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Convex Analysis of Mixtures for 
Separating Non-negative  
Well-grounded Sources
Yitan Zhu1,2, Niya Wang1, David J. Miller3 & Yue Wang1

Blind Source Separation (BSS) is a powerful tool for analyzing composite data patterns in many areas, 
such as computational biology. We introduce a novel BSS method, Convex Analysis of Mixtures (CAM), 
for separating non-negative well-grounded sources, which learns the mixing matrix by identifying the 
lateral edges of the convex data scatter plot. We propose and prove a sufficient and necessary condition 
for identifying the mixing matrix through edge detection in the noise-free case, which enables CAM to 
identify the mixing matrix not only in the exact-determined and over-determined scenarios, but also in 
the under-determined scenario. We show the optimality of the edge detection strategy, even for cases 
where source well-groundedness is not strictly satisfied. The CAM algorithm integrates plug-in noise 
filtering using sector-based clustering, an efficient geometric convex analysis scheme, and stability-
based model order selection. The superior performance of CAM against a panel of benchmark BSS 
techniques is demonstrated on numerically mixed gene expression data of ovarian cancer subtypes. We 
apply CAM to dissect dynamic contrast-enhanced magnetic resonance imaging data taken from breast 
tumors and time-course microarray gene expression data derived from in-vivo muscle regeneration in 
mice, both producing biologically plausible decomposition results.

Blind Source Separation (BSS) has proven to be a powerful and widely-applicable tool for the analysis of compos-
ite patterns in engineering and science, where both source patterns and mixing proportions are of interest but are 
unknown1–4. BSS is often described by a linear latent variable model X =  AS, where X is the M ×  N observation 
data matrix containing M mixture signals with N data points, A is the unknown M ×  K mixing matrix, and S is the 
unknown K ×  N source data matrix containing K source signals with N dimensions. The fundamental objective 
of BSS is to estimate both the unknown mixing proportions and the source signals based only on the observed 
mixtures.

Many biomedical questions can be formulated as BSS problems, where the source signals are non-negative. For 
example, as we will show in one of our experiments, the dynamic contrast-enhanced magnetic resonance imaging 
(DCE-MRI) data of a tumor characterize a combination of distinct pharmacokinetics of different vascular com-
partments. The source signals in this case are the heterogeneous distributions of different vascular compartments 
within a tumor, which are non-negative and which usually contain Well-Grounded Points (WGPs), i.e. points with 
very high values in one source relative to all other sources3–5. Under the assumption of WGPs, column vectors of 
the mixing matrix A can be estimated by identifying WGPs located at the corners of the mixture observation scat-
ter plot and, subsequently, the hidden source signals can be recovered. Based on the realization that the observed 
pattern across signal indices at each data point can be expressed as a non-negative combination of the column 
vectors of the mixing matrix6, we propose a Convex Analysis of Mixtures (CAM) method to estimate the mixing 
proportions by explicitly identifying WGPs at the lateral edges of the clustered observation scatter plot. CAM is 
theoretically supported by a series of newly proved identifiability and optimality theorems based on the noise-free 
case. A necessary and sufficient condition is discovered for identifying the mixing matrix through edge detection in 
non-negative well-grounded BSS problems, which serves as the foundation for CAM to identify the mixing matrix 
in the under-determined case, in addition to the exact-determined and over-determined cases. The optimality of 
the edge identification strategy is also proved for non-negative BSS problems, even when WGPs do not exist.
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For applications on real-world noisy data, the CAM algorithm integrates a plug-in noise and outlier filtering 
scheme, an edge detection and geometric convex analysis algorithm, and a model selection scheme for applica-
tions on noisy real-world problems. We first design a sector-based clustering scheme, used to obtain an effective 
noise and outlier-reduced, clustered representation of the data. We then develop an efficient lateral edge detection 
and geometric convex analysis algorithm that identifies the WGP-associated clusters, whose center vectors are 
the estimates for the column vectors of the mixing matrix. The algorithm proceeds to estimate source signals by 
non-negative least-squares fitting of the latent variable model to the observation data, where the number of hid-
den sources is detected using a stability analysis scheme.

We demonstrate the principle and feasibility of the CAM approach on synthetic data and numerically mixed 
microarray gene expression profiles, and experimentally compare the accuracy of parameter estimates obtained 
using CAM to the most relevant alternative techniques. We then use the algorithm to dissect DCE-MRI data 
taken from breast tumors, identifying vascular compartments with distinct pharmacokinetics and revealing intra-
tumor vascular heterogeneity. We also apply CAM to time-course gene expression data derived from in-vivo 
muscle regeneration in mice, observing biologically plausible dynamic patterns of relevant biological processes 
with distinct kinetics and phenotype-specific gene expression patterns. In Supplementary Information Section 1, 
we provide a brief review of existing BSS methods and discuss their relationship to CAM.

CAM Theory
This section develops the theory of CAM for a noise-free scenario, including the model assumptions, identifia-
bility, and optimality.

Assumptions of the CAM Model. Considering the linear latent variable model X =  AS, we can re-express 
the model in vector-matrix notation

= = … = …n Nx As A a a, [ ], 1, , (1)n n K1

where xn, ak, and sn are column vectors of matrices X, A, and S, respectively. Such a linear latent variable model 
is widely applicable to the analysis of many types of data, with the interpretation of the mixtures and underly-
ing sources application-dependent. As a generic example for now, one can consider image unmixing, with M 
observed N-pixel images, each a mixture of K source images.

Our CAM model is developed based on the following assumptions.
(A1) (Non-negative Sources) Every element in S takes a non-negative value and S has full row rank.
(A2) (Well-grounded Sources) The source data matrix S contains at least one WGP on each of the K coordi-

nate axes, i.e. ∀ ∈ …k K{1, , }, ∃ n kWGP( ) such that λ=s en kkWGP( )
, λ >  0, where {ek} is the standard basis of 

K-dimensional real space.
(A3) (Simplicial mixing matrix) Every column vector in A is neither a non-negative nor a non-positive linear 

combination of other column vectors in A.
(A4) (Full-rank mixing matrix) A is of full column rank, i.e. rank (A) =  K.
From (A1) and Equation 1, we have

∑= ≥ = …
=

s s n Nx a , 0, 1, ,
(2)n

k

K

k n k k n
1

, ,

where sk,n is the kth element of sn. When the source matrix S satisfies (A1) and (A2), i.e. it is a non-negative 
well-grounded BSS problem, (A3) is a necessary and sufficient condition for the mixing matrix A to be identified, 
as we will prove through a set of theorems later. (A4) is a sufficient condition for identifying the source matrix 
S, when (A1) and (A2) hold, and is widely used in many BSS problems7. Apparently, (A3) is a necessary but not 
a sufficient condition for (A4), in other words, (A3) is guaranteed to hold if (A4) is satisfied, but not vice versa. 
Also, importantly, (A3) can hold not only in the exact-determined and over-determined cases, but also in the 
under-determined case, where there are at least three mixtures, i.e. M ≥  3. (A4) on the contrary can be satisfied 
only in the exact-determined and over-determined cases.

Identifiability of the Mixing Matrix. We now discuss identifiability of the mixing matrix A under the 
aforementioned assumptions via the following definitions and theorems.

Definition 1. Given a matrix B composed by its set of column vectors {B} =  {b1, … , bQ}, the convex cone deter-
mined by {B} is

∑α α= | ≥
=

C B b{ } { 0}
(3)q

Q

q q q
1

Definition 2. A non-zero vector z is a lateral edge of C{B}, if z ∈  C{B} (i.e. α= ∑ =z bq
Q

q q1 , αq ≥  0) and z can only 
be expressed as a trivial combination of {B} (i.e. if αq >  0 for some q, then bq =  βqz, βq >  0).

See Fig. 1 for illustrations of a convex cone and its lateral edges. Because for edges only the vector direction is 
of interest, edges with the same vector direction but different lengths will be considered identical in the sequel. 
With the concept of convex cone, the model assumption (A3) can be formulated as
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∀ ∈ … ∉ ∉ −− −k K C Ca A a A{1, , } { } and { } (4)k k k k

where A−k is the matrix that results from removing the kth column from A.

Lemma 1. The lateral edges of the convex cone α α= ∑ ∈ ≥=C A a a A{ } { { }, 0}k
K

k k k k1  are the K (mixing 
matrix) column vectors a1, … , aK, if and only if (A3) holds.

Lemma 2. Suppose that (A1) and (A2) hold. Then, the convex cone defined by the observed data matrix, i.e. 
α α= ∑ ∈ ≥=C X x x X{ } { { }, 0}n

N
n n n n1 , is identical to C{A}.

Theorem 1. (Identifiability of the Mixing Matrix). Suppose that (A1), (A2) hold. The mixing matrix column 
vectors a1, … , aK can be determined by the lateral edges of C{X}, up to ambiguity of positive scaling and permu-
tation, if and only if (A3) holds.

Please see Supplementary Information Sections 5 and 6 for the proofs of Lemma 1 and Lemma 2, respectively. 
Theorem 1 is a direct conclusion derived from Lemmas 1 and 2. It states that for separating non-negative 
well-grounded sources, (A3) is a sufficient and necessary condition for an edge detection solution uniquely iden-
tifying the mixing matrix A based on the observed data X. When WGPs exist, the lateral edges of cone C{X} are 
the mixing matrix column vectors a1, … , aK. That is, a WGP = ∑ == s sx a an i

K
i n i k n k1 , ,k k kWGP( ) WGP( ) WGP( )

 is a trivial 
combination of a1, … , aK, it is a lateral edge of cone C{A}, and since C{A} =  C{X}, it is also a lateral edge of cone 
C{X}. This means that, in principle, under a noise-free scenario, we can directly recover a1, … , aK by locating the 
lateral edges of C{X}, up to the ambiguity of positive scaling.

Detectability of the Lateral Edges of Cone C{X}. From Theorem 1, we see that the key step to identify 
the mixing matrix is to detect the lateral edges of C{X}. Here we discuss the algorithmic principle and the opti-
mality of an edge detection strategy via the following definition and theorems.

Definition 3. The projection of a point v onto the convex cone C{B} is

′ = −∈v v yargmin (5)C CB y B{ } { }
2

Obviously, if v ∈  C{B}, then ′ =v vC B{ }  and ∠ ′ =v v( , ) 0C B{ } , where ∠ (·,·) denotes the angle between two input 
vectors; if v ∉  C{B}, then ′ ≠v vC B{ }  and ∠ ′ >v v( , ) 0C B{ } . We also define the angle between a non-zero vector and 
a zero vector to equal 180°, i.e. ∠ (v, 0) =  180°. See Fig. 1 for an illustration of projecting a data point onto a convex 
cone and the corresponding projection angle. The optimization problem in Equation 5 is a second order cone 
programming problem that can be solved by existing algorithms8.

Figure 1. Illustration of a convex cone C{B} with three edges in three dimensional space. Lines with an 
arrow are the axes. Bold lines are edges b1, b2and b3. The cross-section of convex cone C{B} is a triangle, 
indicated by grey color. The star markers on the edges are well-grounded points. v is a point outside of C{B}. Its 
projection on C{B} is ⋅ ⋅′ ∠.v ( , )C B{ }  denotes the angle between two input vectors.
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Theorem 2 (Property of lateral edges). Suppose that (A1) and (A3) hold. Further, assume no two data vectors are 
in precisely the same direction. Let ′

−
xn C X, { }n

 denote the projection of xn onto cone C{X−n} where X−n is the data 
matrix excluding xn. Then, xn is a lateral edge of C{X}, if and only if ∠ ′ >

−
x x( , ) 0n n C X, { }n

.

Please see Supplementary Information Section 7 for the proof of Theorem 2. Theorem 2 immediately suggests 
a simple edge detection scheme to detect all lateral edges of C{X}. The scheme examines the data vectors 
one-by-one to check whether ∠ ′

−
x x( , )n n C X, { }n

 is larger than 0, ∀ n. If yes, xn is a lateral edge of cone C{X}. Notice 
that this edge detection strategy does not require the existence of WGPs, but if WGPs do exist, the mixing matrix 
column vectors can be estimated using the lateral edges according to Theorem 1. Note that Theorem 2 and its 
associated edge detection strategy assumes each data vector xn has a unique direction. This can be easily satisfied 
in practice by retaining in {X} only one data vector from each group of vectors that are positive scalings of each 
other (i.e., which lie in the same direction).

An important consideration for the present method is that it requires a WGP to exist for each of the under-
lying sources. While this is both a reasonable assumption in practice and serves to establish mathematical iden-
tifiability of the CAM model, nevertheless in some datasets, WGPs may not exist. It would be helpful to provide 
an accurate interpretation of the edge detection strategy in such non-ideal scenarios. Accordingly we show that, 
no matter whether WGPs exist or not, edge detection provides the optimal solution in the sense of capturing 
maximum source information. For each source, at least one lateral edge of C{X} achieves the Maximum Source 
Dominance (MSD) among all observed mixture data points and will be identified by edge detection. Specifically, 
we have:

Theorem 3 (Source dominance optimality). Suppose that (A1) and (A4) hold. For each source k, 
∀ ∈ …k K{1, , }, the edge detection strategy identifies at least one lateral edge, denoted by xn kMSD( )

, achieving the 
maximum source dominance in the sense of

= = …˜ ˜s smax , (6)k n n N k n, 1, , ,kMSD( )

where = … …˜ ˜ ˜ ˜s s ss [ ]n n k n K n
T

1, , , , satisfying ∑ == s̃ 1k
K

k n1 , , ∀ ∈ …n N{1, , } is the source vector of sample n fol-
lowing a normalization operation applied to the observed data matrix.

Please see Supplementary Information Section 8 for the proof of Theorem 3 and for the details of the normal-
ization on the observed data matrix so that source vectors corresponding to different data points are comparable. 
Theorem 3 indicates that no matter whether WGPs are present or not, the edge detection strategy will identify 
the edges of C{X}, which are a group of observed mixture data points. And for each source, there is at least one 
detected edge that is the data point achieving the maximum dominance by this source among all observed data 
points, and it is the data point most similar to the corresponding mixing matrix column vector measured by 
source dominance, because the mixing matrix column vector can be considered purely dominated by one source 
with a source dominance value 1. So even when WGPs do not exist, edge detection still can identify the opti-
mal estimates for the mixing matrix column vectors among all observed data points. WGPs, if they exit in the 
observed data, will become the lateral edges and be identified by edge detection.

Summary of CAM Model Identifiability. From the above discussion, it has been established that, through 
edge detection, we can estimate the mixing matrix when the sources are well-grounded. Then, if (A4) is satisfied, 
the source data matrix S can further be recovered by the generalized inverse of A, which is S =  (ATA)−1ATX under 
a noise-free scenario7. If (A4) is not satisfied and only (A3) is satisfied, S might not be recoverable.

We summarize the identifiability of the CAM model as follows:

(1) If (A1), (A2), and (A4) are satisfied, which can happen only in the exact-determined and over-determined 
cases, both A and S are identifiable.

(2) If (A1), (A2), and (A3) are satisfied (which can happen not only in the exact-determined and over-determined 
cases, but also in the under-determined case where there are at least three mixtures), the mixing matrix A and 
the number of sources are identifiable, while S cannot in general be uniquely determined.

CAM Algorithm
So far, we have developed a mathematical CAM framework for separating non-negative well-grounded sources 
under an ideal noise-free situation. In this section, we develop a practical CAM algorithm that is based on this 
theoretical framework but which also robustly addresses the realistic scenario where there may be both noise 
and outliers present. This algorithm consists of data preprocessing, sector-based clustering, convex analysis of 
mixtures, stability analysis, and source pattern recovery. We first summarize the steps of the CAM algorithm and 
then explain each of these steps in the following sub-sections.

CAM Algorithm. 

(1) Data preprocessing to normalize data and remove data points with small vector norms that potentially have 
low local SNR.

(2) Sector-based clustering on the scatter plot to get a noise-reduced representation of the data.
(3) Convex analysis of mixtures for estimating the mixing matrix, including (i) edge detection based on sector 
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central rays to form a candidate pool of estimates for the mixing matrix column vectors and (ii) minimization 
of model fitting error to produce an estimate for the mixing matrix with a given source number.

(4) Determination of source number by stability analysis, which repeats steps (2) and (3) for different source 
numbers based on random partitions of the data to calculate the normalized model instability of each candi-
date source number. The best source number is selected as the one with the smallest instability.

Data Preprocessing. Our algorithm begins with two data preprocessing steps. First, we scale the observed 
mixtures to have unit sums and assume the underlying sources also have unit sums as done in the literature5,  
i.e. after scaling, ∑ == x 1n

N
m n1 , , ∀ m =  1, … , M, and ∑ == s 1n

N
k n1 , , ∀ k =  1, … , K. Note that this scaling makes each 

row of A have unit sum so that the mixing matrix elements provide the mixing proportions, i.e. 
∑ = ∑ ∑ = ∑ ∑ = ∑ == = = = = =a a s a s x 1k

K
m k k

K
m k n

N
k n n

N
k
K

m k k n n
N

m n1 , 1 , 1 , 1 1 , , 1 , , ∀ = …m M1, , , where am,k is the mth 
element of ak. Second, consider the following noisy linear latent variable model

ε= + = …n Nx As , 1, , , (7)n n n

where εn is the additive noise on sample n and is independent of sn. We assume that ε Σ~N 0( , )n noise  and define 
the Signal-to-Noise Ratio (SNR) of the whole dataset as

= ∑
× Σ
=

N
As

SNR
trace( ) (8)

n
N

n1
2

noise

Since the expected noise level for all data points is the same, data points with small vector norms are expected to 
have a lower local SNR, which could have a negative impact on subsequent analysis3, so the second step of data 
preprocessing is to exclude these small-norm points.

Noise or Outlier Removal by Sector-based Clustering. The purpose of sector-based clustering on the 
preprocessed data points is two-fold: 1) data clustering has proven to be an effective tool for reducing the impact 
of noise and outliers on model learning3,9; and 2) aggregation of data points into a (smaller) number of clusters 
improves the computational efficiency of the subsequent convex analysis of mixtures by reducing the number 
of tests performed for identifying lateral edges. After sector-based clustering, each data sector (cluster) is rep-
resented by a ray starting from the origin, which is called a sector central ray. Please see Fig. 2 for illustration of 
sector-based clustering.

Definition 4. The sector central ray rj of the jth data sector is the ray starting from the origin that minimizes the 
sum of the squared distances to all the data points in the jth data sector.

The distance between a data point and a ray is the minimum distance between the data point and any point on 
the ray. Sector-based clustering groups data points into sectors (each with its own central ray) so that data points 
within a sector have more similar orientations (evaluated by their angles made with the central ray) compared to 
data points in other sectors. Assuming a sufficient number of sectors are used to model the data, we logically 

Figure 2. Illustration of sector-based clustering in a three-dimensional scatter plot. Four sources (K =  4) 
are mixed to form three mixtures (M =  3). Small circles are data points. After clustering, each data sector is 
represented by a sector central ray (solid lines). Four data sectors are on (or close to) the true edges of cone 
C{X}, with their sector central rays indicated by bold lines. The quadrilateral formed by the dashed lines indicate 
the intersection of the cone.
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impose ∠ (xn, rj) ≤  90°, ∀ xn ∈  ψj, ∀ j ∈  {1, … , J}, where J is the number of data sectors and ψj denotes the jth data 
sector. Since only the vector direction is of importance, the sector central rays are confined to have unit norm, i.e. 
=r 1j , ∀ ∈ …j J{1, , }. Based on Definition 4, the sector central ray is mathematically defined as

∑= − .
ψ= ∈

r x r x rargmin
(9)

j n
T

n
r x1

2

n j

By expanding the square in the summation and simplifying, we can show that

= − = .
= =

r r C r r C rargmin argmax
(10)

j
T

j
T

j
r r1 1

where = ∑ ψ∈C x xj n n
T

xn j
 is (the sample-based estimate of) the autocorrelation matrix of data vectors in ψj. The 

solution of Equation 10 is the principal eigenvector of Cj.

Sector-based Data Clustering Algorithm. 

(1) Randomly initialize each of the J sector central rays r1, … , rJ to one of the observation data points x1, … , xN 
and unit-normalize these vectors.

(2) Partition the observed data points into J data sectors by assigning each data point to its nearest sector based 
on the distance between the data vector xn and the sector central ray r, calculated by −x r x rn

T
n .

(3) Update the J sector central rays r1, … , rJ by finding the principal eigenvector of each of the sample-based 
correlation matrices Cj, j =  1, … , J, determined by the data partition in step (2).

(4) Terminate if there is no change in the total clustering distortion shown in Equation 11, from the previous to 
the current iteration; otherwise, go to step (2).

The sector-based clustering algorithm monotonically descends in the clustering distortion

∑ ∑Ψ = −
ψ= ∈

D R x r x r( , )
(11)j

J

n j
T

n j
x1

2

n j

where R =  [r1 …  rJ] is the matrix composed of sector central rays and Ψ  is the partition of data points into J 
data sectors. It also terminates in a finite number of iterations at a fixed point solution that is a local minimum 
of Equation 11, which can be proved following the standard convergence proof of the generalized Lloyd algo-
rithm10,11. The computational complexity of this algorithm is dominated by the partitioning step, whose complex-
ity is O(JMNI), where I is the number of algorithm iterations. Random initialization of the sector central rays can 
affect the local optimum to which the algorithm converges; thus, in practice, the algorithm is usually run multiple 
times, with the sector partition with the minimum clustering distortion chosen as the final outcome.

Convex Analysis of Mixtures. At this juncture, having performed sector-based clustering, we have R =  [r1 …  rJ]  
as a noise/outlier mitigated representation of the data matrix X. Accordingly, supported by Theorem 1, which says 
that in the noise-free case, the columns of A are the lateral edges of C{X}, it is reasonable, in the noise-mitigated 
case, to estimate the columns of A based on the lateral edges of the cone C{R}. CAM uses the following algorithm 
specifically designed based on Theorem 2 to detect the lateral edges of cone C{R}.

Cone Lateral Edge Detection Algorithm. 

(1) Set Redge =  R, j =  1, and τ =  0.001 (or another small positive value); Set J* =  J.
(2) Determine projection image ′

−
r j C R, { }jedge,

 by projecting rj onto cone C{Redge,−j}, where Redge,−j is the matrix re-
sulting from removing the jth column from Redge.

(3) If τ∠ ′ >
−

r r( , )j j C R, { }jedge,
, j =  j +  1; otherwise, remove rj, i.e. the jth column, from Redge and J* =  J* −  1.

(4) If j >  J*, end the algorithm; otherwise, go to step (2).

The worst-case computational complexity of the cone lateral edge detection algorithm is O(J3M). After apply-
ing the algorithm, the J* column vectors in Redge are the detected edges. The detected edge number has some 
dependence on the sector-based clustering solution, including the chosen number of sectors, J. Clearly, one must 
choose J >  K. In practice, to ensure this, one may choose J fairly large, in which case there are usually more than K 
detected edges. Regardless, the detected edges are good candidates from which to select a subset as the estimates 
of a1, … , aK.

To identify good, refined estimates of a1, … , aK from this candidate pool, a combinatorial search based on a 
model fitting error criterion can be performed to identify the most promising K lateral edges. Specifically, let 
…r r{ , , }j jK1

 be any size-K subset of {Redge}. The K lateral edges with sector indices ...⁎ ⁎j j, , K1  that minimize a 
model fitting error are chosen, as follows:

∑... = ∠ ′
… =

…
⁎ ⁎j j N r r( , , ) argmin ( , ),

(12)
K

j j j

J

j j j C r r1
( , , ) 1

, { , , }
K

j jK
1

1
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where ′ …r j C r r, { , , }j jK1
 is the projection of rj onto cone ...C r r{ , , }j jK1

 and Nj is the number of data points in sector j. 
Because the angles between the “interior” sector central rays, i.e. sector central rays confined within ...C r r{ , , }j jK1

, 
and their projections on …C r r{ , , }j jK1

 are all 0, the model fitting error is a weighted sum of the angles between 
the “exterior” sector central rays and their projections, and the weights are the data sector population sizes. 
Because this model fitting error is monotonically decreasing as the edge set under consideration is enlarged, the 
search for the best K lateral edges can be accelerated by using the branch and bound search algorithm12, which 
guarantees finding the edge set minimizing the model fitting error without the need for exhaustive search. The 
average complexity of branch and bound search is no larger than γ − ⁎⁎

O JJ M( )J K 2
, where γ >  1 is a constant that is 

problem-dependent13.
The edge set minimizing the model fitting error forms the estimate of the mixing matrix, which we denote by 

Â. We then project all the mixture data vectors (including the small-norm data vectors removed in data preproc-
essing) onto the cone ˆC A{ } and compose these projected vectors into a matrix, ′ ˆXC A{ } . This projection step ensures 
that our estimates for the sources will be non-negative and also helps to suppress noise. If Â has full column rank, 
the estimates of sources are calculated via the generalized inverse of Â, i.e. = ′−ˆ ˆ ˆ ˆ ˆS A A A X( )

T T
C A

1
{ } . Because 

= ′ˆ ˆ ˆAS XC A{ } , which is the projection of the original mixture data matrix X onto the cone ˆC A{ }, it can be shown 
that = −∈ +

×ˆ ˆS AS Xmin FS R K N , where ⋅ F denotes the Frobenius norm of a matrix and +
×RK N  denotes the set 

of K by N non-negative matrices. Thus, Ŝ is actually a non-negative least squares estimate.

Detection of Source Number by Stability Analysis. One important CAM issue is detection of the 
structural parameter K (the number of underlying sources), often called model selection. This is indeed particu-
larly critical in real-world applications where the true structure of the latent variable model may be unknown 
a priori. We propose to use a stability analysis scheme to guide model selection, based on a carefully designed 
model instability index.

Similar to the rationale in determining the number of clusters in data clustering using stability analysis14, the 
basic principle is that, if K is too large, some extracted sources will simply model random noise patterns; on the 
other hand, if K is too small, some extracted sources will be arbitrary combinations of true sources; both scenarios 
produce unstable models. Stability analysis assesses the model instability indices associated with different values 
of K, calculated based on a large number of 2-fold cross-validations, and selects the model order with lowest 
model instability. In each cross-validation trial l ∈  {1, … , L}, the preprocessed observation data are randomly 
divided into two folds (indexed by l1 and l2) of equal size; then, CAM is applied on both folds and produces two 
independent estimates of the mixing matrix, denoted as ˆ KA ( )l1

 and ˆ KA ( )l2
, respectively, for = …K K2, , max, 

where Kmax is the maximum source number under consideration. We then define the Normalized Model 
Instability (NMI) index as
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where ˆ KA ( )l ,rand1
 and ˆ KA ( )l ,rand2

 are estimates of the mixing matrix formed by randomly selecting K sector cen-
tral rays from the sector-based clustering result obtained on data folds 1 and 2 in the lth cross-validation, respec-
tively, and where ∠ (·,·) here denotes the minimum average angle between the column vectors of two input 
matrices. To explicate this averaging, let the two input matrices be U =  [u1 …  uK] and W =  [w1 …  wK]. ∠ (U, W) 
is calculated as

∑∠ ∠= ϕ
ϕ Φ∈ =K

U W u w( , ) min 1 ( , )
(14)k

K

k
1K

k

where ΦK is the set including all permutations of {1, … , K} and ϕk is the kth element in a permutation ϕ. Since the 
association between column vectors in U and W is not known, we need to search through all possible associations 
to find the optimal one. Using the Hungarian method, the complexity of this search is O(K3)15. The definition in 
Equation 13 produces an NMI index that is easy to interpret, and the “normalization” automatically adjusts the 
NMI index for comparison across different model orders as adopted by other works14.

Results
Demonstration of CAM Performance on Synthetic Data and Numerically Mixed Data. To illus-
trate CAM, we first consider a simulated data set consisting of N =  1600 data points. Half of the source vectors 
are drawn from a three-dimensional exponential distribution with independent variables to ensure the existence 
of approximate WGPs. The other half are first drawn from a three-dimensional Gaussian distribution with cor-
related variables to ensure source dependence and then absolute values are taken to force source non-negativity. 
The mixing matrix, source mean vectors, and covariance matrix are given as
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The structure of this data set has been chosen in order to illustrate the noisy and strongly correlated nature of 
many real data sets. The exponential distribution with independent variables has a heavy density in the vicinity of 
the origin for each dimension, which gives a good chance for WGPs or near-WGPs to exist. The highly correlated 
Gaussian distribution makes the simulated sources correlated with each other. The dataset has an SNR of 12.4 dB, 
calculated by Equation 8.

After data preprocessing, we kept the 800 data points whose vector norms are largest and performed 
sector-based clustering on these data points 20 times with J =  30, selecting the best clustering outcome measured 

Figure 3. Perspective projection of the 800 large-norm data points in the simulation dataset onto the 2-D 
intersection of the convex cone formed by the data points. Perspective projection performs simple positive 
scaling of data points to make every data point have unit element sum. Black dots are data points. Each data 
point is connected to its sector central ray by a line. Red circles indicate the edges detected by applying the 
lateral edge detection algorithm on the sector central rays. Blue diamond markers indicate the positions of true 
mixing matrix column vectors. The three edges that minimize the model fitting error among all three-edge sets 
are indicated by arrows.

Source Number 2 3 4 5 6 7 8 9

NMI Index

Synthetic data 0.79 0.21 0.54 0.60 0.65

DCE-MRI data 0.39 0.29 0.58 0.64 0.65 0.71 0.70 0.78

Skeletal muscle regeneration 
gene expression data 0.51 0.71 0.45 0.69 0.73 0.74 0.79 0.82

Table 1.  NMI indices associated with different source numbers obtained when applying CAM on the 
datasets.
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by the total clustering distortion given in Equation 11. On the sector central rays obtained from the best clustering 
outcome, we performed the cone lateral edge detection algorithm and then identified the three edges that min-
imized the model fitting error according to Equation 12 to form the estimate of the mixing matrix. The sources 
were recovered using the mixing matrix estimate accordingly.

We utilized the minimum average angle between the estimated mixing matrix column vectors and the true 
mixing matrix column vectors to evaluate how accurately the mixing matrix was recovered. We used the average 
correlation coefficient between the estimated sources and the true sources to measure the recovery accuracy of 
sources. See Supplementary Information Section 2 for the formulas defining the recovery accuracy of the mixing 
matrix and the recovery accuracy of the sources. Both accuracy measures are between 0 and 1, with 1 indicating 
perfect estimation.

Figure 3 shows the 800 large-norm data points, the best clustering outcome from 20 runs, the edge detec-
tion result, and the estimates of the mixing matrix column vectors. We applied stability analysis with 30 
cross-validations, and obtained NMI indices that show a minimum value at K =  3 (see Table 1 for NMI indices of 
different model orders), which agrees with the ground truth. With K =  3, the resulting recovery accuracies of the 
mixing matrix and sources were 0.9826 and 0.9171, respectively. The power of the CAM approach is supported 
here as both the mixing matrix and hidden sources are well recovered and the number of hidden sources is cor-
rectly identified.

We compared the performance of CAM with eight most relevant methods (see Supplementary Informa
tion Section 3), including non-negative Independent Component Analysis (nICA)16, Statistical Non-negative 
Independent Component Analysis (SNICA)17, Non-negative Matrix Factorization (NMF)1, Sparse Non-negative 
Matrix Factorization (SNMF)18, N-finder algorithm (N-FINDR)19, Vertex Component Analysis (VCA)20, Convex 
Analysis of Mixtures of Non-negative Sources (CAMNS)5, and nonnegative Least-correlated Component Analysis 
(nLCA)4, which cover many different BSS algorithm categories, such as deterministic methods vs. probabilistic 
methods, methods with the well-grounded source assumption vs. methods without it, and methods assuming 
sources are independent or uncorrelated vs. methods that assume sources may be correlated. The comparison 
was conducted on numerical mixtures of gene expression profiles of four ovarian cancer subtypes generated by 
Schwartz et al.21 Experimental methods used to produce the gene expressions were carried out in accordance with 
the approved guidelines; analysis of all human ovarian cancer tissues was approved by the University of Michigan’s 
Institutional Review Board (IRB-MED no. 1999-0428); and informed consent was obtained for all human par-
ticipants21. We added noise to the mixture data, and tested the methods over a range of SNR (19 dB~34 dB) using 
multiple simulation datasets. CAM always outperformed all eight peer methods in both the exact-determined 
scenario (M =  K =  4) and the over-determined scenario (M =  6 >  K =  4) for recovering the mixing matrix and 
sources (Fig. S1). When SNR was 25 dB or higher, CAM always correctly detected the number of sources (Fig. S2). 
We tested CAM’s ability to recover the mixing matrix in the under-determined scenario (M =  3 <  K =  4). When 
the source number was given, CAM recovered the mixing matrix reasonably well over the tested SNR range 
(Fig. S3a). When the SNR level was higher than 25 dB, CAM showed a source number detection accuracy higher 

Figure 4. CAM analysis result on breast cancer DCE-MRI data. (a) MRI images of a breast tumor taken 
at sequential time points after the injection of molecular contrast agent into blood. (b) Tracer concentration 
changes of the three identified compartments over time. (c) Recovered source images of the three 
compartments.



www.nature.com/scientificreports/

1 0Scientific RepoRts | 6:38350 | DOI: 10.1038/srep38350

than 80% (Fig. S3b). We also recorded the execution times of the competing methods in Table S1 for a compari-
son of their computational complexities.

Analysis of Breast Cancer DCE-MRI Data. As an example of using CAM for real-world application, we 
considered DCE-MRI data from breast cancer to evaluate tumor vasculature patterns3,22. The data were collected 
under a protocol approved by the National Institutes of Health (NIH) institutional review board after informed 
consent was obtained from the study participant. The images were generated according to approved guidelines. 
The data include MRI images of breast tumors taken at sequential time points after the injection of molecular con-
trast agent into the blood. Due to intratumor heterogeneity and limited imaging resolution, the concentrations 
of the contrast agent at many image pixels often represent a mixture of more than one vascular compartment, 
each with distinct and characteristic perfusion and permeability. The existence of near-pure compartment pixels 
allows us to use CAM to identify distinct vascular compartments and their spatial distributions within a tumor.

The DCE-MRI dataset includes M =  20 image frames of a breast tumor (see Fig. 4a) taken every 30 seconds, 
starting from 90 seconds after injection of the molecular contrast agent. Each image contains 50 ×  50 =  2500 pix-
els, and after masking out the non-tumor region, the resulting image contains N =  715 pixels for CAM analysis. 
Noise filtering removed 30% of the pixels whose vector norms were small. The sector-based clustering chose the 
best clustering outcome in 20 independent runs, with cluster number J =  30. We performed stability analysis via 
30 cross-validations, which suggested the compartment number K =  3, as summarized in Table 1.

CAM analysis indicates three compartments, i.e. fast-flow, slow-flow, and plasma input23, characterized by 
their pharmacokinetics patterns. Figure 4b shows the dynamic changes of tracer concentration of the three com-
partments, which are the column vectors in the recovered mixing matrix Â. Each column vector was scaled to 
have a unit sum for drawing Fig. 4b. Figure 4c shows the spatial distributions of the identified compartments, 
which correspond to the recovered sources Ŝ.

The fast-flow compartment has a fast tracer clearance rate (see Fig. 4b) and dominates the peripheral “rim” 
of the tumor (see Fig. 4c). The slow-flow compartment shows very slow tracer kinetics (see Fig. 4b) and domi-
nates the inner “core” of the tumor (see Fig. 4c). The identification of fast-flow and slow-flow pools is plausibly 
consistent with previously reported intratumor heterogeneity22,24. The defective endothelial barrier function of 
tumor vessels results in spatially heterogeneous high microvascular permeability to macromolecules22,24. It has 
been reported that the peripheral “rim” of advanced breast tumors often have active angiogenesis that is essential 
to tumor development24. This rapidly proliferating neovasculature is often abnormal, and forms leaky and chaotic 
vessels, giving rise to a rapid tracer uptake and washout pattern, forming the fast-flow pool22. On the other hand, 
the inner “core” of the tumor has significantly lower blood flow and oxygen concentration, forming the slow-flow 
pool with much slower tracer accumulation and washout, because the tumor growth in peripheral “rim” region 
requires a large portion of its blood supply and also neovessel maturation22.

Analysis of Muscle Regeneration Time-Course Gene Expressions. We applied CAM to dissect a 
time-course gene expression dataset obtained from a mouse skeletal muscle regeneration process25 (GEO acces-
sion no. GSE469). Skeletal muscle regeneration is a highly synchronized process involving the activation of var-
ious cellular processes. Cells grow in dynamically evolving subpopulations, yet the dynamics and proportions 
of cell subpopulations often go unmeasured on the basis of their mRNA expression patterns26. Within a mixed 
population of cells, one might expect distinct cell types to exhibit some distinct patterns of gene expression, and 
the measured mRNA levels in the mixed cell population represent a weighted average of these hidden biological 
processes, where the weights are cell proportions involved in different biological processes. Here, we ask whether 
it is possible to deconvolve the gene expression data from a mixed cell population to discern the proportions of 
different cell types, by treating specific mRNA patterns as cell-type specific markers26.

The time-course muscle regeneration gene expression data were acquired at M =  27 successive time points 
using microarrays after the injection of cardiotoxin into the mouse muscle, which damages the muscle tissue 
and induces staged muscle regeneration25. Standard preprocessing suggested N =  7570 reliably expressed genes 
for subsequent CAM analysis25. Noise filtering removed 40% of the genes whose vector norms were small. The 
sector-based clustering chose the best clustering outcome in 20 independent runs, with cluster number J =  30. We 

Figure 5. Time activity curves of the four sources detected on the 27 time-point skeletal muscle 
regeneration gene expression dataset. 
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performed stability analysis via 30 cross-validations, which suggested K =  4 as the number of potentially distinct 
sources associated with underlying active biological processes, as summarized in Table 1.

Figure 5 displays the source-specific time activity curves (the column vectors of the estimated mixing matrix) 
that represent the proportions of cell subpopulations associated with the 4 underlying putative biological pro-
cesses at each time point. For each of the identified sources, we selected 200 source-specific genes (near-WGPs) 
that maximize ∑ =ˆ ˆs s/k n i

K
i n, 1 , , ∀ k =  1, … , 4, to define source-specific distinct patterns27. We input the four 

source-specific gene groups into Ingenuity Pathway Analysis (IPA), a comprehensive database of gene annota-
tions and functions that performs Fisher’s exact test to assess the association of a given gene set with known bio-
logical functions, with p-values indicating the significance level. Functional analysis by IPA consistently suggests 
the biological plausibility of all four biological processes revealed by CAM.

Specifically, IPA suggests that source 1 is associated with inflammation, connective tissue disorders, skeletal 
and muscular disorders, and immune response, with p-values of 6.77E-39, 9.02E-35, 9.02E-35, and 9.62E-32, 
respectively. The corresponding genes are heavily involved in the necrosis of damaged muscle tissue and the acti-
vation of an inflammatory response. In Fig. 5, it can be seen that source 1 activates immediately after muscle dam-
age and then diminishes quickly, reflecting the fact that necrosis and inflammatory response constitute the first 
transient phase of muscle regeneration28. IPA suggests that source 2 is associated with three biological functions, 
i.e. (1) cell cycle, (2) DNA replication, recombination, and repair, and 3) cellular growth and proliferation, with 
p-values of 7.07E-25, 3.77E-17, and 2.10E-8, respectively. The associated genes are actively involved in myogenic 
cell proliferation to prepare sufficient myoblasts for later differentiation. The source 2 activity reaches its peak(s) 
from day 2 to day 4 as biologically expected (see Fig. 5)28. IPA suggests that source 3 is associated with tissue 
development, skeletal and muscular system development, cell to cell signaling and interaction, and connective 
tissue development and function, with p-values of 9.09E-16, 4.91E-11, 2.33E-08, and 4.35E-07, respectively. The 
corresponding genes are expected to facilitate the differentiation of myoblast into mononucleated myocyte and 
the fusion of myocytes to form multinucleated myofibers. As expected, in Fig. 5 the source 3 activity goes up after 
sufficient myoblasts are produced by the activity of source 2, keeps at a high level from day 5 to day 13, and then 
goes down. Such a trend is consistent with the widely observed fact that muscle regeneration is accomplished in 
approximately two weeks28. IPA suggests that source 4 is associated with skeletal muscular system function and 
tissue morphology, with a p-value of 3.49E-10. The corresponding genes are typically active in normal muscle 
cells, whose activity drops dramatically after muscle is damaged and gradually recovers until it finally reaches a 
similar level of original muscular activity as at day 0 (see Fig. 5).

Conclusion and Discussion
We have presented a novel approach to separate non-negative well-grounded sources from observed mixtures, 
which is geometrically principled and which, as illustrated by the real data example, can be very effective at reveal-
ing hidden sources within data. It is worth noting that there are four novel features/contributions associated with 
our work. First, we show both feasibility and optimality of the CAM model via newly proved theorems for the 
noise-free case. We prove for the first time a necessary and sufficient condition (i.e. assumption (A3)) for identi-
fying the mixing matrix in non-negative well-grounded BSS problems through edge detection. We also show the 
optimality of the edge detection strategy that identifies the data points with maximum source dominance, even 
when WGPs do not exist. Second, we develop the practical, noise-tolerant CAM algorithm, a novel BSS method 
that integrates an effective noise and outlier removal scheme based on sector-based clustering, an efficient lateral 
edge detection method on the clustered data scatter plot, and a model order selection scheme based on stability 
analysis. Third, the proposed CAM method can be uniformly applied to the exact-determined, over-determined, 
and under-determined cases for identifying the mixing matrix, while most existing methods can work in only 
one or two of the situations. Fourth, we applied CAM to analyze breast cancer DCE-MRI data and in vivo mouse 
muscle regeneration gene expression data, and obtained biomedically plausible results. On the breast cancer 
DCE-MRI data, CAM discovered intratumor vascular heterogeneity showing distinct pharmacokinetics. On the 
mouse gene expression data, CAM discovered the dynamic signals of molecular biological processes regulating 
the regeneration of skeletal muscle.

Over the past twenty years, a variety of BSS techniques have been continuously reported and tested on syn-
thetic and real data7,29–36. We provide a brief review of existing BSS methods in Supplementary Information Sectio
n 1. Some of the BSS methods also exploit the source well-groundedness assumption as CAM does. But CAM has 
key differences and advantages over these methods, such as the novel features summarized above and that CAM 
does not require the mixing matrix to be non-negative nor fully column ranked. We provide more discussion on 
the relationship between CAM and other methods in Supplementary Information Section 1. The proposed CAM 
method is largely a deterministic approach. There is usually a connection between deterministic BSS methods and 
probabilistic BSS methods37. We are currently investigating a probabilistic CAM model that combines geometric 
convex analysis with probabilistic modeling. Within a probabilistic modelling framework, information-theoretic 
criteria, such as minimum description length3, can be used for model selection to determine the source number.

The CAM algorithm uses three hyperparameters, including τ in the cone lateral edge detection algorithm, 
the sector number J in sector-based clustering, and the percentage of the small-norm data points to be excluded 
for estimating the mixing matrix. All analysis results in our study were obtained with τ =  0.001. The value of 
τ usually does not affect the analysis result, so long as it is sufficiently small. The edge detection is performed 
based on sector central rays, which usually have quite different vector directions from each other. A sector cen-
tral ray identified as an edge most likely has a significant deviation (much larger than τ) from the cone formed 
by other sector central rays. In the performance comparison experiment, we examined the performance of 
CAM with J equal to 20 and 30, which are labeled as CAM-20S and CAM-30S, respectively (see Section 3 of the 
Supplementary Information). We found both CAM-20S and CAM-30S outperform the competing methods over 
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the tested SNR range, which indicates that application of CAM with a flexible choice of J yields good performance. 
Moreover, there are methods for identifying an optimal cluster/sector number, such as the stability-based cluster 
number detection method proposed by Lange et al.14, which can be used for determining a suitable sector num-
ber. For simplicity, we fixed J at 30 when analyzing the real datasets in our study. In the data preprocessing step of 
CAM, a portion of the data points whose norms are small are excluded for the estimation of the mixing matrix. 
Section 4 of the Supplementary Information evaluates how sensitive the analysis result of CAM is to the change 
in the percentage of data points that are excluded. On both the breast cancer DCE-MRI data and the skeletal 
muscle regeneration gene expression data, the CAM outputs, including the estimated mixing matrix and sources, 
are stable when the percentage of excluded data points changes over a relatively large range, i.e. 30%~50% (see 
Section 4 of the Supplementary Information). This preprocessing step is designed to exclude the small-norm data 
points with very low local SNR that may jeopardize the CAM analysis. Excluding a sufficient portion of the data 
points, such as 30%, to avoid such low SNR data is usually a good starting point for practical use of CAM. Several 
analysis trials with different percentages of removed data points, such as 40% and 50%, can then be performed. 
These analyses may generate similar results, as we have observed in our sensitivity study. If so, this supports the 
use of the removal percentage that was initially chosen. Also, for many exploratory studies, there may exist some 
domain knowledge (although not complete) that can help indicate which analysis result is more interpretable and 
interesting.

In the analysis of muscle regeneration data, we selected 200 genes specific to each source for the pathway 
enrichment analysis. The considerations here are that many genetic pathways include no more than 200 genes 
and, thus, including too many genes in the enrichment analysis may yield enlarged p-values associated with path-
ways that are actually significantly enriched in the genes that are most specific to a source. As general guidance 
on using CAM to analyze gene expression data for biological study, 200 or a comparable number would be a good 
starting number for selecting source-specific genes in the pathway enrichment analysis.

An open-source platform-independent CAM software package in R-Java is available at: http://mloss.org/
software/view/437/.
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