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Biodiversity in models of cyclic 
dominance is preserved by 
heterogeneity in site-specific 
invasion rates
Attila Szolnoki1 & Matjaž Perc2,3

Global, population-wide oscillations in models of cyclic dominance may result in the collapse of 
biodiversity due to the accidental extinction of one species in the loop. Previous research has shown 
that such oscillations can emerge if the interaction network has small-world properties, and more 
generally, because of long-range interactions among individuals or because of mobility. But although 
these features are all common in nature, global oscillations are rarely observed in actual biological 
systems. This begets the question what is the missing ingredient that would prevent local oscillations 
to synchronize across the population to form global oscillations. Here we show that, although 
heterogeneous species-specific invasion rates fail to have a noticeable impact on species coexistence, 
randomness in site-specific invasion rates successfully hinders the emergence of global oscillations and 
thus preserves biodiversity. Our model takes into account that the environment is often not uniform but 
rather spatially heterogeneous, which may influence the success of microscopic dynamics locally. This 
prevents the synchronization of locally emerging oscillations, and ultimately results in a phenomenon 
where one type of randomness is used to mitigate the adverse effects of other types of randomness in 
the system.

Models of cyclic dominance are traditionally employed to study biodiversity in biologically inspired settings1–8. 
The simplest such model is the rock-paper-scissors game9, where rock crashes scissors, scissors cut paper, and 
paper wraps rock to close the loop of dominance. The game has no obvious winner and is very simple, yet still, it 
is an adequate model that captures the essence of many realistic biological systems. Examples include the mat-
ing strategy of side-blotched lizards10, the overgrowth of marine sessile organisms11, genetic regulation in the 
repressilator12, parasitic plant on host plant communities13, and competition in microbial populations4,14–16. 
Cyclical interactions may also emerge spontaneously in the public goods game with correlated reward and pun-
ishment17, in the ultimatum game18, and in evolutionary social dilemmas with jokers19 or coevolution20,21.

An important result of research involving the rock-paper-scissors game is that the introduction of random-
ness into the interaction network results in global oscillations22,23, which often leads to the extinction of one 
species, and thus to the destruction of the closed loop of dominance that sustains biodiversity. More precisely, in 
a structured population where the interactions among players are determined by a translation invariant lattice, 
the frequency of every species is practically time-independent because oscillations that emerge locally can not 
synchronize and come together to form global, population-wide oscillations. However, if shortcuts or long-range 
interactions are introduced to the lattice, or if the original lattice is simply replaced by a small-world network24, 
then initially locally occurring oscillations do synchronize, leading to global oscillations and to the accidental 
extinction of one species in the loop, and thus to loss of biodiversity25–29. If the degree distribution of interaction 
graph is seriously heterogeneous, however, then such kind of heterogeneity can facilitate stable coexistence of 
competing species30. Interestingly, other type of randomness, namely the introduction of mobility of players, also 
promotes the emergence of global oscillations that jeopardize biodiversity6,31,32.
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Interestingly, however, although long-range interactions and small-world networks abound in nature, and 
although mobility is an inherent part to virtually all animal groups, global oscillations are rarely observed in 
actual biological systems. It is thus warranted to search for universal features in models of cyclic dominance 
that work in the opposite way of the aforementioned types of randomness. The questions is, what is the missing 
ingredient that would prevent local oscillations to synchronize across the population to form global oscillations? 
Preceding research has already provided some possible answers. For instance Peltomäki and Alava observed that 
global oscillations do not occur if the total number of players is conserved33. Mobility, for example, then has no 
particular impact on biodiversity because oscillations are damped by the conservation law. However, the conse-
quence of the conservation law does not work anymore if a tiny fraction of links forming the regular lattice is ran-
domly rewired34. Zealots, on the other hand, have been identified as a viable means to suppress global oscillations 
in the rock-paper-scissors game in the presence of both mobility and interaction randomness34,35. In addition to 
these examples, especially in the realm of statistical physics, there is a wealth of studies on the preservation and 
destruction of biodiversity in models of cyclic dominance2,28,36–60.

Here we wish to extend the scope of this research by considering a partly overlooked property, namely the 
consideration of site-specific heterogeneous invasion rates. Importantly, we wish to emphasize an important dis-
tinction to species-specific heterogeneous invasion rates, which have been considered intensively before. In the 
latter case, different pairs of species are characterized by different invasion rates, but these differences are then 
applied uniformly across the population. In case of spatially variable invasion rates, these could be site-specific, 
and hence particular pairs of species may have different invasion rates even though they are of the same type. Such 
a setup has many analogies in real life, ranging from differing resources, quality or quantity wise, to variations 
in the environment, all of which can significantly influence the local success rate of the governing microscopic 
dynamics.

Notably, this kind of heterogeneity was already studied in a two-species Lotka-Volterra-like system61, and 
in a three-species cyclic dominant system where a lattice has been used as the interaction network62. The latter 
work concluded that the invasion heterogeneity in spatial rock-paper-scissors models has very little effect on the 
long-time properties of the coexistence state. In this paper, we go beyond the lattice interaction topology, explor-
ing the consequences of quenched and annealed randomness being present in the interaction network. In the 
latter case, as we will show, it could be a decisive how heterogeneity is introduced into the invasion rate because 
annealed randomness does not change the oscillation but quenched heterogeneity can mitigate the global oscil-
lation effectively. In what follows, we first present the main results and discuss the implications of our research, 
while details concerning the model and the methodology are described in the Methods section.

Results
We first consider results obtained with species-specific invasion rates. Indeed, it is possible to argue that it is too 
idealistic to assume homogenous invasion rates between different species, and that it would be more realistic to 
assume that these invasion rates are heterogeneous. But as results presented in Fig. 1 show, this kind of generaliza-
tion does not bring about a mechanism that would suppress global oscillations. These oscillations clearly emerge 
for homogeneous species-specific invasion rates, as soon as the fraction of rewired links of the square lattice Q 
exceeds a threshold. If we then assume that species-specific invasion rates are heterogeneous, say δ0 =  0.6, δ1 =  0.8, 
and δ2 =  1 (here δi denotes the invasion rates of Si →  Si+l transition where i runs from 0 to 2 in a cyclic manner), 
it can be observed that nothing really changes. In fact, the threshold in Q remains much the same, and the order 
parameter A (the area of the limit cycle in the ternary diagram) reaches the same close to l plateau it does when 
these invasion rates are homogenous. Further along this line, we can even adopt invasion rates that are chosen 
uniformly at random from the unit interval at each particular instance of the games. More precisely, we still keep 
the original Si →  Si+l direction of invasion, but the strength of the invasion rate δi is chosen randomly in each par-
ticular case. But no matter the fact that this rather drastically modifies the microscopic dynamics, the presence 
of shortcuts will still trigger global oscillations (marked random in Fig. 1). We thus arrive at the same conclusion 
that was already pointed out in ref. 62, which is that heterogeneous invasion reaction rates have very little effect 
on the dynamics and the long-time properties of the coexistence state.

Having established the ineffectiveness of heterogeneous species-specific invasion rates to prevent local oscilla-
tions to synchronize across the population to form global oscillations, we next consider site-specific heterogene-
ous interaction rates, denoted as wj and applied to each site j. Here wj determines the probability that a neighbor 
will be successful when trying to invade player j according to the original Si →  Si+l rule. As such, different values 
of wj influence the success of microscopic dynamics locally. Moreover, these invasion rates are determined once 
at the start of the game and can be drawn from different distributions. The simplest case is thus to consider values 
drawn uniformly at random from the unit interval. As results in Fig. 1 show (see quenched random), this modifi-
cation of the rock-paper-scissors game clearly blocks the emergence of global oscillations regardless of the value 
of Q. Indeed, even if the square lattice is, through rewiring, transformed into a regular random graph, the order 
parameter A still remains zero. Even if the uniform distribution is replaced by a simple discrete double-peaked 
distribution (practically it means that half of the players has wj =  0.1 for example, while the other half retains 
wj =  1), the global oscillations never emerge (see quenched double in Fig. 1). The coordination effect leading 
up to global oscillations is thus very effectively disrupted by heterogeneous site-specific invasion rates, and this 
regardless of the distribution from which these rates are drawn.

To illustrate the dramatically contrasting consequences of different types of randomness, we show in Fig. 2 
representative time evolutions for both cases. The comparison reveals that, as deduced from the values of the 
order parameter A displayed in Fig. 1, time-varying invasion rates fail to suppress global oscillations, the emer-
gence of which is supported by the small-world properties of the interaction network (ternary diagram and the 
time course on the left). The limit cycle denoted black in the ternary diagram and the large-amplitude oscillations 
of the densities of species in the corresponding bottom panel clearly attest to this fact. This stationary state is 
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robust and is reached independently of the initial mixture of competing strategies. Conversely, quenched hetero-
geneous interaction rates drawn from a uniform distribution clearly suppress global oscillations (ternary diagram 
and the time course on the right). Here, the system will always evolve into the ρi =  1/3 state, central point of the 
diagram, even if we launched the evolution from a biased initial state. Thus, if heterogeneities are fixed in space, 
just like in several realistic biological systems, then this effectively prohibits global oscillation by disrupting the 
organization of a coordinated state, i.e., synchronization of locally occurring oscillations across the population.

As demonstrated previously34,63, the type of randomness in the interaction network responsible for the emer-
gence of global oscillations plays a negligible role. Be it quenched through the one-time rewiring of a fraction Q of 
links forming the original translation invariant lattice, or be it annealed through the random selection of far-away 
players to replace nearest neighbors as targets of invasion with probability P, there exist a critical threshold in 
both where global oscillations emerge if invasion rates are homogeneous. Accordingly, it makes sense to test 
whether heterogeneous site-specific invasions rates are able to suppress such oscillations regardless of the type 
of randomness that supports them. To that effect, we make use of the discrete double-peaked distribution, where 
the fraction of sites v having a lower invasion rate wj =  0.1 then the rest of the population at wj =  1 can be a free 
parameter determining the level of heterogeneity. Evidently, at v = 0 we retain the traditional rock-paper-scissors 
game with homogeneous invasion rates (all sites have wj =  1), while for v >  0 the fraction of sites having wj =  0.1, 
and thus the level of heterogeneity, increases. At the other extreme, for v =  1, we of course again obtain a homoge-
neous population where everybody has wj =  0.1, but we do not explore this option since it is practically identical, 
albeit the evolutionary process is much slower. By introducing heterogeneity into the system gradually, we can 
monitor how it influences the stationary state.

In Fig. 3, we present representative results for both quenched and annealed randomness of interaction graph 
(see legend). The first observation is that only a minute fraction of suppressed nodes (less than 5%) suffices to 
fully suppress global oscillations, and this regardless of the applied high Qand P values that practically ensure an 
optimal support for local oscillations to synchronize across the population into global oscillations. Moreover, it 
can be observed that both transitions to the oscillation-free state are continuous. In other words, there does not 
exist a sharp drop in the value of A at a particular value of v. Instead, the suppression of global oscillations is grad-
ual as the level of site-specific invasion heterogeneity in the population increases.

Similar in spirit, another way to introduce invasion heterogeneity gradually into the population is to use a 
fixed fraction of nodes with a lower invasion rate, but vary the difference to wj =  1. Accordingly, we have a fraction 
v =  0.1 of nodes, which instead of wj =  1 have the invasion rate wj =  1 −  Δ . Here Δ  becomes the free parame-
ter, which for zero returns the traditional rock-paper-scissors game with homogeneous invasion rates, while for 
Δ  >  0 the distance in the peaks of the discrete double-peaked distribution, and thus the level of heterogeneity 
in the population, increases. Representative results obtained with this approach are shown in Fig. 4 for both 
quenched and annealed randomness of interaction graph (see legend). In comparison with results presented in 
Fig. 3, it can be observed that increasing Δ  has somewhat different consequences than increasing v. In the former 
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Figure 1. The emergence of global oscillation due to the introduction of shortcuts to the regular square 
lattice, as observed in different versions of the rock-paper-scissors game (see legend). Here Q denotes 
the fraction of rewired links, while A is the area of the limit cycle in the ternary diagram (see Methods). In 
the homogeneous case all species-specific invasion rates δi are equal to 1, while in the heterogeneous case we 
use δ0 =  0.6, δ1 =  0.8, and δ2 =  1 throughout the simulation. With random, we denote the case where δi are 
chosen uniformly at random from the unit interval at each particular instance of the game. Lastly, quenched 
random and quenched double correspond to results obtained with site-specific invasion rates drawn from a 
uniform distribution and from a discrete double-peaked distribution, respectively. Importantly, site-specific 
invasion rates are determined randomly only once at the start of the game and are thereafter quenched. It can 
be observed that species-specific invasion rates fail to block the emergence of global oscillations, with the 
order parameter A rising almost to l for a sufficiently high fraction of rewired links. Conversely, site-specific 
invasion rates completely suppress the emergence of global oscillations, and this regardless of the underlying 
distribution. As it is specified in the Method section, to produce this plot we have used different system sizes to 
avoid artificial extinction of species at high oscillation.
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case, when Δ  is small, the slight heterogeneity has no particular influence on the stationary state and global 
oscillations persist well beyond Δ  =  0.3 for annealed randomness and Δ  =  0.6 for quenched randomness. But 
if the difference reaches a sufficiently large value, global oscillations disappear in much the same gradual way as 
observed before in Fig. 3, although the transition for annealed randomness is more sudden.

To sum up our observations thus far, different versions of the same concept reveal that spatially quenched 
heterogeneity in site-specific invasion rates is capable to effectively suppress global oscillations that would other-
wise be brought about by either annealed or quenched randomness in the interaction network. However, there 
is yet another possible source or large-amplitude global oscillations in the population, namely mobility. As is 
well-known, mobility can give rise to global oscillation that jeopardizes biodiversity6. Although subsequent 
research revealed that global oscillations due to mobility do not emerge if the total number of competing play-
ers is conserved33, more recently it was shown that, if in addition to a conservation law also either quenched or 
annealed randomness is present in the interaction network, then mobility still induces global oscillations34. In 
particular, if the site exchange is intensive then only a tiny level of randomness in the host lattice suffices to evoke 
global oscillations.

Lastly, we thus verify if heterogeneity in site-specific invasion rates is able to suppress global oscillations 
brought about by mobility. As results in Fig. 5 show, the impact of quenched invasion heterogeneity is very sim-
ilar to the above-discussed cases. It is worth noting that conceptually similar behavior can be observed when 
biological species are hosted in a turbulent flow of fluid environment64,65. In fact, as a general conclusion, neither 
randomness in the interaction network nor the mobility of players can compensate for the detrimental impact 
of spatial invasion heterogeneity on global oscillations, thus establishing the latter as a very potent proponent of 
biodiversity in models of cyclic dominance.
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Figure 2. Evolution of the three species in the ternary diagram (upper row) and time-wise (bottom row), 
as obtained for a representative example of species-specific invasion rates δi drawn uniformly at random 
from the unit interval at each particular instance of the game and with site-specific invasion rates wj drawn 
uniformly at random from the unit interval once at the start of the game. Note here that if species-specific 
invasion rates are randomly determined at each particular instance of the game, the distinction to site-specific 
invasion rates actually is no longer needed since in fact in both cases invasion rates can be considered as site-
specific, only that in one case they change over time (left), while in the other case they are quenched (right). 
All other simulation details are the same in both cases. Namely, a fraction Q =  0.15 of the links forming the 
square lattice has been rewired once to yield an interaction network with small-world properties that support 
the emergence of global oscillations. As can be observed, time-varying interaction rates fail to suppress these 
oscillations, as the limit cycle and the large-amplitude oscillations are clearly visible on the left. More precisely, 
the limit cycle, marked black in the ternary diagram on the left, is reached regardless of the initial state (I1 inside 
the cycle and I2 outside). Both panels of the right show a dramatically different time evolution. In this case the 
system always terminates into the center of the ternary diagram, and the corresponding time course (bottom 
right) clearly converges to a steady state. To produce these trajectories we have used a system contains 106 nodes.
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Discussion
We have studied the impact of site-specific heterogeneous invasion rates on the emergence of global oscillations in 
the spatial rock-paper-scissors game. We have first confirmed that species-specific heterogeneous invasion rates, 
either fixed or varying over time, fail to disrupt the synchronization of locally emerging oscillations into a global 
oscillatory state on a regular small-world network. On the contrary, we have then demonstrated that site-specific 
heterogeneous invasion rates, determined once at the start of the game, successfully hinder the emergence of 
global oscillations and thus preserves biodiversity. We have shown this conclusion to be valid independently 
of the properties of the distribution that determines the invasion heterogeneity, specifically demonstrating the 
failure of coordination for uniformly and double-peak distributed site-specific invasion rates. Moreover, our 
research has revealed that quenched site-specific heterogeneous invasion rates preserve biodiversity regardless 
of the type of randomness that would be responsible for the emerge of global oscillations. In particular, we have 
considered quenched and annealed randomness in the interaction network, as well as mobility. Regardless of the 
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Figure 3. The suppression of global oscillations in the presence of quenched and annealed randomness of 
interaction graph (see legend), brought about by the sufficiently large fraction v of nodes that have a lower 
site-specific invasion rate wj = 0.1 than the rest of the population at wj = 1. Presented results demonstrate 
that quenched site-specific invasion rates drawn from a simple discrete double-peaked distribution are apt to 
fully suppress global oscillations (note that the value of the order parameter A drops to zero at a sufficiently large 
value of v in both cases), regardless of the type of randomness in the interaction network that enables them. We 
have used Q =  0.5 for the fraction of rewired links determining the level of quenched randomness, and P =  0.5 
as the probability for a potential target of an invasion to be selected randomly from the whole population rather 
than from nearest neighbors determining the level of annealed randomness of network.

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

A

∆

quenched

annealed

Figure 4. The suppression of global oscillations in the presence of quenched and annealed randomness 
of interaction graph (see legend), brought about by the sufficiently large difference Δ between the 
quenched site-specific invasion rates in the double-peaked discrete distribution. Here a fraction v =  0.1 of 
the population has a lower site-specific invasion rate equal to wj =  1 −  Δ , while the remainder of the population 
has wj =  1. Similarly as in Fig. 2, presented results demonstrate that quenched site-specific invasion rates 
fully suppress global oscillations (the value of A drops to zero at a sufficiently large value of Δ  in both cases), 
regardless of the type of randomness in the interaction network that enables them. Likewise as in Fig. 3, we 
have used Q =  0.5 for the level of quenched randomness and P =  0.5 for the level of annealed randomness of 
topology.
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type of randomness that would promote local oscillations to synchronize across the population to form global 
oscillations, site-specific heterogeneous invasion rates were always found to be extremely effective in suppressing 
the emergence of global oscillations. Drawing from the colloquial expression used to refer to alcohol that is con-
sumed with the aim of lessening the effects of previous alcohol consumption, the introduction of randomness in 
the form of site-specific heterogeneous invasion rates lessens, in fact fully suppresses, the effects of other types of 
randomness – hence the “hair of the dog” phenomenon.

Our setup takes into account heterogeneities that are inherently present in virtually all uncontrolled environ-
ments, ranging from bacterial films to plant communities. Examples include qualitative and quantitative varia-
tions in the availability of nutrients, local differences in the habitat, or any other factors that are likely to influence 
the local success rate of the governing dynamics12,13. The consideration of site-specific heterogeneous invasion 
rates and their ability to suppress global oscillations joins the line of recent research on the subject, showing for 
example that the preservation of biodiversity is promoted if a conservation law is in place for the total number of 
competing players33, or if zealots are introduced to the population34,35. Notably, previously it was shown that zeal-
otry can have a significant impact on the segregation in a two-state voter model66, and research in the realm of the 
rock-paper-scissors game confirmed such an important role of this rather special uncompromising behavior. In 
general, since global, population-wide oscillations are rarely observed in nature, it is of significance to determine 
key mechanisms that may explain this, especially since factors that promote such oscillations, like small-world 
properties, long-range interactions, or mobility, are very common. In this sense, site-specific heterogeneous inva-
sion rates fill an important gap in our understanding of the missing ingredient that would prevent local oscilla-
tions to synchronize across the population to form global oscillations.

There is certainly no perfect spatial system where microscopic processes would unfold identically across the 
whole population. These imperfections are elegantly modeled by the heterogeneous host matrix that stores the 
individual invasion rates of each player. As we have shown, the coordination of species evolution is highly sensi-
tive on such kind of heterogeneities when they are fixed in space. Ultimately, this prevents the synchronization of 
locally emerging oscillations, and gives rise to a “hair of the dog”-like phenomenon, where one type of random-
ness is used to mitigate the adverse effects of other types of randomness. We hope that these theoretical explora-
tions will help us to better understand the rare emergence of global oscillations in nature, as well as inspire further 
research, both experimental and theoretical, along similar lines.

Methods
The spatial rock-paper-scissors game evolves on a L ×  L square lattice with periodic boundary conditions, where 
each site j is initially randomly populated by one of the three competing species. For convenience, we introduce 
the Si →  Si+l notation, where i runs from 0 to 2 in a cyclic manner. Hence, species S0 (for example paper) invades 
species S1 (rock), while species S1 invades species S2 (scissors), which in turn invades species S0 to close the loop of 
dominance. The evolution of species proceeds in agreement with a random sequential update, where during a full 
Monte Carlo step (MCS) we have chosen every site once on average and a neighbor randomly. In case of different 
players the invasion was executed according to the rock-scissors-paper rule with probability λ.

In the simplest, traditional version of the game, all invasion rates between species are equal to λ =  1. 
Species-specific heterogeneous invasion rates can be introduced through the parameter λ =  δi, which is simply 
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Figure 5. The suppression of global oscillations in the presence of mobility, brought about by the 
sufficiently large difference Δ between the quenched site-specific invasion rates in the double-peaked 
discrete distribution, and by the sufficiently large fraction v of nodes that have a lower site-specific 
invasion rate wj = 0.1 than the rest of the population at wj = 1 (inset). In the main panel, a fraction v =  0.1 
of the population has wj =  1 −  Δ , while the remaining 90% have wj =  1. Moreover, a rather strong rate of 
mobility at σ =  0.9, along with a Q =  0.05 level of quenched randomness to ensure global oscillations in the 
absence of heterogeneity in site-specific invasion rates is used in both the main panel and the inset. Evidently, 
although slightly higher thresholds in v and Δ  then recorder in Figs 3 and 4 are needed, in both cases quenched 
heterogenous site-specific invasion rates fully suppress global oscillations as the value of A eventually drops to 
zero in the main panel and the inset.
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the probability for the Si →  Si+l invasion to occur when given a chance. The values δ0, δ1 and δ2 can be determined 
once at the start of the game, or they can be chosen uniformly at random from the unit interval at each particular 
instance of the game. On the other hand, site-specific heterogeneous invasion rates, which we denote as wj, apply 
to each site j in particular, and determine the probability that a neighbor will be successful when trying to invade 
player j according to the Si →  Si+l rule. This rule can be considered as “prey-dependent” because the w value at 
the prey’s position determines the probability of invasion. As an alternative rule, we can consider the w value of 
predator’s position that determines the invasion probability. Lastly, we can assume that the w values of both the 
predator and prey’s positions influence the invasion rate via their wj · wj′ product. While the time dependence of 
the evolution will be different in the mentioned three cases but the qualitative behavior is robust. Therefore we 
restrict ourself to the first mentioned “prey-dependent” rule.

These invasion rates are determined once at the start of the game and can be drawn uniformly at random from 
the unit interval, or from any other distribution. Here, in addition to uniformly distributed wj, we also consider 
site-specific heterogeneous invasion rates drawn from a discrete double-peaked distribution, where a fraction v 
of sites have wj =  1 −  Δ , while the remaining 1 −  v have wj =  1.

To test the impact of site-specific heterogeneous invasion rates under different circumstances, we consider 
interaction randomness in the form of both quenched and annealed randomness. Quenched randomness is intro-
duced by randomly rewiring a fraction Q of the links that form the square lattice whilst preserving the degree 
z =  4 of each site. This is done only once at the start of the game. This procedure returns regular small-world 
networks for small values of Q and a regular random network in the Q →  1 limit22. Annealed randomness, on 
the other hand, is introduced so that at each instance of the game a potential target for an invasion is selected 
randomly from the whole population with probability P, while with probability 1 −  P the invasion is restricted to 
a randomly selected nearest neighbor23. This procedure returns well-mixed conditions for P =  1, while for P = 0 
only short-range invasions as allowed by the original square lattice are possible.

We also consider the impact of site-specific heterogeneous invasion rates in the presence of mobility. The lat-
ter is implemented so that during each instance of the game we choose a nearest-neighbor pair randomly where 
players exchange their positions with probability σ. Oppositely, with probability 1 −  σ, the dominant species in 
the pair invades the other in agreement with the rules or the rock-paper-scissors game. The parameter σ hence 
determines the intensity of mobility while the number of players is conserved. Technically, however, the strategy 
exchange between neighboring players is determined not only by the level of mobility σ, but it also depends 
on the individual wj and wr values characterizing the neighboring sites j and r. In this way, we can consider the 
fact that different sites may be differently sensitive to the change of strategy, and the success of mutual change is 
then practically determined by the site that is more reluctant to change its state. Accordingly, when the strategy 
exchange is supposed to be executed, then this happens only with the probability wjr that is equal to the smaller of 
wj and wr values (all the other details of the model remain the same as above).

Global oscillations are characterized with the order parameter A, which is defined as the area of the limit cycle 
in the ternary diagram22. This order parameter is zero when each species occupies one third of the population, 
and becomes one when the system terminates into an absorbing, single-species state. We have used lattices with 
up to L ×  L =  4.106 sites, which was large enough to avoid accidental fixations when the amplitude of oscillations 
was large, and which allowed an accurate determination of strategy concentrations that are valid in the large 
population size limit. Naturally, the relaxation time depends sensitively on the model parameters and the system 
size, but 105 MCS was long enough even for the slowest evolution that we have encountered during this study.
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