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Combining Multiple Hypothesis 
Testing with Machine Learning 
Increases the Statistical Power of 
Genome-wide Association Studies
Bettina Mieth1,*, Marius Kloft2,*, Juan Antonio Rodríguez3,*, Sören Sonnenburg4, 
Robin Vobruba1, Carlos Morcillo-Suárez3, Xavier Farré3, Urko M. Marigorta5, Ernst Fehr6,†, 
Thorsten Dickhaus7,†, Gilles Blanchard8,†, Daniel Schunk9,†, Arcadi Navarro3,10,11,† &  
Klaus-Robert Müller1,12,†

The standard approach to the analysis of genome-wide association studies (GWAS) is based on testing 
each position in the genome individually for statistical significance of its association with the phenotype 
under investigation. To improve the analysis of GWAS, we propose a combination of machine learning 
and statistical testing that takes correlation structures within the set of SNPs under investigation in a 
mathematically well-controlled manner into account. The novel two-step algorithm, COMBI, first trains 
a support vector machine to determine a subset of candidate SNPs and then performs hypothesis tests 
for these SNPs together with an adequate threshold correction. Applying COMBI to data from a WTCCC 
study (2007) and measuring performance as replication by independent GWAS published within the 
2008–2015 period, we show that our method outperforms ordinary raw p-value thresholding as well 
as other state-of-the-art methods. COMBI presents higher power and precision than the examined 
alternatives while yielding fewer false (i.e. non-replicated) and more true (i.e. replicated) discoveries 
when its results are validated on later GWAS studies. More than 80% of the discoveries made by COMBI 
upon WTCCC data have been validated by independent studies. Implementations of the COMBI method 
are available as a part of the GWASpi toolbox 2.0.

The goal of genome-wide association studies (GWAS) (e.g. the WTCCC study1) is to examine the relationship 
between genetic markers such as single-nucleotide polymorphisms (SNPs) and individual traits, which are usu-
ally complex diseases or behavioral characteristics. Generally, a large number of statistical tests are performed 
in parallel, each SNP being individually tested for association2–4. The standard approach consists of computing 
individual, SNP-specific p-values corresponding to a statistical association test and comparing these p-values 
against some given significance threshold (say t*), meaning that precisely those SNPs with p-values smaller than 
t*are declared to be associated with the trait4–6. We refer to this approach as raw p-value thresholding (RPVT) 
and review some standard methods for choosing t* for the purpose of controlling multiple type I error rates 
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(in particular, the family-wise error rate (FWER) and the expected number of false rejections (ENFR)) in the 
Methods Section.

According to the GWAS catalog7,8 (last accessed 03-07-2015), the more than 1,400 GWAS published so far 
have led to the identification of more than 11,000 SNPs associated with about 800 human diseases and anthropo-
metric traits with p-values using t* =  1 × 10−5.

However, variants reported by GWAS tend to explain only small fractions of individual traits, and most of the 
heritability accounting for many complex diseases remains unexplained — a phenomenon usually referred to as 
the “mystery of missing heritability”4,9. There are several possible (not mutually exclusive) explanations for that 
phenomenon10–13. One frequently discussed possibility is that epistatic interactions between loci are ignored both 
in current heritability estimates and in usual testing procedures12,14. In addition to this issue, another shortcoming 
of current approaches based on testing each SNP independently is that they disregard any correlation structures 
among the set of SNPs under investigation that are introduced by both population genetics (linkage disequilib-
rium, LD) and biological relations (e.g. functional relationships between genes). The latter issue by itself is likely 
to introduce confounding factors and artifacts, implying a loss in statistical power15 and a lack of reliable insights 
about genotype-phenotype associations.

In this work, we propose a novel methodology — COMBI — that is a principled, reliable, and replicable 
method for identifying significant SNP-phenotype associations. The core idea is a two-step algorithm consisting of

1. a machine learning and SNP selection step that drastically reduces the number of candidate SNPs by select-
ing only a small subset of the most predictive SNPs; and

2. a statistical testing step where only the SNPs selected in step 1 are tested for association.

The main idea underlying COMBI is the use of the state-of-the-art machine learning technique support vector 
machine (SVM)16–18 in the first step. Crucially, this method is tailored to predict the target output (here, the phe-
notype) from high-dimensional data with a possibly complex, unknown correlation structure. In our application, 
the SVM is trained using the complete SNP data of one chromosome. Thus, the first step acts as a filter, indicating 
SNPs that are relevant for phenotype classification with either high individual effects or effects in combination 
with the rest of SNPs, while discarding artifacts due to the correlation structure. The second step uses multiple 
statistical hypotheses testing for a quantitative assessment of individual relevance of the filtered SNPs. All in all, 
the two steps extract complementary types of information, which are combined in the final output. Importantly, 
the calibration of the method is such that a global statistical error criterion is controlled for the entire procedure 
consisting of steps 1 and 2.

The following section first introduces the methodology in a summary paragraph and in Fig. 1; then, the 
Methods Section continues to explain the method in more detail with some references to Supplementary Section 1.  
An overview of related machine learning work is given in the Discussion Section. The performance of the COMBI 
method is reported in the Results Section, Supplementary Sections 2 and 3; where we also include and discuss the 
highly favorable comparisons with the algorithms that could potentially compete with the COMBI method. Note 
that COMBI yields better prediction with fewer false (i.e. non-replicated) and more true (i.e. replicated) discover-
ies when its results are validated on later, larger GWAS studies.

Implementations of the COMBI method are available in R, MATLAB, and JAVA, as a part of the GWASpi 
toolbox 2.0 (https://bitbucket.org/gwas_combi/gwaspi/).

Methods
Summary of The COMBI Method. Figure 1 shows a graphical representation of the COMBI method.

Input: a sample of observed genotypes {xi*} and corresponding phenotypes {yi}. We represent the j-th SNP of 
the i-th subject with a binary genotypic encoding, where xij =  (1, 0, 0), xij =  (0, 1, 0), or xij =  (0, 0, 1), depending on 
the number of minor alleles. We assume a binary phenotype, i.e., yi ∈  {+ 1, − 1}.

(I)   Machine learning and SNP-selection step (colored in red).
Based on the sample, an SVM is trained. The SVM returns a linear function f(x) =  wTx, the sign of f(x) is a predic-
tion of the unknown phenotype of a previously unseen genotype x. The absolute value |wj| of the corresponding 
component of the parameter vector w is interpreted for each SNP j as a measure of importance for the prediction 
function.The parameter vector w is then post-processed through a p-th-order moving average filter with window 
size l, that is, | | = ∑ = − −

+ −w w:j
new

h j l
d j l

h
p

max(1, ( 1)/2)
min( , ( 1)/2)p . Finally, the SNPs corresponding to the k largest values of the 

scores are selected; all other SNPs are discarded.

(II)   Statistical testing step (colored in blue).
A hypothesis test (carried out as a χ2 test) is performed for each of the selected SNPs. Those SNPs with p-value 
less than a significance threshold t* are returned. The threshold t* is calibrated using a permutation-based method 
over the whole procedure consisting of the machine learning selection and statistical testing steps. See Algorithm 2  
for details.

Problem Setting and Methodology. In this section, we formally describe the statistical problem under 
investigation and propose a novel methodology for tackling it — based on a combination of machine learning 
and statistical testing techniques.

Problem Setting and Notation. Let n denote the number of subjects in the study and d the number of SNPs 
under investigation. Given a sample of observed genotypes = ∈

≤ ≤ ≤ ≤
×x x( )ij i n j d

n d
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phenotypes = … ∈y y y( , , )n
n

1 , each xi* and each x*j corresponds to a subject and a SNP, respectively. A binary 
feature encoding is employed, where xij =  (1, 0, 0), xij =  (0, 1, 0), or xij =  (0, 0, 1) depending on the number of 
minor alleles in SNP j of subject i. This paper focuses on binary phenotypes, i.e., yi ∈  {+ 1, − 1} for all i =  l, … , n. 
The data for one particular SNP can be summarized in a contingency table (See Table 1).

The numbers nik denote the number of cases (i =  1) and controls (i =  2), respectively, which exhibit the geno-
type corresponding to column k. Notice that the row sums n1. and n2. are fixed and non-random by the experi-
mental design (case-control study). Hence, the random vectors (n11, n12, n13)T and (n21, n22, n23)T follow a 
multinomial distribution with three categories, sample sizes n1. and n2., respectively; and unknown vectors of 
probabilities p1 =  (p11, p12, p13)T and p2 =  (p21, p22, p23)T, respectively. The parameter ϑ = ϑ

= …
( )j j d1, ,

 of the statis-

tical model for the whole study thus consists of all such pairs ϑ = p p( , )j
j j

1
( )

2
( )  of multinomial probability vectors, 

one for each of the d SNPs under investigation. For every SNP j, we are interested in testing the null hypothesis 
=p pH :j

j j
1
( )

2
( ), where we introduced the superscript j to indicate the SNP. This hypothesis is equivalent to the null 

hypothesis that the genotype at locus j is independent of the binary trait of interest. Two standard asymptotic tests 
for Hj versus its two-sided alternative Kj (genotype j is associated with the trait) are: the chi-square test for associ-
ation and the Cochran-Armitage trend test (see, e.g., Sections 3.2.1 and 5.3.5 of the monograph by Agresti19). 
Both tests employ test statistics which are asymptotically (as min(n1., n2.) tends to infinity) chi-square distributed 
under Hj; the number of degrees of freedom equals 2 for the chi-square test for association, and 1 for the 
Cochran-Armitage trend test. Thus, p-values (pj: 1 ≤  j ≤  d) corresponding to these tests can be calculated by 
applying the upper-tail distribution function of the chi-square distribution with the corresponding degrees of 
freedom to the observed values of these statistics, and this for every SNP. Observe that the test statistics obtained 
for different SNPs will be highly correlated if these SNPs are in strong LD to each other; consequently, the corre-
sponding p-values will also exhibit strong dependencies20,21.

Figure 1. The COMBI method - Summary and illustration of the methodology. Receiving genotypes and 
corresponding phenotypes of a GWAS as input, the COMBI method first applies a machine learning step to 
select a set of candidate SNPs and then calculates p-values and corresponding significance thresholds in a 
statistical testing step.

A1A1 A1A2 A2A2 ∑

Y =  + 1 n11 n12 n13 n1.

Y =  − 1 n21 n22 n23 n2.

∑ n0.1 n0.2 n0.3 n

Table 1.  Tabular representation of single SNP data. Single SNP data are summarized in categories according to 
phenotypes (cases, Y =  + 1, and controls, Y =  − 1) and genotypes (A1A1, A1A2 and A2A2). The numbers nik denote 
the numbers of individuals within the corresponding groups. n is the total number of subjects in the study.
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RPVT declares a SNP j significantly associated with the trait if pj ≤  t*. If there was a single test to perform  
(i.e., d =  1), then t* would be taken as a pre-defined significance level α , as in the classical approach to statistical 
hypothesis testing. In multiple testing, however, the threshold t* is modified to take the multiplicity of the problem (the 
fact that d >  1) into account. The simplest method is the so-called Bonferroni correction, = α⁎t

d
. This choice guaran-

tees that the FWER (that is, the probability of one or more erroneously reported associations) of the multiple test is 
bounded by α . A variety of other RPVT methods are explained, for instance, in the monograph by Dickhaus22.

Proposed workflow. The Bonferroni correction can only attain the prescribed FWER upper bound, and there-
fore have maximal power, if the p-values (pj:1 ≤  j ≤  d) do not exhibit strong (positive) dependencies, an assumption 
which is violated in GWAS due to strong LD in blocks of SNPs. An alternative way to calibrate the threshold t* for 
FWER control, taking the dependencies into account, is the Westfall-Young permutation procedure23, which con-
trols the FWER under an assumption termed subset pivotality (see Westfall and Young23 as well as Dickhaus and 
Stange21). Furthermore, Meinshausen et al.24 proved that this permutation procedure is asymptotically optimal in 
the class of RPVT procedures, provided that the subset pivotality condition is fulfilled. However, for RPVT the indi-
vidual p-value for association of the j-th SNP only depends on x*j and thus ignores the possible correlations with the 
rest of the genotype – which could yield additional information. By contrast, machine learning approaches aimed 
at prediction try to take the information of the whole genotype into account at once, and thus implicitly consider all 
possible correlations, to strive for an optimal prediction of the phenotype. Based on this observation, we propose 
Algorithm 1 combining the advantages of the two techniques, consisting of the following two steps:

•	 the machine learning step, where an appropriate subset of candidate SNPs is selected, based on their relevance 
for prediction of the phenotype;

•	 the statistical testing step, where a hypothesis test is performed together with a Westfall-Young type threshold 
calibration for each SNP.

Additionally, a filter first processes the weight vector w output in the machine learning step before using it for 
the selection of candidate SNPs. The above steps are discussed in more detail in the following sections.

The machine learning and SNP selection step. The goal in machine learning is to determine, based on 
the sample, a function f(x) that predicts the unknown phenotype y based on the observation of genotype x. It is 
crucial to require such a function to not only capture the sample at hand, but to also generalize, as well as possible, 
to new and unseen measurements, i.e., the sign of f(x) is a good predictor for y for previously unseen patterns x 
and labels y. We consider linear models of the form fw,b(xi*) =  wTxi* +  b in this paper. A popular approach to learn-
ing such a model is given by the SVM16–18, which determines the parameter w of the model by solving, for C >  0, 
the following optimization problem:

∑∈ + − .
=

⁎w w C y w xargmin max(0, 1 )
(1)w

i

n

i i2
2

1

T

The problem above is similar to regression problems and can be interpreted as follows: we aim to minimize the 
trade-off (controlled by C) between a vector w with small norm (the term on the left-hand side) and small errors 
on the data (the term on the right-hand side). Once a classification function f has been determined by solving the 
above optimization problem, it can be used to predict the phenotype of any genotype by putting

= = .y f x w xsign( ( )) sign( ) (2)new new new
T

The above equation shows that the largest components (in absolute value) of the vector w (called SVM param-
eter or weight vector) also have the most influence on the predicted phenotype. Note that the weights vector 
contains three values for each position due to the feature embedding, which encodes each SNP with three binary 
variables. To convert the vector back to the original length, we simply take the average over the three weights. We 
also include an offset by including a constant feature that is all one.

Considering that the use of SVM weights as importance measures is a standard approach25, for each j the score 
abs(wj) can be interpreted as a measure for the importance of the j-th SNP for the phenotype prediction task. The main 
idea is to select only a small number k of candidate SNPs before statistical testing, namely those SNPs having the largest 
scores. Based on preliminary experiments, we noticed that the introduction of the following additional post-processing 
of the SVM parameter vector was beneficial before SNP selection: a pth-order moving average filter is applied as follows:

∑=
= − −

+ −

w w:
(3)

j
new

k j l

d j l

k
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min( , ( 1)/2)
p

where l ∈  1, … , d denotes a fixed filter length (required to be an odd number). The value p ∈  ]0, ∞ [ is a free 
parameter; in the case p =  1, a standard moving average filter is obtained.

The statistical testing step. In the statistical testing step (see Summary of the COMBI method and Fig. 1), 
we apply p-value thresholding only to the k p-values which correspond to the SNPs with largest filtered SVM 
weights. Calculation of these p-values is performed exactly as described above for RPVT, with the only modifica-
tion that p-values for SNPs not ranked among the top k in terms of their filtered SVM weights are set to 1, without 
calculating a test statistic.
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The methodological challenge now consists of finding a threshold t* for the remaining k p-values such that the 
FWER is controlled for the multiple test which the entire workflow defines (SVM training, filtering of weights, 
p-value calculation, p-value thresholding). To this end, we investigated prior approaches26,27 based on sample 
splitting meaning that the selection of k SNPs is done on one (randomly chosen) sub-sample of individuals, while 
the p-value calculation and thresholding for the selected SNPs is performed on another. In this scheme, and 
regardless of which SNP selection method used on the first sub-sample, a Bonferroni-type threshold = α⁎t

k
 guar-

antees FWER control at level α for the p-values computed on the second sub-sample. Since k ≪  d, this correction 
is much less conservative than the original Bonferroni correction using all SNPs. However, this is severely miti-
gated by the loss of power in the p-values due to the sample splitting. In fact, computer simulations (See 
Supplementary Section 2.2.4.) indicated very low power for detecting true associations with such a method 
because of the reduced sample size for calculation of test statistics and p-values.

Our suggestion is to re-sample the entire workflow of Fig. 1, thus following a Westfall and Young23 type proce-
dure, and to choose t* based on the permutation distribution of the re-sampled p-values.

In summary, the proposed methodology is formally stated as Algorithm 1.

Algorithm 1
The Combi Method.
Require: genotypes x =  (xij) and phenotypes y =  (yi), a reasonable upper bound k ∈   
{1, … , d} for the number of informative SNPs, and an FWER level α 
1:   train an SVM using genotypes x and phenotypes y, resulting in scores w1, … , wd

2:   filter the weights w1, … , wd according to (3)
3:    let w*(k) denote the k-th largest of the wj’s in absolute value and re-number the  

corresponding positions from 1, … , k
4:   for all j =  1,… ,k do
5:      compute the p-value of the j-th SNP pj(x*j, y)
6:   end for
7:    decide that SNP j is associated with the trait if wj ≥  w*(k) and pj <  t*, where  

t* ≡  t*(k, a) is chosen as the α -quantile of the permutation distribution of the smallest  
of the k p-values (see Algorithm 2 for details)

Return predicted set of informative SNPs.

FWER control at level α  of the multiple test defined by Algorithm 1 can be proven under a relaxed form of the 
subset pivotality condition, the validity of which is checked empirically in Supplementary Sections 2.2.1 and  
2.2.2. To describe this condition formally, let 0 denote any probability measure under the global null hypothesis 
of no informative SNPs in {1, … , d} at all. We assume that the following condition holds true: Let p* denote the 
smallest of the k p-values corresponding to the positions picked by the SVM method for which the null hypothesis 
of no association between SNP and trait is true. Regarding p* as a random variable, assume that its distribution 
under the true data-generating distribution ϑ (which is unknown) is stochastically not smaller than under 0.

The distribution under 0 of the k p-values corresponding to positions chosen by applying the SVM method 
is now estimated by the resampling procedure given below as Algorithm 2. The algorithm repeatedly assigns a 
random permutation of the phenotypes yπ(1), … , yπ(n) to the observed genotypes x1*, … , xn*. The empirical lower 
α-quantile of the smallest of these k p-values is then a valid choice for t* in the sense that the FWER for the entire 
procedure defined by Algorithm 1 is bounded by α.

Algorithm 2
Resampling-based threshold determination for Combi method.
Require: genotypes x =  (xij) and phenotypes y =  (yi), the number k ∈  {1, … , d} as in  
Algorithm 1, an FWER level α , and a number B of Monte Carlo repetitions
1:   for b =  1, … , B do
2:      pick a random permutation π  and set y(b) =  (yπ(1), … , yπ(n))
3:       carry out steps 1–6 in Algorithm 1 with taking y(b) as phenotypes, resulting in  

corresponding p-values pj(x*j, y(b))
4:      store the smallest of the k computed p-values as pmin

(b). 
5:   end for
6:   Order the ≤ ≤p b B: 1b

min
( )  increasingly as ≤ ≤p b B( : 1 )b

ordered
( ) .

Return the value α∗p B
ordered
( )
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Note that the choice k =  d leads to skipping the SVM step and arriving at the popular MinP procedure, origi-
nally proposed in Westfall and Young23. Following the argumentation in Dudoit and van der Laan28, it is also 
possible to control the generalized FWER (gFWER) with parameter l ≥  1with the aforementioned resampling 
scheme as well as the ENFR. For gFWER control with parameter l, one has to consider the (l +  1)th-smallest of the 
re-sampled p-values, instead of p b

min
( )  in Algorithm 2. For ENFR control, one has to store all B * k computed 

p-values and determine the p-value threshold that leads to an average number of rejections (over the B Monte 
Carlo repetitions) which matches the desired ENFR level. Moreover, so-called augmentation techniques28 can be 
utilized to control the false discovery rate (FDR) instead of the FWER.

Results
Validation. Validation using simulated phenotypes. To assess the performance of the proposed COMBI 
method in comparison to other methods in a controlled environment, we conducted a number of simulation 
experiments with semi-real data. A block of 10,000 genotypes were taken from real WTCCC data1 without break-
ing linkage, but the phenotypes were synthetically generated according to a known model. This ensures that the 
“basic truth” is known (allowing us to compute the number of true and false positives for each method in the 
comparison). We show that COMBI outperforms the most commonly used methods for GWAS on these data sets. 
For instance, it achieves higher true positive rates for all family-wise error levels than any other method that we 
have investigated26,29,30, including RPVT. In comparison to RPVT, the gain in true positive rate is up to 80%. For a 
detailed description and analysis of the semi-real data simulations, see Supplementary Section 2.

Validation using WTCCC data. We then compared the performance of the COMBI method to that of other 
methods when applied to data from the 2007 WTCCC phase 1, consisting of 14,000 cases of seven common 
diseases and 3,000 shared controls (see Supplementary Section 3 for further information). In contrast to the sim-
ulations described above, the true underlying architecture of the traits under study is largely unknown. Hence, 
we used replicability in independent studies, one of the standards in the field, as a measure of performance. In 
summary, we proceeded as follows: the application of some method (for instance, COMBI or RPVT) to the 
2007 WTCCC data results in a list of SNPs that are potentially associated with the trait (this is illustrated on the 
left-hand side of Fig. 2).

We then evaluated this list of potentially associated SNPs for replicability on independent data to obtain the 
“List of confirmed associated SNPs” (illustrated on the right-hand side of Fig. 2). All studies for the WTCCC 
diseases included in the GWAS catalog by June 26, 2015 constituted the set of studies examined for replicability. 
Most of these studies were performed either with larger sample sizes or using meta-analysis techniques and were 
published after the original WTCCC paper. In a sense, we thus examined how well any particular method, when 
applied to the WTCCC dataset, is able to make discoveries in that dataset that were actually confirmed by later 
research using RPVT in independent publications.

Our validation procedure considers a physical window of 200kb around a certain SNP and selects all SNPs 
with strong LD (R2 >  0.8) with the original SNP within that window. It queries the GWAS catalog for those SNPs 
to find out whether the selected SNPs have any entries. A hit indicates that a GWAS other than the original 
WTCCC study has since reported this SNP to be associated with the disease. Note that the GWAS catalog only 
contains SNPs with p-values <  10−5, meaning that we will miss some hits that are statistically weak but that might 
be biologically relevant, in the sense that they contribute to the classification of individuals according to phe-
notypes. For a detailed description of the automatic validation procedure, see Supplementary Section 3.2. With 
this procedure, methods can be compared by counting the respective number of replicated and non-replicated 
reported associations.

Figure 2. Illustration of validation methodology. After producing a list of associated SNPs via an appropriate 
inference method (i.e. COMBI or RPVT), the GWAS catalog is used in an independent validation step to 
confirm or refute those candidate SNPs accessing the predictability of the used inference method.
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Regarding significance levels, we aimed to stay as close in line with the original WTCCC study as possi-
ble, reporting not only the strong associations at the significance level of 5 ×  10−7 but also weak associations 
at 1 ×  10−5. Within our validation pipeline we considered the full NHGRI GWAS Catalog7 with the inclusion 
criterion of having achieved a p-value of 1× 10−5 in a GWAS. The “somewhat liberal statistical threshold of  
p < 1 ×  10−5 was chosen to allow examination of borderline associations and to accommodate scans of various sizes 
while maintaining a consistent approach”7.

We also ensured that the same statistical criterion (control of the FWER or the ENFR, respectively) was used 
for all methods, in order to have a fair comparison. This procedure is explained in detail in the Methods Section 
and Supplementary Section 1.1.1.

Stability analysis. In addition, we established an “internal” validation by analyzing the stability of the reported 
associations (cf. Supplementary Section 3.4 for details); this stability measure indicates how well results can be 
reproduced on another independent sample.

Parameter selection. The analysis of WTCCC data required the selection of all free parameters of the COMBI 
method (e.g. the SVM optimization parameter C, the window size l of the moving average filter or the filter norm 
parameter p). To this end, the semi-real datasets investigated in Supplementary Section 2 have been used to 
determine performance changes induced by varying those free parameters. Since our findings were in agreement 
with related literature and mostly biologically sensible, the optimal settings were assumed to be good choices 
for the application of the COMBI method to real data. For example, it was found that aggregating SNPs within 
the filtering step (See Summary of the COMBI method and Fig. 1, the filtering step) based on a filter size of 35 is 
optimal, which is on the same magnitude as in Alexander and Lange31 who find that grouping of SNPs into bins of 
size 40 helps the performance of their algorithm. The moving average filter of the COMBI method is designed to 
correct for non-independence of statistical tests within LD blocks. Given the SNP density in the arrays used by the 
original WTCCC study and LD patterns in the CEU population (1000 Genomes), we estimate that the average LD 
block (r2 >  0.8) will harbor no more than 20–30 SNPs32, which supports our findings of setting the filter window 
size to 35 in the sense that we average-out blocks and conservatively add a bit of noise by potentially smoothing 
out signals across blocks.

See Supplementary Section 1.1 for a detailed description of the selection of all free parameters of the COMBI 
method.

Figure 3. Genome-wide scan for seven diseases. Manhattan plots for all seven diseases resulting from the 
standard RPVT approach and the COMBI method as well as the SVM weights. We plot − log10 of the χ 2 
trend test p-values for both COMBI and RPVT and the corresponding SVM weights against position on each 
chromosome. Chromosomes are shown in alternating colours for clarity, with significant p-values highlighted 
in green. Please note that for the RPVT, the threshold indicated by the horizontal dashed line is fixed a priori 
genome-wide. For the COMBI method, it was determined chromosome-wise via the permutation-based 
threshold over the whole COMBI procedure. All panels are truncated at − log10 (p-value) =  15, although some 
markers exceed this significance threshold.



www.nature.com/scientificreports/

8Scientific RepoRts | 6:36671 | DOI: 10.1038/srep36671

Some parameters of the COMBI method could not be investigated within the simulation study, but had to be 
chosen manually for the WTCCC data. The decision to train the SVM separately on each chromosome was one of 
those tuning steps, as genome-wide training is very time and memory consuming on the one hand, and can only 
improve performance marginally on the other hand, as intergenic correlations between chromosomes are very rare.

Another parameter that was chosen manually was the number of active SNPs in one chromosome, i.e. the 
parameter k of The Screening Step presented in the Methods Section, which was set to 100 SNPs per chromosome 
after careful consideration. This choice is admittedly a wide, arbitrary upper bound for the number of SNPs that 
can present a detectable association with a given phenotype. Currently, the maximum total number of SNPs 
(not independent signals) associated with any phenotype is ~450 for human height and 180 for Crohn’s Disease 
(GWAS Catalog, accessed June 2015), so with k =  100 per chromosome one is well within what current evidence 
would support. After all, for future applications of COMBI k is a tuning parameter which has to be chosen by the 
researcher according to the assumed number of relevant loci.

The choice of exact values for all parameters will probably need to be adapted for each particular phenotype 
or disease under study, since they will have different genetic architectures and distribution of effect sizes4,9. For 
this manuscript and in order to provide a comprehensive and comparable set of results across many diseases we 
employed a unique set of parameter values supported by the results of our simulation study and other findings in 
related literature.

Manhattan plots and descriptive results. Figure 3 displays Manhattan plots for all seven diseases result-
ing from the standard RPVT approach (left) and the COMBI method (center) as well as the SVM weights (right). 
The center and right graph illustrates that the COMBI method discards SNPs with a low SVM score (cf. “The 
screening step” in Summary of the COMBI method and Fig. 1). Hence, the p-values for such SNPs are set to 
one without performing a statistical test, thereby drastically reducing the number of candidate associations. In 
contrast, the RPVT method results in p-values based on a formal significance test for every SNP, where many 
of these p-values are small and produce a lot of statistical noise. SNPs that show genome-wide statistical sig-
nificance are highlighted in green in the left and right panel. For the standard RPVT, the threshold indicated 
by the horizontal dashed line is fixed a priori genome-wide. For the COMBI method, however, it was deter-
mined chromosome-wise via the permutation-based threshold over the whole COMBI procedure described in 
the Methods Section and Supplementary Section 1.1.1 to match the expected number of false rejections of RPVT.

In Table 2, we present all significant associations reported by the COMBI method. Associations with a raw 
p-value >  10−5 were not reported in studies using only RPVT. If they are selected by the COMBI method, we 
consider them to be new findings and highlight them in grey. The last column of Table 2 indicates whether the 
reported associations were validated (i.e., were reported as significant in at least one independent study published 
after the WTCCC). The COMBI method finds 46 significant locations. 34 of these 46 significant locations have a 
p-value below 10−5 and were thus also found by the RPVT approach.

Crucially, our COMBI method found 12 additional SNPs. Out of these, ten (> 83%) have already been rep-
licated in later GWAS or meta analyses. The COMBI discoveries that have been replicated independently using 
individual SNP testing are for bipolar disorder rs2989476 (Chr. 1), rs1344484 (Chr. 16), rs4627791 (Chr. 3), and 
rs1375144 (Chr. 2); for coronary artery disease rs6907487 (Chr. 6) and rs383830 (Chr. 5); for Crohn’s disease 
rs12037606 (Chr. 1), rs10228407 (Chr. 7), and rs4263839 (Chr. 9) and for type 2 diabetes rs6718526 (Chr. 2). 
Given the current debate on the replicability of GWAS findings obtained by single-SNP analyses33, it is remarka-
ble that GWAS studies published later had already replicated more than 83% of novel SNPs the COMBI method 
detected by reanalyzing data published in 2007.

Two out of the 12 SNPs with p-values exceeding 10−5 had not yet been reported in any GWAS or meta anal-
yses as being associated with the corresponding diseases. Those are rs11110912 (Chr. 12) for hypertension and 
rs6950410 (Chr. 7) for type 1 diabetes. SNP rs11110912 was included in the original WTCCC analysis, but a 
p-value higher than 10−5 was obtained (1.94 × 10−5)1, so it was not collected in the GWAS Catalog. SNP rs6950410 
has been detected as associated to multiple complex diseases34. Regarding the biological plausibility of these two 
SNPs, we examined a number of functional indicators to assess their potential role in disease. In particular, we 
explored the genomic regions in which they map and their potential roles as regulatory SNPs, status as eQTLs, and 
role in Mendelian disease. Overall, there is no strong evidence of functional roles (see Supplementary Section 3.5)  
but SNP rs11110912 (Chr. 12), for which COMBI suggested a link to hypertension, is an intronic SNP mapping 
on a gene, MYBPC1, that has been previously linked to familial hypertrophic cardiomyopathy, suggesting that 
COMBI has given rise to another interesting true positive finding.

GWAS catalog validation results – results obtained by the COMBI method are better replicated 
than those obtained by RPVT. The COMBI method also outperforms the RPVT approach for different 
type 1 error levels. Figure 4 shows the receiver operator characteristic (ROC) and precision-recall (PR) curves 
that have been generated based on the replication of SNPs according to the GWAS catalog (here, due to absence 
of basic truth knowledge, replicated reported associations are counted as true positives, and non-replicated asso-
ciations as false positives). As the dark blue lines are consistently above the light blue lines, the COMBI method 
achieves both higher numbers of true positives (i.e. higher true positive rate (TPR)) as well as a higher precision 
(proportion of replicated associations amongst the SNPs classified as associated with the trait) for given numbers 
of false and true positives (i.e. lower false positive rate (FPR)) than RPVT for almost all levels of error. For com-
parison, we show also the result achieved when selecting SNP based on the highest SVM weights in absolute value 
(after filtering). The results show that discarding either one of the two steps in the COMBI method (machine 
learning or statistical testing step) will lead to a decrease in performance.
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We now investigate the points on the curves that correspond to the application of t* =  10−5 in the case of 
RPVT and to the value of t* resulting from the permutation-based method in the case of the COMBI method 
(described in the Methods Section) in more detail. See Table 3 for the numbers corresponding to those points. 

Disease Chromosome Identifier χ2 p-value
SVM 

weight

p-value < 10−5 in at least 
one external GWAS or 

meta-analysis References (PMID)

Bipolar disorder (BD) 1 rs2989476 1.05e-05 0.0141 YES 19416921

2 rs1375144 1.26e-05 0.0146 YES 21254220

2 rs7570682 1.77e-06 0.0150 YES 21254220

3 rs4627791 1.18e-05 0.0150 YES 21254220

14 rs11622475 8.02e-06 0.0235 YES 21254220

16 rs1344484 1.10e-05 0.0245 YES 21254220

9 rs7860360 1.82e-06 0.0174

20 rs3761218 7.15e-06 0.0243 YES 21254220

Coronary artery disease 5 rs383830 1.35e-05 0.0174 YES 21804106

( CAD) 6 rs6907487 1.22e-05 0.0145 YES 17634449

9 rs1333049 1.12e-13 0.0262 YES 21606135

22 rs688034 2.75e-06 0.0287

Crohn’s disease (CD) 1 rs11805303 6.35e-12 0.0234

1 rs12037606 1.02e-05 0.0142 YES 17554261

2 rs10210302 4.52e-14 0.0224 YES 23128233

3 rs11718165 2.04e-08 0.0163 YES 21102463

5 rs6596075 3.11e-06 0.0168

5 rs17234657 2.42e-12 0.0305 YES 18587394

7 rs10228407 1.08e-05 0.0160

9 rs4263839 1.61e-05 0.0201 YES 21102463

10 rs10883371 5.23e-08 0.0227 YES 21102463

16 rs2076756 7.55e-15 0.0361 YES 21102463

18 rs2542151 1.93e-07 0.0246 YES 18587394

Hypertension (HT) 1 rs2820037 7.41e-07 0.0155

12 rs11110912 1.58e-05 0.0197

15 rs2398162 6.01e-06 0.0230

Rheumatoid arthritis 1 rs6679677 < 1.0e-15 0.0243 YES 20453842

(RA) 4 rs3816587 7.28e-06 0.0163

6 rs9272346 7.38e-14 0.0239

Type 1 diabetes (T1D) 1 rs6679677 < 1.0e-15 0.0247 YES 19430480

2 rs231726 1.43e-06 0.0129

4 rs17388568 3.07e-06 0.0175 YES 21829393

5 rs17166496 5.97e-06 0.0148

6 rs9272346 < 1.0e-15 0.0792 YES 18978792

7 rs6950410 1.03e-05 0.0172

12 rs17696736 1.55e-14 0.0223 YES 18978792

12 rs11171739 8.36e-11 0.0244 YES 19430480

16 rs12924729 7.86e-08 0.0285 YES 17554260

Type 2 diabetes (T2D) 2 rs6718526 1.00e-05 0.0159 YES 20418489

4 rs1481279 9.44e-06 0.0173

4 rs7659604 9.61e-06 0.0175

6 rs9465871 3.38e-07 0.0162

10 rs4506565 5.01e-12 0.0267 YES 23300278

12 rs1495377 7.21e-06 0.0196

16 rs7193144 4.15e-08 0.0293 YES 22693455

18 rs1025450 1.98e-06 0.0271

Table 2.  Association analysis of the SNPs reaching genome-wide significance applying the COMBI 
method. For all seven diseases we present SNPs reaching genome-wide significance along with their rs-
identifier, corresponding chromosome, χ 2 trend test p-value, SVM weight and the result of the validation 
pipeline indicating whether the SNP has been found significant with a p-value <  10−5 in at least one external 
GWAS or meta-analysis. PMID references of those studies are given in the last column. SNPs that do not show 
genome-wide significance in the case of RPVT are highlighted in bold case.
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A total of 78 SNPs were found to be significant with RPVT, since it only performs the statistical testing step, and 
46 with the COMBI method, which has the additional layer of the machine learning screening step prior to the 
statistical testing.

Although the COMBI method finds fewer SNPs, the number of replicated SNPs is greater (28 in contrast to 24 
of RPVT). The COMBI method also classifies only 18 of the unreplicated SNPs as associated with the trait (yield-
ing a precision of 61%). This is in contrast to RPVT, which classifies 52 of the unreplicated SNPs as associated 
with the trait (yielding a precision of only 32%). In other words, if both methods are calibrated with respect to the 
same type I error criterion, the COMBI method reports significantly more replicated associations (Fisher’s exact 
test p-value of 0.0014).

Stability results – COMBI method is more stable than RPVT. From simulations considering internal 
stability, we found that the COMBI method produces more stable results than RPVT; cf. Supplementary Section 
3.4 for details.

Runtime analysis and implementation details. The COMBI method is implemented in Matlab/Octave, 
R and Java as a part of the GWASpi toolbox 2.0 (https://bitbucket.org/gwas_combi/gwaspi/). The complete 
method is available in all these programming languages. The implementation for Matlab/Octave is cluster ori-
ented and uses libLinear35. The Java implementation is desktop computer oriented and makes use of the following 
packages: libLinear35, libSVM36 and apache commons math37. Finally, the R implementation requires LiblineaR38, 
qqman39, data.table40, gtools41 and snpStats42.

Figure 4. ROC and PR curves of the RPVT approach, the COMBI method and raw SVM weights using 
the independent validation pipeline as an indicator of replicability. The results of all seven diseases have 
been pooled. The curves have been generated based on the replication of SNPs according to the GWAS catalog. 
Replicated reported associations are counted as true positives, and non-replicated associations as false positives. 
Note that the COMBI lines end at some point and the RPVT and the raw SVM lines continue. At the endpoint 
of the COMBI curve all SNPs selected in the SVM step are also significant in the statistical testing step; i.e. if 
one wanted to add just one more SNP to the list of reported associations, all other SNPs would also become 
significant, as they have a p-value of 1. The points on the RPVT and COMBI lines represent the final results of 
the two methods when applying the corresponding significance thresholds and are described in more detail in 
Table 3.

Number of SNPs reaching significance applying

RPVT COMBI Method

SNPs that have achieved < 10−5 in at least one external study 24 (32% precision) 28 (61% precision)

SNPs that have not achieved < 10−5 in an external study 52 (68% error) 18 (39% error)

Overall 76 46

p-value (one-sided Fisher’s exact test) 0.0014

Table 3.  Empirical evaluation of the performance of the COMBI method on the WTCCC data, relative to 
that of basic RPVT. The table represents the information given by the points on the RPVT and COMBI lines in 
Fig. 4. The final results of the two methods when applying the corresponding significance thresholds are shown. 
At significance threshold t* =  10−5, COMBI achieves 28 SNPs recall at precision 61%, while RPVT achieves a 
recall of only 24 SNPs at precision 32%.

https://bitbucket.org/gwas_combi/gwaspi/
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The runtime of the method depends on a variety of factors such as available cluster memory, hardware 
resources and operating system. For this analysis we have run the method with the Matlab/Octave implemen-
tation on the following technical platform: 40 * Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz 64bit, 128GB 
RAM, Ubuntu 14.04.4 LTS (GNU/Linux 3.13.0–79-generic x86_64), GNU Octave version 3.8.1. The analysis of 
WTCCC’s data on Crohn’s disease chromosome 18 (assuming calculations on more chromosomes can be com-
puted in parallel if necessary) took 9h 15min and 24s. See Supplementary Section 3.7 for a more detailed runtime 
analysis.

Discussion
Several related machine learning methods have been successfully used in the context of statistical genomics. 
These approaches can be classified into two groups:

1. Methods that construct a model from genetic data in order to carry out accurate predictions on a phenotype43–56.
2. Methods that use machine learning to construct a statistical association test or rank genetic markers according  

to their predicted association with a phenotype30,31,57–67.

The set of papers that fall into the first category study the predictive performance of penalized regression and 
classification models including support vector machines16–18, random forests68, and sparsity-inducing methods 
such as the elastic net69 on various complex diseases (including the ones studied here), showing that machine 
learning methods such as SVMs – if appropriately applied - can perform well at predicting disease risks. See 
Supplementary Section 3.3, where we compare the prediction performance of various methods on the WTCCC 
data.

However, the main point of interest of the present contribution does not lie in risk prediction but rather in the 
identification of regions associated with diseases. The COMBI method should thus be compared to true alterna-
tive methods that stem from the second category, some of which include two-stage approaches first performing 
statistical testing and then machine learning to refine the set of predicted associations30,57. These approaches, 
however, are unable to identify correlation structures of SNPs that have been excluded in the first step and neither 
method is validated on real data in terms of a comparison to the GWAS database. Similarly, Pahikkala et al.59 and 
He and Lin60 develop methods for ranking genetic markers based on the sure independence screening strategy70 
and stability selection analyzing only one SNP at a time. Recently the approach has been extended to detect 
gene-to-gene interactions by Li et al.71, but neither of the methods have been validated on independent external 
studies.

Another approach is by Alexander and Lange31, who apply the stability selection method of Meinshausen and 
Bühlmann58 to the WTCCC data set to rank SNPs according to their predicted association with a phenotype. The 
authors find that stability selection effectively controls the FWER when applied to GWAS data but suffers a loss of 
power, while at the same time rendering conservative results.

The work that is probably most closely related to the present research is the two-step algorithm by Wasserman 
and Roeder27 (and the extension by Meinshausen et al.26), who split the data into two equal parts performing 
marker selection on the first part and then testing the selected markers on the second part. See Supplementary 
Section 2.2.4 for a detailed description of this approach.

In order to investigate and compare performance of the COMBI method to other machine learning 
approaches, the work of Roshan et al.30, Wasserman and Roeder27 and Meinshausen et al.26 are selected as repre-
sentative baseline methods. In Supplementary Section 2.2.4, we show that the COMBI approach outperforms all 
of these methods on semi-real data.

An important and very closely related recent method by Lippert et al.14,72 aims to identify putative significant 
disease-marker associations using two approaches based on linear mixed models (LMMs): a univariate test and 
a test for pairwise epistatic interactions. LMMs, like COMBI, address the issue of population stratification in 
GWAS, cf. Mimno et al.73. However, in contrast to COMBI, they still test SNPs (or pairs of SNPs) individually 
one after the other and thus potentially lose detection power. Another possible shortcoming of LMMs and related 
methods over SVMs is that they are more tailored for regression and not binary classification. For a comparison of 
COMBI with Lippert et al.14,72 on real WTCCC data see Supplementary Section 3.6. Recently their approach has 
been extended for disease risk prediction (Rakitsch et al.56) and related approaches have been proposed by Loh  
et al.74 and Song et al.75 suffering the same drawbacks as discussed above.

An extension of LMMs to multivariate cases was developed by Zhou and Stephens76, but has not yet been 
applied to WTCCC. Fitting LMMs to multiple phenotypes provides no novel insight into analyzing multiple 
genotypes/SNPs at once, which is the issue COMBI addresses.

Our approach can be extended to explore a number of different research directions by substituting one of the 
two steps of the algorithm with other suitable procedures. Thus, one could either apply other machine learning 
prediction methods (as mentioned above) instead of training an SVM in the first step of the COMBI method. For 
example, the SVM training could be replaced by a SNP selection by random forests or component-wise boost-
ing. Alternatively, one could perform a different statistical test in the final step of the COMBI method, such as 
procedures correcting for population structures or other confounding factors72,77. These alternatives are possible 
options for future research (and some have been implemented in the literature), however, COMBI performs bet-
ter than any of the other machine learning methods we compared it to (Supplementary Section 2.2.4).

COMBI also seems to perform better than other state-of-the-art methods for univariate analyses. For instance, 
a recent method by Lippert et al.14 aims to identify putative significant disease-marker associations from the 
WTCCC data using two approaches based on linear mixed models: an univariate test and a test for pairwise 
epistatic interactions. When their univariate method results are checked against the same validation criteria that 
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we used for COMBI, it turns out that our method reports 17 more true positives (4.4 times more positives) for the 
three diseases for which their univariate method reports at least one hit (Supplementary Section 3.6).

The COMBI method also holds great potential for testing pairwise SNP-trait associations, as it drastically 
reduces the number of candidate associations by selecting a subset of the most predictive SNPs in the machine 
learning step. Again, a comparison against the method Lippert et al.14 propose for detecting epistatic interactions, 
is favorable to COMBI (see Supplementary Section 3.6). In future work we will extend the COMBI method to a 
regression setup where the phenotype is not binary.

To summarize, we proposed a novel and powerful method for analyzing GWAS data that is based on applying 
a carefully designed machine learning step that is tailored to the GWAS data before applying a classical mul-
tiple testing step. Certain machine learning models, in particular appropriately designed linear SVMs, take 
high-dimensional correlation structures into account and thus implicitly incorporate interactions between dif-
ferent loci. A subset of predictive candidate SNPs is extracted within the machine learning step. The p-values 
corresponding to association tests are then thresholded for these candidate SNPs in a subsequent statistical test-
ing step. The COMBI method was shown to outperform the RPVT approach both on controlled, semi-real data 
and on data from the WTCCC 2007 study, for which reported associations were validated by their replicability 
in external later studies. The empirical analysis showed a significant increase in detection power for replicated 
SNPs, while yielding fewer unconfirmed discoveries. Two new (as yet unreplicated) candidate associations were 
reported.

References
1. The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 

3,000 shared controls. Nature 447, 661–678 (2007).
2. Wray, N. R. et al. Pitfalls of predicting complex traits from SNPs. Nat. Rev. Genet. 14, 507–515 (2013).
3. Edwards, S. L., Beesley, J., French, J. D. & Dunning, A. M. Beyond GWASs: illuminating the dark road from association to function. 

Am. J. Hum. Genet. 93, 779–797 (2013).
4. Visscher, P. M., Brown, M. A., McCarthy, M. I. & Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012).
5. Ripke, S. et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat. Genet. 45, 1150–1159 (2013).
6. Beecham, A. H. et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet. 45, 

1353–1360 (2013).
7. Hindorff, L. A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. 

Proc. Natl. Acad. Sci. 106, 9362–9367 Catalog of Published Genome-Wide Association Studies at www.genome.gov/gwastudies 
(2009).

8. Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 42, D1001–D1006 
(2014).

9. Manolio, T. a. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).
10. Lee, S. H., Wray, N. R., Goddard, M. E. & Visscher, P. M. Estimating missing heritability for disease from genome-wide association 

studies. Am. J. Hum. Genet. 88, 294–305 (2011).
11. Gibson, G. Rare and common variants: twenty arguments. Nat. Rev. Genet. 13, 135–145 (2012).
12. Zuk, O., Hechter, E., Sunyaev, S. R. & Lander, E. S. The mystery of missing heritability: Genetic interactions create phantom 

heritability. Proc. Natl. Acad. Sci. 109, 1193–1198 (2012).
13. Mackay, T. F. C. Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nat. Rev. Genet. 15, 22–33 

(2014).
14. Lippert, C. et al. An exhaustive epistatic SNP association analysis on expanded Wellcome Trust data. Sci. Rep. 3, 1099 (2013).
15. Van de Geer, S., Bühlmann, P., Ritov, Y. & Dezeure, R. On asymptotically optimal confidence regions and tests for high-dimensional 

models. Ann. Stat. 42, 1166–1202 (2014).
16. Boser, B. E., Guyon, I. M. & Vapnik, V. N. A Training Algorithm for Optimal Margin Classifiers. In Fifth Annual Workshop on 

Computational Learning Theory 144–152 (ACM Press, 1992).
17. Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).
18. Müller, K. R., Mika, S., Rätsch, G., Tsuda, K. & Schölkopf, B. An introduction to kernel-based learning algorithms. IEEE Trans. 

neural networks 12, 181–201 (2001).
19. Agresti, A. Categorical Data Analysis. (Wiley, 2002).
20. Moskvina, V. & Schmidt, K. M. On multiple-testing correction in genome-wide association studies. Genet. Epidemiol. 32, 567–573 

(2008).
21. Dickhaus, T. & Stange, J. Multiple point hypothesis test problems and effective numbers of tests for control of the family-wise error 

rate. Calcutta Stat. Assoc. Bull. 65, 123–144 (2013).
22. Dickhaus, T. Simultaneous Statistical Inference with Applications in the Life Sciences. (Springer, 2014).
23. Westfall, P. & Young, S. Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment. (Wiley, 1993).
24. Meinshausen, N., Maathuis, M. H. & Bühlmann, P. Asymptotic optimality of the Westfall-Young permutation procedure for multiple 

testing under dependence. Ann. Stat. 39, 3369–3391 (2011).
25. Guyon, I. & Elisseeff, A. An introduction to variable and feature selection. Journal of machine learning research 3, 1157–1182 

(2003).
26. Meinshausen, N., Meier, L. & Bühlmann, P. p-Values for High-Dimensional Regression. J. Am. Stat. Assoc. 104, 1671 (2009).
27. Wasserman, L. & Roeder, K. High-dimensional variable selection. Ann. Stat. 37, 2178–2201 (2009).
28. Dudoit, S. & van der Laan, M. Multiple Testing Procedures with Applications to Genomics. (Springer Science & Business Media, 

2008).
29. Roeder, K. & Wasserman, L. Genome-Wide Significance Levels and Weighted Hypothesis Testing. Stat. Sci. 24, 398–413 

(2009).
30. Roshan, U., Chikkagoudar, S., Wei, Z., Wang, K. & Hakonarson, H. Ranking causal variants and associated regions in genome-wide 

association studies by the support vector machine and random forest. Nucleic Acids Res. 39, e62 (2011).
31. Alexander, D. H. & Lange, K. Stability selection for genome-wide association. Genet. Epidemiol. 35, 722–728 (2011).
32. The HapMap International Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).
33. Marigorta, U. M. & Navarro, A. High Trans-ethnic Replicability of GWAS Results Implies Common Causal Variants. PLoS Genet 9, 

e1003566 (2013).
34. Preuss, C., Riemenschneider, M., Wiedmann, D. & Stoll, M. Evolutionary dynamics of co-segregating gene clusters associated with 

complex diseases. PLoS One 7, e36205 (2012).
35. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R. & Lin, C.-J. LIBLINEAR: A Library for Large Linear Classification. Journal of 

Machine Learning Research 9, 1871–1874. Software available at http://www.csie.ntu.edu.tw/~cjlin/liblinear (2008).

http://www.genome.gov/gwastudies
http://www.csie.ntu.edu.tw/~cjlin/liblinear


www.nature.com/scientificreports/

13Scientific RepoRts | 6:36671 | DOI: 10.1038/srep36671

36. Chang, C.-C. & Lin, C.-L. LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(27), 1–27. Software 
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm (2011).

37. The Apache Software Foundation. Commons Math: The Apache Commons Mathematics Library. Java version 1.7. Software available 
at http://commons.apache.org/proper/commons-math/ (2016).

38. Helleputte, T. & Gramme, P. LiblineaR: Linear Predictive Models Based on the LIBLINEAR C/C+ +  Library. R package version 
1.94-2 from http://dnalytics.com/liblinear/ (2015).

39. Turner, S. D. qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. biorXiv doi: 10.1101/005165. R 
package version 0.1.2 from http://cran.r-project.org/web/packages/qqman/ (2014).

40. Dowle, M., Srinivasan, A., Short, T. & Lianoglou, S. with contributions from Saporta, R. & Antonyan, E. data.table: Extension of 
Data.frame. R package version 1.9.6. from https://CRAN.R-project.org/package= data.table (2015).

41. Warnes, G. R., Bolker, B. & Lumley, T. gtools: Various R Programming Tools. R package version 3.5.0. from https://CRAN.R-project.
org/package= gtools (2015).

42. Clayton, D. snpStats: SnpMatrix and XSnpMatrix classes and methods. R package version 1.22.0 from http://bioconductor.org/
packages/release/bioc/html/snpStats.html (2015).

43. Mittag, F. et al. Use of support vector machines for disease risk prediction in genome-wide association studies: Concerns and 
opportunities. Hum. Mutat. 33, 1708–1718 (2012).

44. Davies, R. W. et al. Improved Prediction of Cardiovascular Disease Based on a Panel of Single Nucleotide Polymorphisms Identified 
Through Genome-Wide Association Studies. Circ. Cardiovasc. Genet. 3, 468–474 (2010).

45. Evans, D. M., Visscher, P. M. & Wray, N. R. Harnessing the information contained within genome-wide association studies to 
improve individual prediction of complex disease risk. Hum. Mol. Genet. 18, 3525–3531 (2009).

46. Ioannidis, J. P. A. Prediction of Cardiovascular Disease Outcomes and Established Cardiovascular Risk Factors by Genome-Wide 
Association Markers. Circ. Cardiovasc. Genet. 2, 7–15 (2009).

47. Kooperberg, C., LeBlanc, M. & Obenchain, V. Risk prediction using genome-wide association studies. Genet. Epidemiol. 34, 643–652 
(2010).

48. Quevedo, J. R., Bahamonde, A., Perez-Enciso, M. & Luaces, O. Disease Liability Prediction from Large Scale Genotyping Data Using 
Classifiers with a Reject Option. IEEE/ACM Trans. Comput. Biol. Bioinforma. 9, 88–97 (2012).

49. Wei, Z. et al. From Disease Association to Risk Assessment: An Optimistic View from Genome-Wide Association Studies on Type 
1 Diabetes. PLoS Genet. 5, e1000678 (2009).

50. Wei, Z. et al. Large Sample Size, Wide Variant Spectrum, and Advanced Machine-Learning Technique Boost Risk Prediction for 
Inflammatory Bowel Disease. Am. J. Hum. Genet. 92, 1008–1012 (2013).

51. Wray, N. R., Yang, J., Goddard, M. E. & Visscher, P. M. The genetic interpretation of area under the ROC curve in genomic profiling. 
PLoS Genet. 6, e1000864 (2010).

52. Austin, E., Pan, W. & Shen, X. Penalized regression and risk prediction in genome-wide association studies. Stat. Anal. Data Min. 6, 
315–328 (2013).

53. Okser, S. et al. Regularized machine learning in the genetic prediction of complex traits. PLoS Genet. 10, e1004754 (2014).
54. Wu, Q., Ye, Y., Liu, Y. & Ng, M. K. SNP selection and classification of genome-wide SNP data using stratified sampling random 

forests. IEEE Trans. Nanobiosci. 11, 216–227 (2012).
55. Schwarz, D. F., König, I. R. & Ziegler, A. On safari to Random Jungle: a fast implementation of Random Forests for high-dimensional 

data. Bioinformatics 26, 1752–1758 (2010).
56. Rakitsch, B., Lippert, C., Stegle, O. & Borgwardt, K. A Lasso multi-marker mixed model for association mapping with population 

structure correction. Bioinformatics 29, 206–214 (2013).
57. Shi, G. et al. Mining gold dust under the genome wide significance level: a two-stage approach to analysis of GWAS. Genet. 

Epidemiol. 35, 111–118 (2011).
58. Meinshausen, N. & Bühlmann, P. Stability selection. J. R. Stat. Soc. Ser. B Statistical Methodol. 72, 417–473 (2010).
59. Pahikkala, T., Okser, S., Airola, A., Salakoski, T. & Aittokallio, T. Wrapper-based selection of genetic features in genome-wide 

association studies through fast matrix operations. Algorithms Mol. Biol. 7, 11 (2012).
60. He, Q. & Lin, D. Y. Y. A variable selection method for genome-wide association studies. Bioinformatics 27, 1–8 (2011).
61. Zhou, H., Sehl, M. E., Sinsheimer, J. S. & Lange, K. Association screening of common and rare genetic variants by penalized 

regression. Bioinformatics 26, 2375–2382 (2010).
62. Minnier, J., Yuan, M., Liu, J. S. & Cai, T. Risk classification with an adaptive naive Bayes Kernel machine model. J. Am. Stat. Assoc. 

110, 393–404 (2015).
63. Nguyen, T. T., Huang, J. Z., Wu, Q., Nguyen, T. T. & Li, M. J. Genome-wide association data classification and SNPs selection using 

two-stage quality-based Random Forests. BMC Genomics 16, S5 (2015).
64. Tsai, M. Y. Variable selection in Bayesian generalized linear-mixed models: An illustration using candidate gene case-control 

association studies. Biometrical Journal 57, 234–253 (2015).
65. Manor, O. & Segal, E. Predicting disease risk using bootstrap ranking and classification algorithms. PLoS Comput. Biol. 9, e1003200 

(2013).
66. Hoffman, G. E., Logsdon, B. A. & Mezey, J. G. PUMA: a unified framework for penalized multiple regression analysis of GWAS data. 

PLoS Comput. Biol. 9, e1003101 (2013).
67. Fisher, C. K. & Mehta, P. Bayesian feature selection for high-dimensional linear regression via the Ising approximation with 

applications to genomics. Bioinformatics 11, 1754–1761 (2015).
68. Breiman, L. Random forests. Machine learning 45, 5–32 (2001).
69. Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Statistical Methodol. 67, 301–320 

(2005).
70. Fan, J. & Lv, J. Sure independence screening for ultrahigh dimensional feature space. J. R. Stat. Soc. Ser. B Statistical Methodol. 70, 

849–911 (2008).
71. Li, J., Zhong, W., Li, R. & Wu, R. A fast algorithm for detecting gene–gene interactions in genome-wide association studies. The 

annals of applied statistics 8, 2292 (2014).
72. Lippert, C. et al. FaST linear mixed models for genome-wide association studies. Nat. Methods 8, 833–835 (2011).
73. Mimno, D., Blei, D. M. & Engelhardt, B. E. Posterior predictive checks to quantify lack-of-fit in admixture models of latent 

population structure. Proc. Natl. Acad. Sci. 112, 3441–3450 (2015).
74. Loh, P. R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284–290 

(2015).
75. Song, M., Hao, W. & Storey, J. D. Testing for genetic associations in arbitrarily structured populations. Nat. Genet. 47, 550–554 

(2015).
76. Zhou, X. & Stephens, M. Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nat. Methods 

11, 407–409 (2014).
77. Kang, H. M. et al. Efficient control of population structure in model organism association mapping. Genetics 178, 1709–1723 

(2008).

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://commons.apache.org/proper/commons-math/
http://dnalytics.com/liblinear/
http://cran.r-project.org/web/packages/qqman/
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=gtools
https://CRAN.R-project.org/package=gtools
http://bioconductor.org/packages/release/bioc/html/snpStats.html
http://bioconductor.org/packages/release/bioc/html/snpStats.html


www.nature.com/scientificreports/

1 4Scientific RepoRts | 6:36671 | DOI: 10.1038/srep36671

Acknowledgements
This paper is part of a larger project on the genetics of social and economic behavior. The idea for this paper arose in 
the workshop that regularly takes place in the context of this project at the University of Zurich, and which is based 
on the collaboration of teams at universities in Berlin, Barcelona, Mainz, and Zurich. EF acknowledges support 
from the advanced ERC grant (ERC-2011-AdG 295642-FEP) on the Foundation of Economic Preferences. MK, 
BM, and KRM were supported by the German National Science Foundation (DFG) under the grants MU 987/6-1 
and RA 1894/1-1. TD and DS were supported by the German National Science Foundation (DFG) under the grants 
DI 1723/3-1 und SCHU 2828/2-1. GB and TS acknowledge support of the German National Science Foundation 
(DFG) under the research group grant FOR 1735. MK, DT, KRM, and GB acknowledge financial support by the 
FP7-ICT Programme of the European Community, under the PASCAL2 Network of Excellence. MK acknowledges 
a postdoctoral fellowship by the German Research Foundation (DFG), award KL 2698/2-1, and from the Federal 
Ministry of Science and Education (BMBF) awards 031L0023A and 031B0187B. AN acknowledges support from 
the Spanish Multiple Sclerosis Network (REEM), of the Instituto de Salud Carlos III (RD12/0032/0011), the Spanish 
National Institute for Bioinformatics (PT13/0001/0026) the Spanish Government Grant BFU2012-38236 and from 
FEDER. This project has received funding from the European Union’s Horizon 2020 research and innovation 
programme under grant agreement No. 634143 (MedBioinformatics). MK and KRM were financially supported 
by the Ministry of Education, Science, and Technology, through the National Research Foundation of Korea under 
Grant R31-10008 (MK, KRM) and BK21 (KRM).

Author Contributions
E.F., T.D., G.B., D.S., A.N. and K.-R.M. designed and directed research; B.M., M.K., J.A.R., S.S., R.V., C M.-S., X.F., 
U.M.M. and D.S. performed research and analyzed data; and B.M., M.K., J.A.R., C M.-S., E.F., T.D., G.B., D.S., 
A.N. and K.-R.M. wrote the paper.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Mieth, B. et al. Combining Multiple Hypothesis Testing with Machine Learning 
Increases the Statistical Power of Genome -wide Association Studies. Sci. Rep. 6, 36671; doi: 10.1038/srep36671 
(2016).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Combining Multiple Hypothesis Testing with Machine Learning Increases the Statistical Power of Genome-wide Association Studies
	Introduction
	Methods
	Summary of The COMBI Method
	Problem Setting and Methodology
	Problem Setting and Notation
	Proposed workflow
	The machine learning and SNP selection step
	The statistical testing step

	Results
	Validation
	Validation using simulated phenotypes
	Validation using WTCCC data
	Stability analysis
	Parameter selection

	Manhattan plots and descriptive results
	GWAS catalog validation results – results obtained by the COMBI method are better replicated than those obtained by RPVT
	Stability results – COMBI method is more stable than RPVT
	Runtime analysis and implementation details

	Discussion
	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                Combining Multiple Hypothesis Testing with Machine Learning Increases the Statistical Power of Genome-wide Association Studies
            
         
          
             
                srep ,  (2016). doi:10.1038/srep36671
            
         
          
             
                Bettina Mieth
                Marius Kloft
                Juan Antonio Rodríguez
                Sören Sonnenburg
                Robin Vobruba
                Carlos Morcillo-Suárez
                Xavier Farré
                Urko M. Marigorta
                Ernst Fehr
                Thorsten Dickhaus
                Gilles Blanchard
                Daniel Schunk
                Arcadi Navarro
                Klaus-Robert Müller
            
         
          doi:10.1038/srep36671
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep36671
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep36671
            
         
      
       
          
          
          
             
                doi:10.1038/srep36671
            
         
          
             
                srep ,  (2016). doi:10.1038/srep36671
            
         
          
          
      
       
       
          True
      
   




