenatal nicotine exposure (PNE) on the levels of IgG1, IgG2a, the ratio of IgG1/IgG2a, 
interleukin-4 (IL-4) in serum after S. pneumoniae immunization on PND49 and the mRNA expression 
of IL-4, interferon-γ (IFN-γ), expression ratio of IL-4/IFN-γ in the spleen in the male offspring on 
PND14 and PND49 after S. pneumoniae immunization. (A) Serum IgG1 concentration; (B) Serum IgG2a 
concentration; (C) Ratio of IgG1/IgG2a; (D) Serum IL-4 concentration in ; (E) Relative expression of IL-4 
mRNA on PND14; (F) Relative expression of IFN-γ  mRNA on PND14; (G) Ratio of IL-4 and IFN-γ  on PND14; 
(H) Relative expression of IL-4 mRNA on PND49; (I) Relative expression of IFN-γ  mRNA on PND49; (J) Ratio 
of IL-4 and IFN-γ  on PND49. Mean ±  SD, n =  6–10. *P <  0.05, **P <  0.01 vs control.
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Thymocyte apoptosis in fetus. The transmission electron microscope (TEM) and flow cytometry were 
used to analyze the apoptosis of fetal thymocytes. The results of TEM showed that the intercellular spaces among 
fetal thymocytes were larger in PNE group (Fig. 5D) compared with the control (Fig. 5C). The apoptotic cells in 
nicotine group showed incomplete nuclear membrane and condensed chromatin (Fig. 5F) when compared with 
normal cells (Fig. 5E). Flow cytometry analysis indicated that the apoptosis percentages of total thymocytes, DN 
and CD4SP in PNE group were increased compared with the controls (Fig. 5G,H). The results of three times rep-
etition were consistent with the above results.

The mRNA expression of apoptosis signaling pathway in fetal thymus. Further we detected the 
apoptosis pathway in fetal thymocytes. As compared with the control, the mRNA expression of α 7 nAChR in 
nicotine group had an increasing trend (P =  0.11, Fig. 6A). As we observed the increased apoptosis percentage 
of CD4SP, we detected Bcl-2 family member (Bim), which was associated with negative selection of thymo-
cytes. And the mRNA expression of Bim was significantly increased (P <  0.01, Fig. 6B). Furthermore, the mRNA 
expression of death receptor apoptosis pathway-related genes (Fas, FasL, caspase-8 and caspase-3) in PNE group 
were significantly higher than those in the controls (P <  0.01, Fig. 6C).

The protein expression of Fas in fetal thymocytes. The data from flow cytometry analysis indi-
cated that the mean fluorescence intensity of Fas in thymocytes of PNE fetus was higher than that in the control 
(Fig. 6D,E). The results represented in Fig. 6D,E were repeated three times.

Discussion
It is known that active or passive smoking is a risk factor during pregnancy, which was associated with numerous 
short-term or long-term effects on the offspring6. In the present study, we established PNE mice models, 1.5 mg/kg  
of nicotine twice a day was chosen. Somm et al. reported that 3 mg/kg/d of prenatal nicotine exposure via osmotic 
minipump resulted in circulating nicotine metabolite levels in gestating rats are similar to those found in smokers 
consuming 10–19 cigarettes daily and to those reported in pregnant women using nicotine patches as tobacco 
substitutes26–28. In addition, another research showed administration of nicotine at the dose of 6 mg/kg/day  
produces plasma levels at the upper limit of those achieved in heavy smokers, whereas 2–3 mg/kg/day simulates 
moderate smoking29,30. According to the Guidelines on nicotine dose selection for in vivo research, mice are 
less sensitive to the effects of nicotine than the rats are, and therefore, require a higher nicotine dose to achieve 
a similar response31. Therefore, the dose of nicotine used in present study could equate to a moderate smoker. 

Figure 3. Effects of prenatal nicotine exposure (PNE) on the thymocyte phenotype and thymocyte 
apoptosis percentage in male offspring on PND14 and PND49. (A) Typical flow diagram of thymocyte 
phenotype on PND14; (B) Typical flow diagram of thymocyte phenotype on PND49; (C) Percentage of subsets 
on PND14; (D) Percentage of subsets on PND49. (E) Typical flow diagram of thymocyte apoptosis percentage 
on PND14; (F) Typical flow diagram of thymocyte apoptosis percentage on PND49; (G) Apoptosis percentage 
of thymocytes on PND14; (H) Apoptosis percentages of thymocytes on PND49. *P <  0.05, **P <  0.01 vs control.
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Figure 4. Effects of prenatal nicotine exposure (PNE) on the fetal body weight, fetal thymus weight, fetal 
thymus organ index and fetal thymus histological changes. (A) Fetal body weight; (B) Thymus weight of 
fetus; (C) Fetal thymus organ index; (D) control group (HE, × 40); (E) nicotine group (HE, × 40); (F) control 
group (HE, × 100); (G) nicotine group (HE, × 100). Mean ±  SD, n =  8–10. *P <  0.05, **P <  0.01 vs control.

Figure 5. Effect of prenatal nicotine exposure (PNE) on the fetal thymocyte phenotypes and the fetal 
thymocyte apoptosis percentage. (A) Typical flow diagram of fetal thymocyte phenotypes; (B) Percentage of 
subsets in fetal mice; (C) control group (TEM, × 1000); (D) nicotine group (TEM, × 1000); (E) control group 
(TEM, × 3000); (F) nicotine group (TEM, × 3000); (G) Typical flow diagram of fetal thymocyte apoptosis 
percentage; (H) Apoptosis percentage of fetal thymocytes. *P <  0.05, **P <  0.01 vs control.
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In mice, the blastosphere develops on GD 3.5, then embryo implantation is initiated on GD 4.5 until to GD 6.5. 
The fetal thymus develops from GD 11.5 to birth32. An in vitro research has showed that nicotine can reduce 
the hatched blastocyst and impair embryo development33. Moreover, an experiment on the effect of nicotine in 
different gestation period on offspring proved that the effect was more significant during the second and third 
trimester, especially the third trimester34,35. Therefore, the exposure period of nicotine from GD9 to GD18 in our 
study not only covered the critical period of fetal thymus development, but also minimized the influence of nico-
tine exposure on the embryo implantation. Results in the present study showed that PNE significantly decreased 
the body weight and the fetal thymus organ index. And histological changes in the fetal thymus was obvious in 
nicotine group. Therefore, nicotine, as one of the main harmful components of tobacco, could directly damage 
the development of fetal thymus.

Th1 and Th2 both belong to CD4+ T cells. Th1 produce IFN-γ  as signature cytokine, which can promote the 
IgG2a antibody synthesis by B cells. Th2 are characterized by the cytokines IL-4, IL-5 and IL-13, which stimulate 
B cells to produce IgG136. Th1 and Th2 are functionally balanced under normal conditions and the imbalance 
of Th1/Th2 is associated with immuno-functional disorders. The ratio of IgG1/IgG2a is usually used to reflect 
the tendency of immune response. A reduction of the ratio of IgG1/IgG2a is associated with a Th1 shift, while 
the enhancement of Th2 cellular response includes elevated ratio of IgG1/IgG2a. Researchers found that adverse 
intrauterine environment could change the ratio of IgG1/IgG2a. It was reported that exposure of mice to 5 or 
50 ppm toluene during pregnancy resulted in increased IgG1 and decreased IgG2a in the plasma of infant mice 
(3 weeks old). The results suggested there was a Th2 skewing in the offspring37. In addition, maternal exposure to 
airborne particulate matter could cause postnatal immunological dysfunction in mice offspring, as evidenced by 
decreased total IgG2a and increased total IgG1 levels in the plasma38. S. pneumoniae used in this study belongs 
to T cell-dependent antigen, which can induce the body to produce memory cells and IgG antibodies. Our data 
demonstrated that the ratio of IgG1/IgG2a in PNE male offspring was increased after immunization. These results 
suggested that PNE could alter postnatal immune function in male offspring, resulting in a Th2 shift after antigen 
stimulation. Moreover, our data was consistent with the other results that prenatal secondhand cigarette smoke 
promoted Th2 polarization39.

Cytokines are involved in affecting or regulating most of the immune responses. Thus, we detected the mRNA 
expression of IL-4 (Th2-specific) and IFN-γ  (Th1-specific) in spleen on PND14 and PND49, and the contents of 
IL-4 in serum on PND49 in this study. These results were expected to reflect the deviation of immune responses 
indirectly. Lots of studies demonstrated that adverse intrauterine environment could affect the production and 
expression of IL-4 and IFN-γ . It was reported that prenatal tetrachlorodibenzo-p-dioxin (TCDD) exposure could 
increase the IL-4 production of splenic immune cells in male offspring40. In addition, prenatal maternal stress 
could enhance the Th2 cytokines IL-4 and IL-1341. Furthermore, mice immunized with OVA mounted strong 
Th2 responses as indicated by the significant level of IL-4 and undetectable level of IFN-γ 42. In present study, 
the results of real-time quantitative PCR (RT-qPCR) showed that the ratio of IL-4/IFN-γ  in PNE male offspring 

Figure 6. Effects of prenatal nicotine exposure (PNE) on the mRNA expression of nicotinic acetylcholine 
receptors α7 (α7 nAChR), Bcl-2 family member (Bim), genes about death receptor apoptosis pathway 
and the protein expression of Fas on the surface of fetal thymocytes. (A) Relative mRNA expression of α 
7 nAChR; (B) Relative mRNA expression of Bim; (C) Relative mRNA expression of death receptors apoptotic 
pathway; (D) Typical flow diagram of mean fluorescence intensity; (E) the protein expression of Fas on the 
surface of fetal thymocytes. FasL, Fas ligand. Mean ±  SD, n =  6–10. *P <  0.05, **P <  0.01 vs control.
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was higher than that of control on PND14 and PND49. These results suggested that PNE could cause persistent 
changes in the immune response in male offspring, from early life to adolescence, which manifested as a Th2 
shift. Our pre-experiments showed that the concentrations of IFN-γ  in serum before and after immunization 
are both below the detection limit of the enzyme linked immunosorbent assay (ELISA) kits (5 pg/mL). Thus, we 
only detected the IL-4 in serum. The increased content of IL-4 in serum in PNE group after immunization further 
confirmed that PNE could enhance Th2-mediated immune responses.

Immune responses in peripheral depend on the effector T cells (such as Th), which mainly originate from thy-
mocytes. In the embryo, the differentiation of thymocytes can be divided into four stages. Many studies indicated 
that adverse intrauterine environment could change the percentage or ratio of the thymocytes. It was reported 
that prenatal cadmium exposure could increase the percentage of CD4SP and the ratio of CD4/CD8 in fetal 
thymus43. Prenatal TCDD exposure could reduce the number of DP in fetal thymus44. In addition, the effects of 
adverse intrauterine environment on fetal thymocytes could last until after birth. Researchers found that car-
bon black nanoparticle exposure during middle and late pregnancy could increase DN and DP at different time 
points19. In this study, we also examined the thymocyte phenotypes at three time points, which were gestational 
day (GD)18, PND14 and PND 49, respectively. We found that the variation of phenotypes with age in PNE off-
spring were consistent with those of controls (Supplementary Figure S1). Moreover, there were similar changing 
trends of thymocytes in nicotine group compared with the control at three time points. These results suggested 
that PNE might have programming effects on the thymocytes.

Th are derived from naïve CD4+ T cells. Researchers found the proportion of Th1 increased progressively 
with age in mice. However, the percentage of Th2 decreased during the first three weeks of postnatal life45. These 
results were consistent with human or primate subjects46,47. That is, Th2 is at a high level in newborn, but Th1 is 
at a low level under normal circumstances. Wang et al.45 found that prenatal particulates exposure could lead to 
a reduction of CD4+ T cells. As the mice matured, Th2 recovered and eventually became equivalent to control 
mice. While Th1 remained suppressed even at 6 weeks of age compared with the controls45. Thus, the reduction of 
CD4+ T cells might trigger a shift of Th2. The failure to increase Th1 cell numbers might predispose the individual 
to Th2 dominated immune responses following allergen exposure. In this study, the proportion of CD4SP was 
significantly reduced in PNE group, and the decreasing trend was last to PND49. We speculated this might be the 
reason for the skewing of Th2 in male offspring.

In embryo, nearly 95% immature T cells undergo apoptosis and only a little can develop into naïve T cells after 
migrating into thymus. Apoptosis is crucial during the development process of thymocytes. Increased apoptosis 
of thymocytes in fetal stage can reduce the volume and weight of thymus, also can change the phenotypes of 
thymocytes, all of which often result in thymus dysfunction after birth. Studies showed that adverse intrauterine 
environment might increase the apoptosis percentage of fetal thymocytes, thus affected the thymus function 
after birth. It was reported that prenatal TCDD could promote the thymocyte apoptosis and finally resulted in 
thymus atrophy in offspring48. In addition, prenatal betamethasone exposure could induce the apoptosis of DP, 
and reduce the proliferation of immature thymocytes49. In our study, the results of both TEM and flow cytometry 
showed that the total apoptosis rate of fetal thymocyte in nicotine group was increased. Moreover, the increased 
mRNA expression of α 7 nAChR and genes about death receptor-mediated apoptotic pathway and the protein 
expression of Fas in fetal thymocytes further indicated that PNE could increase the total apoptosis rate of fetal 
thymocyte through α 7 nAChR/Fas-mediated apoptotic pathway.

Due to the crucial role of apoptosis in every developmental stage of thymocytes, we also analyzed the apop-
tosis percentages of thymocytes in different stages. Results in the present study showed that the apoptosis per-
centages of fetal DN and CD4SP in nicotine group were higher than those of control. Moreover, the increased 
apoptosis percentage of CD4SP also occurred in PNE offspring on PND14 and PND49. The reduced cell propor-
tion of CD4SP was consist with the increased apoptosis at the three time points. These results suggested that PNE 
could decrease CD4SP through increasing its apoptosis percentages, which could last to postnatal early life, even 
to adolescence. It is known that incompetent SP mainly underwent negative selection and occurred apoptosis 
before leaving thymus. It was reported that the negative selection of thymocytes was mediated by Ca2+-dependent 
transcriptional induction of Bim50. Studies showed that the effects of nicotine on thymocytes occurred through 
the interaction with α 7 nAChR, which can increase the intracellular levels of Ca2+ 51. Thus, we speculated that 
nicotine might promote the negative selection of SP to reduce the CD4SP in thymus. In this study, the expression 
of α 7 nAChR on fetal thymocytes in nicotine group had an increased trend, and Bim was significantly upreg-
ulated. These results suggested that PNE could increase CD4SP negative selection mediated by Bim and induce 
its apoptosis. In summary, PNE not only increased the apoptosis of total fetal thymocytes through Fas-mediated 
apoptotic pathway, but also promoted the negative selection of CD4SP. Both of them caused the reduced cell pro-
portion of CD4SP and output of CD4+ naïve T cells.

For adult mice, different mouse strains may display different immune responses. For example, BL/6 mice 
showed a predominant Th1-like immune responses whereas BALB/c mice displayed predominant Th2 responses. 
In the mechanism study, we aimed to clarify the developmental origin mechanism of the effects of prenatal nico-
tine exposure from the point of thymocytes apoptosis. The development process of thymocytes and the apoptotic 
pathways in thymocytes were consistent in different mouse strains. Moreover, it was reported that gestational 
exposure of BALB/c and C57BL/6 mice to secondhand cigarette smoke both could affect the development of 
fetuses, and the influences were consistent52. Therefore, we speculated that the influences of nicotine on the devel-
opment of fetal thymocyte may be similar between BALB/c and C57BL/6 mice, from the perspective of develop-
mental toxicology.

Conclusion
Taken together, PNE has direct toxic effects on the development of fetal thymocytes, resulting in immune 
dysfunction in offspring through triggering a Th2 shift. The underlying mechanism (Fig. 7) may be that PNE 
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decreases the output of CD4+naïve T cells through increasing the apoptosis of total thymocytes and CD4SP. On 
the one hand, nicotine interacted with α 7 nAChR, and subsequently activated Fas-mediated apoptotic pathway to 
increase the apoptosis of fetal thymocytes. On the other hand, nicotine increased the negative selection of CD4SP 
induced by Bim. These two pathways lead to the reduced output of CD4+naïve T cells, which is the reason for the 
skewing of Th2 after antigen stimulation in male offspring. Our present study provides an underlying mechanism 
of developmental origin of immune dysfunction due to PNE.

Materials and Methods
Chemicals and reagents. Nicotine was purchased from Sigma-Aldrich (St. Louis, MO, USA). Monoclonal 
antibodies (anti-mouse CD3-FITC, anti-mouse CD4-APC, anti-mouse CD8-PE-cy7, Rat IgG2b K Isotype 
Control FITC, Rat IgG2b K Isotype Control APC and Rat IgG2a K Isotype Control PE-cy7) and Annexin V 
PE Apoptosis Detection kit were purchased from eBioscience (San Diego, USA). Anti-mouse CD95-PE-cy7 
was obtained from BD Biosciences (New Jersey, USA). Mouse IgG1 and IgG2a ELISA kits were obtained from 
MultiSciences (Hangzhou, Zhejiang, China). Mouse IL-4 ELISA kits were obtained from Dakewe Biotech 
(Shenzhen, Guangdong, China). Trizol was purchased from Life Technologies (Gaithersburg, MD, USA). Reverse 
transcription and RT-qPCR kits were purchased from TaKaRa Biotechnology (Dalian, Liaoning, China). All 
primers were synthesized by Sangon Biotech Co., Ltd. (Shanghai, China). All chemicals and reagents were ana-
lytical grade.

Animals and treatment. Specific pathogen-free nulliparous female (22 ±  2 g) and male (25 ±  2 g) Balb/C 
mice were obtained from the Experimental Center of Hubei Medical Scientific Academy (No. 2008-0005, Wuhan, 
Hubei, China). The animal experiments in this study were performed in the Center for Animal Experiment of 
Wuhan University (Wuhan, Hubei, China), which has been accredited by the Association for Assessment and 
Accreditation of Laboratory Animal Care International (AAALAC International). The protocol was approved 
by the Committee on the Ethics of Animal Experiments at the Wuhan University School of Medicine (Permit 
Number: 14016). All animal experiment procedures were performed in accordance with the Guidelines for the 
Care and Use of Laboratory Animals of the Chinese Animal Welfare Committee and the International Council 
on Research Animal Care.

Mice were maintained under controlled conditions of temperature (22–24 °C), humidity (45–65%), and light 
(a 12 h light-dark cycle), with free access to food and water. Animals were allowed to acclimate for at least one 
week before subjected to experimental conditions. A schematic of the procedure for maternal and offspring 
mouse treatment was shown in Fig. 8. Female mice mated with male mice in 2:1 overnight. The day was declared 
as GD 0 if a vaginal plug was found in the vagina. The pregnant mice were randomly divided into two groups: 
a nicotine group and a control group. From GD9 to GD18, the mice in nicotine group were subcutaneously 
administered 1.5 mg/kg of nicotine twice per day. The control mice were treated with the same volume of the 
vehicle (saline). At GD18, some pregnant mice were sacrificed under isoflurane anesthesia, and their fetuses were 
removed quickly from the uterus and weighed. Fetal thymi from each littermate were collected and pooled into 
one sample, and 3 pooled samples were used for flow cytometry. In addition, 3 fetal thymi were randomly selected 
for fixing in phosphate-buffered 10% neutral formalin solution or 2.5% glutaraldehyde solution for HE staining 
and TEM analysis. The remaining fetal thymi of the littermates were pooled together as one sample, immediately 
frozen in liquid nitrogen, and stored at − 80 °C for subsequent experiments.

Figure 7. The mechanism hypothesis for the reduced CD4 naïve T cell output and Th2 shift in male 
offspring induced by prenatal nicotine exposure (PNE). α 7 nAChR, nicotinic acetylcholine receptors α 7; 
Bim, Bcl-2 family member; Th, T helper cells.



www.nature.com/scientificreports/

9Scientific RepoRts | 6:39013 | DOI: 10.1038/srep39013

For the experiment with offspring mice, pregnant mice were kept until normal delivery (GD19), and on PND0 
the numbers of pups were normalized to 7 pups per litter to assure adequate and standardized nutrition. On 
PND14, one male pup per litter was selected randomly from 8 different mothers in each group, and euthanized. 
The thymi and spleens were removed for flow cytometry and gene expression detection respectively. Other pups 
were normal fed until weaning (PND21). During the first week after birth, the offspring might be eaten by the 
mothers because of the changed smell after we touch them. Therefore, we didn’t number and weigh the offspring 
in the first week. The offspring were numbered on PND7 to avoid being eaten. Bodyweights of the offspring were 
measured weekly, and the corresponding bodyweight gain rate was calculated as follows: Gain rate in body weight 
(%) =  [(body weight of PND ×  − body weight of PND7)]/body weight of PND7 ×  100%. On PND42, half of the 
male offspring were immunized with a S. pneumoniae vaccine for 1 week and were sacrificed for tissue collection 
after anesthesia on PND49. Thymi of 3 offspring from each group were harvested for flow cytometry. Serum was 
prepared and stored at − 80 °C for analysis. The spleens were immediately frozen in liquid nitrogen, and then 
stored at − 80 °C for subsequent experiments.

Cell preparation, staining and flow cytometry. Thymi from fetuses and offspring were harvested and 
placed in flow cytometry staining buffer. Single cell suspensions were prepared as follow. The thymus was gently 
dissociated over a stainless steel sieve screen using a plunger of 2 mL syringe. Cells were washed twice in staining 
buffer for 5 min, 500 ×  g and 4 °C. The supernatant was discarded and the cell pellet was resuspended in staining 
buffer. Viable cells were enumerated using trypan blue and a hemacytometer. Cells were adjusted to 1 ×  107 cells/mL.  
The cell preparations from each litter or pup were analyzed individually. Thymocytes were stained with the fluoro-
chrome directly conjugated antibodies (anti-mouse CD3-FITC, anti-mouse CD4-APC, anti-mouse CD8-PE-cy7 
or anti-mouse CD95-PE-cy7 only). Anti-CD3, anti-CD4 and anti-CD8 were used to identify DN, DP and SP cell 
subpopulations. To analyze the expression of Fas, CD95 expression was detected. The cells were stained for 30 min 
in the dark at 4 °C, washed twice and resuspended with staining buffer. For apoptosis analysis, the Annexin V 
Apoptosis Detection kit was used. The cells surface staining was performed as described above followed by being 
washed, resuspended in Binding Buffer at 106 cells/mL. Then the cells were incubated 10 min with Annexin V 
at the room temperature and protected from light. After incubation, the cells were washed, and resuspended in 
200 μ L Binding Buffer. 7-Aminoactinomycin D (7-AAD) was added before being analyzed by flow cytometry. 
Data were acquired on a BD FACSAriaTM III (BD Biosciences) using FASCDiva Software at the Flow Cytometry 
Facility of Wuhan University. All analysis was performed using FlowJo software (Tree Star Inc.). The detection 
was repeated three times.

Histological examination. For HE staining, the fetal thymus samples were fixed in 10% formaldehyde, then 
embedded in paraffin, sliced at 3 μ m, and stained with HE for light microscopic examination (100× , Olympus 
BX-53). For TEM, the fetal thymus samples were excised into small pieces (< 1 mm3) and fixed overnight in 
2.5% glutaraldehyde in phosphate buffer. Samples were then washed in 0.1 M sodium cacodylate buffer and post-
fixed with 1% osmium tetroxide. Samples were dehydrated through a graded series of ethanol and embedded in 
EPON812. Ultrathin sections (70 nm thick) were obtained with an EM UC7 ultramicrotome (Leica, Germany), 
dually stained with uranyl acetate and lead citrate, and examined with a HT-7700 transmission electron micro-
scope (Hitachi, Tokyo, Japan).

Levels of total immunoglobulin G1 (IgG1), IgG2a antibodies and IL-4 in serum in offspring on 
PND49. Serum samples were balanced to room temperature. Total IgG1, IgG2a antibodies, IL-4 in serum in 
offspring were measured using the ELISA kits according to the manufacture’s protocols. The dilution ratio of serum 
samples for IgG1 detection was 1:10000, and for IgG2a was 1:2000, while there was no dilution for IL-4 detection.

RNA preparation and qPCR. Total RNA were isolated from the spleen and fetal thymus using Trizol rea-
gent, according to the manufacturer’s protocol. The concentration and purity of the isolated RNA were determined 
by a spectrophotometer, and the concentration of each sample was adjusted to 1 μ g/μ L. Single-strand cDNA was 
prepared using the reverse transcription kit. All the primer sequences shown in Supplementary Table S1 were 
designed by Primer Premier 5.0 from PREMIER Biosoft International (Palo Alto, CA, USA) and queried by NCBI 
BLAST database for homology comparison. PCR assays were performed using a QuantStudio 6 Flex from Applied 
Biosystems (Foster City, CA, USA) in a total volume of 20 μ l reaction mixture containing 1 μ l of cDNA template, 
0.4 μ l of 10 μ M each primer, 10 μ l of 2 ×  Premix Ex Taq, 0.4 μ l ROX and 7.8 μ l of DEPC-H2O. PCR cycling condi-
tions were as follows: 30 s at 95 °C for pre-denaturation, 5 s at 95 °C for denaturation, and appropriate annealing 
conditions for each gene (listed in Supplementary Table S1). Each gene was calculated by Δ Δ Ct method using the 
ribosomal housekeeping gene glyceraldehyde phosphate dehydrogenase (GAPDH) as internal controls.

Figure 8. The schedule of animal treatment from gestational day 0 (GD0) to postnatal day 49 (PND49). 
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Statistical analyses. SPSS 17 (SPSS Science Inc., Chicago, Illinois) and Prism (GraphPad Software, Inc., 
La Jolla, CA, USA, version 5.0) were used for data analysis. Results were reported as means ±  standard deviation 
(SD). All measurement data were evaluated with Student’s t test or with two-factor analysis of variance as appro-
priate. Statistical significance was set at P <  0.05.
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