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Identifying reproducible cancer-
associated highly expressed 
genes with important functional 
significances using multiple 
datasets
Haiyan Huang1, Xiangyu Li1, You Guo1,2, Yuncong Zhang1, Xusheng Deng1, Lufei Chen1, 
Jiahui Zhang1, Zheng Guo1 & Lu Ao1

Identifying differentially expressed (DE) genes between cancer and normal tissues is of basic importance 
for studying cancer mechanisms. However, current methods, such as the commonly used Significance 
Analysis of Microarrays (SAM), are biased to genes with low expression levels. Recently, we proposed an 
algorithm, named the pairwise difference (PD) algorithm, to identify highly expressed DE genes based 
on reproducibility evaluation of top-ranked expression differences between paired technical replicates 
of cells under two experimental conditions. In this study, we extended the application of the algorithm 
to the identification of DE genes between two types of tissue samples (biological replicates) based on 
several independent datasets or sub-datasets of a dataset, by constructing multiple paired average 
gene expression profiles for the two types of samples. Using multiple datasets for lung and esophageal 
cancers, we demonstrated that PD could identify many DE genes highly expressed in both cancer and 
normal tissues that tended to be missed by the commonly used SAM. These highly expressed DE genes, 
including many housekeeping genes, were significantly enriched in many conservative pathways, 
such as ribosome, proteasome, phagosome and TNF signaling pathways with important functional 
significances in oncogenesis.

The high-throughput gene expression profiling technologies facilitate screening expression levels for thousands 
of genes simultaneously. One of the main objectives for analyzing gene expression profiles is to identify genes 
differentially expressed (DE) in cancer compared with normal control1. Many methods have been proposed to 
identify DE genes2–5 and a popular choice is Significance Analysis of Microarrays (SAM) based on t-test statistic6. 
It has been reported that the t-test is biased to genes with low expression levels3,6 because a gene with low expres-
sion level may have a large absolute t-statistic due to its small variance, even when its mean difference between 
two conditions is small7. SAM was proposed to correct this bias. However, due to logarithmic transformation of 
data in SAM, the differences of log-scaled expression levels between two conditions are actually the logarithms 
of their fold change (FC) ratios. Because genes with low expression levels are more likely to reach large FCs than 
genes with high expression levels, SAM is also biased to genes with low expression levels8. Compared with genes 
expressed at low levels, genes expressed at high levels are more likely to be involved in some functionally con-
served pathways such as oxidative phosphorylation9, glutathione metabolism10–12 and proteasome13 with impor-
tant biological significances.

In a recent study8, we have proposed an algorithm, named the pairwise difference (PD) algorithm, to identify 
DE genes in small-scale cell line experiments, which typically measure only two or three technical replicates for 
each of two different experimental conditions, respectively. Briefly, by pairing technical replicates under two con-
ditions, the algorithm identifies DE genes with top-ranked absolute expression differences between the two types 
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of cells which are significantly reproducible in independent paired technical replicates8. Compared with SAM and 
other commonly used methods, PD can exclusively identify many DE genes with high expression levels in both 
two types of cells8. However, this algorithm cannot be used directly to identify DE genes between two types of 
tissue samples (e.g., cancer and normal control) because the biological replicates of each type of tissue may have 
large between-individual differences.

In this study, in consideration that tissue samples are biological replicates with between-individual differ-
ences, we averaged the gene expression profiles separately for two types of samples in a dataset to construct a 
cancer-normal pair, and then applied PD to identify DE genes using multiple cancer-normal pairs separately 
constructed from several independent datasets or sub-datasets of a dataset. Using datasets for lung cancer and 
esophagus cancer, we demonstrated the applicability and power of this strategy in finding functionally important 
DE genes highly expressed in both cancer and normal tissues that tend to be missed by SAM.

Results
The applicability of the PD algorithm to multiple datasets. Firstly, for each of the three datasets 
for lung cancer and normal samples (see Table 1), we separately averaged the gene expression profiles for cancer 
and normal samples in each datasets to construct a paired average gene expression profiles, referred to as a can-
cer-normal pair. Then, for every cancer-normal pair, all genes were ranked according to their absolute average 
differences (AD) of expression levels between cancer and normal samples in descending order. As shown in 
Fig. 1a, the consistency scores of the deregulation directions of the top n (n =  1000, 2000, 3000, 4000, 5000) genes 
between every two cancer-normal pairs were all higher than 91.8%, which were all significantly higher than what 
expected by chance (binomial test, all p <  2.2 ×  10−16) (see Methods for details). We did similar analyses in two 
datasets for esophagus cancer (Table 1) and found that the consistency scores of the deregulation directions of the 
top n (n =  1000, 2000, 3000, 4000, 5000) genes between the two datasets were all higher than 96.42%, as shown 
in Fig. 1b. These results suggested that the differential expression signals between every two independent can-
cer-normal pairs for a particular cancer were significantly reproducible.

We further did a random experiment to show that the differential expression signals were irreproducible when 
there were no phenotype differences between two groups of samples. Using the GSE19804 dataset with 60 lung 
cancer samples and 60 normal samples, we randomly permuted sample labels two times to produce two datasets 
of artificial “cancer” and “normal” samples, and then calculated the consistency score of the deregulation direc-
tions of the top 1000 genes sorted by the average expressions difference between the two artificial cancer-normal 
pairs. The random experiment was repeated 1000 times. As expected, the average of the 1000 consistency scores 
was 49.83% with 0.1954 of standard deviation. These results suggested that the differential expression signals were 
irreproducible when there were no phenotype differences between two groups of samples.

Then, regarding every cancer-normal pair as an independent pair of technical replicates, we used the PD algo-
rithm to identify reproducible DE genes between the lung cancer and normal control of three datasets. The two 

Tissue GEO accession Platform Cancer Normal Reference

Lung

GSE19188

GPL570

91 65 Hou, J. et al.14

GSE19804 60 60 Lu, T.P. et al.15

GSE27262 25 25 Wei, T.Y. et al.16

Esophagus
GSE29001

GPL571
21 24 Yan, W. et al.17

GSE20347 17 17 Hu, N. et al.18

Table 1. Description of the datasets used in this study. 

Figure 1. Consistency scores between two datasets for a cancer. The consistency scores between the top 
n (n =  1000, 2000, 3000, 4000, 5000) genes ranked by absolute average expression differences for every two 
cancer-normal pairs were evaluated in (a) three datasets for lung cancer (GSE19188, GSE19804 and GSE27262). 
and (b) two datasets for esophagus cancer (GSE20347 and GSE29001).



www.nature.com/scientificreports/

3Scientific RepoRts | 6:36227 | DOI: 10.1038/srep36227

parameters of the algorithm, the initial step and the consistency threshold, were set as 300 and 95%, respectively, 
as suggested previously8. With the above two parameters, PD identified a list of 6,092 DE genes for lung cancer, 
and this list of DE genes was denoted as C3. In comparison, 10,865, 12,287 and 10,945 DE genes were identified 
by SAM with 5% FDR control in the GSE19188, GSE19804 and GSE27262 datasets, respectively. The consistency 
scores of the overlapped DE genes between C3 and the DE genes identified by SAM in the three datasets were 
99.83%, 100% and 100%, respectively (Table 2). Similarly, PD identified 3,498 DE genes based on the two data-
sets of esophagus cancer, denoted as C2, and the consistency scores with DE genes identified by SAM in the two 
datasets were both 100% (Table 2).

On the other hand, approximately 9.3–22.1% of the DE genes in C3 identified by PD were not identified 
by SAM. As shown in Fig. 2, the average expression levels of the DE genes exclusively identified by PD were 
rather high in both cancer and normal samples of the three datasets, while the average expression levels of most 
DE genes exclusively identified by SAM were quite low in cancer and/or normal samples. Similar results were 
observed based on the two datasets for esophagus cancer (Supplementary Figure S1). Thus, the PD algorithm can 
identify DE genes expressed highly in both cancer and normal tissues, which tend to be missed by SAM.

The applicability of the PD algorithm to a single dataset. We used the dataset GSE27262 for 25 lung 
cancer samples and 25 normal samples to exemplify the feasibility of the PD algorithm in analyzing a single data-
set. Firstly, we divided this dataset evenly into two sub-datasets according to the GSM series numbers of samples: 

Tissue Dataset PD SAM Overlap Consistency Consistency score P

Lung

GSE19188

6092

10865 4744 4736 99.83% < 2.2 ×  10−16

GSE19804 12287 5488 5488 100.00% < 2.2 ×  10−16

GSE27262 10945 5524 5524 100.00% < 2.2 ×  10−16

Esophagus
GSE20347

3498
6311 3057 3057 100.00% < 2.2 ×  10−16

GSE29001 5882 2785 2785 100.00% < 2.2 ×  10−16

Table 2. The consistency scores of the DE genes identified by both PD and SAM. Note: Overlap, the number 
of the DE genes identified by both PD and SAM; Consistency, the number of the DE genes with the same 
deregulation directions (either up-regulation or down-regulation); P, the significance level of reproducibility.

Figure 2. The distributions of the average expression levels for DE genes identified exclusively by PD or 
SAM for lung cancer. Red crosses represent the DE genes exclusively identified by PD in C3, and black dots 
represent the DE genes exclusively identified by SAM in datasets (a) GSE19188, (b) GSE19804, (c) GSE27262, 
respectively. The average expression levels of DE genes in normal samples (x-axis) and cancer samples (y-axis) 
were plotted. The average expression levels above 5,000 were set to 5,000.
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set 1 and set 2 with 12 and 13 pairs of cancer and normal samples, respectively (Table 3). Then, we transformed 
the two sub-datasets into two independent cancer-normal pairs of averaged gene expression profiles. With the 
same parameter setting as above, PD identified 3,789 DE genes, denoted as S2. 3,386 of these 3,789 DE genes 
overlapped with C3 and the consistency score between S2 and C3 was 100%. When dividing the GSE27262 into 
four small sub-datasets (Table 3), PD identified 4,157 DE genes, denoted as S4. The consistency score between S4 
and C3 was 99.94%.

Similarly, when dividing the dataset GSE29001 evenly into two and four small sub-datasets, respectively, PD 
identified 1,738 and 2,298 DE genes for esophagus cancer. The consistency scores between the two lists of DE 
genes with the DE genes in C2 were 100% and 99.88% (Table 4), respectively.

Taking together, the above results demonstrated that PD can work well by dividing a dataset evenly into sev-
eral sub-datasets with sample sizes as small as about six for each type of samples.

Significant functional pathways detected by the PD algorithm. Here, we used the above dataset 
GSE27262 for lung cancer and the dataset GSE29001 for esophagus cancer to demonstrate that most of the path-
ways significantly enriched with DE genes found by PD tend to be missed by SAM.

With 10% FDR control, the DE genes in S2 found by PD for lung cancer were significantly enriched in 14 
pathways (Fig. 3a). However, none of these pathways was identified as significant by enrichment analysis with 
the same FDR control for the 10,945 DE genes found by SAM with 5% FDR control. When focusing on the most 
significant DE genes found by SAM, with the same number of DE genes in S2, 13 of the 14 significant pathways 
were still unfound (Fig. 3a). Besides, the DNA replication pathway19 commonly found by PD and SAM, the 
other 13 significant pathways are mainly associated with lung cancer, including pentose phosphate pathway20, 
oxidative phosphorylation9,21, cysteine and methionine metabolism22, glutathione metabolism10–12, biosynthesis 
of amino acids23, ribosome24, proteasome13, protein processing in endoplasmic reticulum25,26, phagosome27 and 
TNF signaling pathway28. These conservative pathways included many DE genes highly expressed in both cancer 
and normal tissues, which tended to be missed by SAM. For example, among the 16 DE genes found exclusively 
by PD in the TNF signaling pathway, the average expression level of CCL2 was ranked at the top 3.2% and 1% 
of all the measured genes in the cancer and normal samples, respectively. The difference between the average 
expression level of this gene in the cancer samples and its average expression level in the normal samples was as 
large as 1678.72, whereas the average of the corresponding differences for all the DE genes identified by SAM was 
only 245.03. It has been reported that this gene may play an important role in the development of lung cancer29. 
For another example, the average expression level of TNFAIP3 was ranked at the top 7.4% and 3.2% of all the 
measured genes in the cancer and normal samples, respectively. The difference between the average expression 
level of this gene in the cancer samples and its average expression level in the normal samples was 625.43. This 
gene has been reported as a negative regulator of NF-kappa B activation as well as TNF-mediated apoptosis30 and 
its underexpression can promote the progression of lung cancer31. The detailed information about these 16 DE 
genes was shown in Supplementary Table S1.

List Sub-dataset Cancer Normal DE genes Overlap Consistency score P

S2
set 1 12 12 3789 3386 100.00% < 2.2 ×  10−16

set 2 13 13

S4

set 1 6 6 4157 3119 99.94% < 2.2× 10−16

set 2 6 6

set 3 6 6

set 4 7 7

Table 3. The consistency scores of DE genes identified by PD from sub-datasets of GSE27262 and three 
datasets for lung cancer. Note: S2 and S4 separately represent two (set 1 and set 2) and four (set 1, set 2, set 3 
and set 4) small sub-datasets with cancer and normal samples by evenly dividing GSE27262 according to the 
GSM series numbers of samples. Cancer/Normal, the number of cancer/normal samples in each sub-dataset; 
DE genes, the number of genes identified by PD in S2 and S4; Overlap, the number of the DE genes shared by S2 
(or S4) and C3; P, the significance level of reproducibility.

List Sub-datasets Cancer Normal DE genes Overlaps Consistency score P

S2
Set 1 10 12 1738 1651 100.00% < 2.2 ×  10–16

Set 2 11 12

S4

Set 1 5 6 2298 1724 99.88% < 2.2 ×  10–16

Set 2 5 6

Set 3 5 6

Set 4 6 6

Table 4. The consistency scores of DE genes identified by PD from sub-datasets of GSE29001 and two 
datasets for esophagus cancer. Note: See Note for Table 3.
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Similarly for esophagus cancer, the four pathways significantly enriched with DE genes in S2 identified by PD 
were all missed by SAM (Fig. 3b). These significant pathways included pathways for oxidative phosphorylation32, 
glutathione metabolism33, ribosome34,35 and proteasome36.

The above pathway enrichment analyses demonstrated that the PD algorithm can capture important  
cancer-associated pathways with highly expressed DE genes, including many housekeeping genes (see 
Discussion), which might play important roles in oncogenesis, whereas most of these pathways tend to be missed 
by SAM. The results also provided extra evidence supporting the reliability of the DE genes found by PD because 
a list of DE genes can be significantly enriched in pathways only when it contains sufficient real DE genes37,38.

Discussion
In this paper, we extended the application of the PD algorithm to the identification of DE genes between cancer 
and normal tissue samples based on several independent datasets or sub-datasets of a dataset. The application 
results for lung and esophageal cancer showed that PD can exclusively identify many DE genes with high expres-
sion levels in both cancer and normal samples, which tend to be missed by the commonly used SAM. Functional 
enrichment analyses of DE genes identified by PD showed that it can exclusively identify many significant biolog-
ical pathways related to the development of cancers. Especially, the results demonstrated that the PD algorithm 
could efficiently identify DE genes by dividing a dataset evenly into several sub-datasets with sample sizes as small 
as about six for each type of samples. In general, for researchers with their own experimental data, we would rec-
ommend them making use of independent datasets in public data sources, in cases that such data exist, in order 
to increase the power and accuracy of biological discovery.

Notably, in our functional analysis examples for lung cancer and esophagus cancer, four pathways were com-
monly identified by PD but missed by SAM. These four pathways were well known cancer-related pathways for 
oxidative phosphorylation, glutathione metabolism, ribosome and proteasome. These biological pathways are 
related to two important cancer hallmarks, the metabolic network (the oxidative phosphorylation and glutathione 
metabolism pathways) and genome duplication network (ribosome) according to the cancer hallmarks network 
framework proposed by Wang et al.39. Reprogramming of metabolism is an important mechanism supporting 
the growth and division of cancer cell40. Genome duplication plays an important role on tumor formation and 
can activate several cancer hallmarks network41,42. These conservative cancer hallmarks or pathways all included 
many highly expressed housekeeping genes playing essential roles in the pathogenesis of cancer. For example, in 
the ribosome pathway, among the 45 DE genes found exclusively by PD in the GSE27262 dataset for lung cancer 
(Supplementary Table S2), 35 genes were housekeeping genes reported by Zhu et al.43. The average expression 
levels of these 35 housekeeping genes were all ranked among the top 20% of all the measured genes in both the 
cancer and normal samples. It is known that housekeeping genes maintain the basic needs for a cell to survive44–46, 
and thus their deregulations tend to induce human diseases including cancer47,48. For examples, the overexpres-
sion of RPSA may be positively correlated with the angiogenesis of lung cancer49,50, the overexpression of RPL19 
promotes malignant proliferation of lung cancer cells51, and the underexpression of RPS3, a critical regulator of 
DNA repair and apoptosis52, might accelerate the development of lung cancer. Such cancer-related housekeeping 
genes tend to be evolutionarily conserved and play critical roles in carcinogenesis together with tissue-specific 
less-conservative cancer-related genes53.

Although PD can exclusively identify many important cancer-associated genes with high expression levels 
which play important functional roles in carcinogenesis, it has its own shortcomings. A major limitation is that it 

Figure 3. The comparison of functional pathways enriched with DE genes separately identified by PD and 
SAM. The biological pathways significantly enriched with DE genes identified by PD (using two subsets of 
each dataset, S2) and by SAM in (a) GSE27262 for lung cancer, (b) GSE29001 for esophagus cancer. The most 
significant DE genes identified by SAM, with the same number of the DE genes found by PD, were used for 
pathway enrichment analyses. The p values of the KEGG pathways were adjusted by Benjamini and Hochberg 
(FDR =  10%), and − log10(p) was used to generate the heat map.
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still cannot obtain DE genes with FDR control. Obviously, the higher the consistency threshold was set, the lower 
the rate of false positives of DE genes identified between two independent sample pairs. However, the FDR has a 
complex relationship with the parameter of consistency threshold. Besides, some DE genes and pathways identi-
fied by SAM were missed by PD which is biased to genes with high expressions. For example, DE genes identified 
by SAM from the dataset GSE27262 for lung cancer were enriched in the fanconi anemia pathway related with 
risk of lung adenocarcinoma54,55. However, this pathway was missed by DE genes identified by PD. In this path-
way, 13 DE genes were identified by SAM but not by PD. The average expression levels of the 13 genes were among 
the bottom 70% and 61% of all the measured genes of all the cancer and normal samples, respectively. These 
results demonstrate that, different from SAM, PD tends to miss DE genes with low expression levels. Therefore, 
the PD algorithm is not a substitution but an effective complement to current approaches for analyzing DE genes 
of tissue datasets with biological replicates.

Methods
Data and data pre-processing. Multiple gene expression datasets for lung cancer and esophageal cancer 
were collected from Gene Expression Omnibus (GEO)56. Detail information about these datasets used in this 
study were described in Table 1. For each dataset, the raw data (.CEL files) was pre-processed using the robust 
average (RMA) algorithm57,58. Then each probe-set ID was matched to its Entrez gene ID. If multiple probesets 
were matched to the same gene, the expression value for the gene was referred to as the arithmetic mean of the 
values of the multiple probesets (on the log2 scale).

Identification of reproducible DE genes. The pairwise difference (PD) algorithm8 was originally 
designed for analyzing small-scale cell line data with two or three technical replicates for each of two different cell 
lines. Since technical replicates for a cell line have no biological difference, every two independent pairs of tech-
nical replicates for two different cell lines can be regarded as independent experiments to identify DE genes 
through reproducibility evaluation. However, because tissue samples from different individuals are biological 
replicates with large biological variations among individuals, every two paired samples for two types of tissues 
cannot be regarded as reproducible independent experiments. In order to reduce the influence of biological vari-
ations among samples with the same phenotype, we used several independent datasets to construct multiple 
cancer-normal pairs by averaging a set of gene expression profiles separately for each of the two phenotypes. 
Specifically, for each dataset, we calculated the mean non-log-transformed expression values of each gene in the 
normal samples (type N) and cancer samples (type C), respectively, to form a paired average gene expression 
profiles for cancer and normal tissues. For a given pair j consisting of one type N sample and one type C sample, 
the mean values of gene i in the type N sample and type C sample, denoted as Xij

N  and Xij
C, respectively, were 

calculated as following:

∑=
=

X
n

x1
(1)ij

N

k

n

i k
1 1

1
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(2)ij

C
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where n1 and n2 were the numbers of samples in type N and type C, respectively. xik was the expression value of 
gene i in a type N or type C sample.

Then, for gene i, the average expression difference between two phenotypes of a given cancer-normal pair j, 
denoted as Dij, was calculated as following:

= −D X X (3)ij ij
C

ij
N

If the value was larger (or smaller) than zero, then gene i was defined as up-regulation (or down-regulation) 
in type C sample. Regarding multiple cancer-normal pairs constructed from independent datasets as independ-
ent experiments, we could identify DE genes through reproducibility evaluation with the same PD algorithm 
descried in details in our original paper8. Briefly, all genes in each cancer-normal pair were sorted in descending 
order by their absolute pairwise expression differences between two phenotypes and divided into blocks by the 
initial step of 300. The significantly reproducible DE gene lists between the decreasingly ranked blocks of each two 
independent pairs were identified if their consistency scores were higher than a pre-settled consistency threshold 
(here, 95%).

Reproducibility evaluation of two DE gene lists. For two DE gene lists from two different datasets 
sharing k DE genes, of which s genes had the consistent directions (either up-regulation or down-regulation) in 
type C samples, the consistency score was calculated as s/k. The cumulative binomial distribution model59 was 
used to estimate the probability of observing at least s of k DE genes with the consistent directions by chance:

∑= − −
=

−
−( )p k

i
p p1 ( ) (1 )

(4)i

s

e
i

e
k i

0

1

in which pe is the probability of one gene having the consistent direction in two DE gene lists by random chance (here, 
pe =  0.5). A DE genes list is considered significantly reproducible if the p value of the consistency score is < 0.01.
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Pathway enrichment analysis. Functional enrichment analysis was done based on the Kyoto 
Encyclopaedia of Genes and Genomes60. The hypergeometric distribution model was used to identify biological 
pathways that were significantly enriched with DE genes61, the probability of observing at least k genes in a path-
way by chance can be computed as follow:

∑= −

−
−

=

− ( )
( )

( )
p

m
i

N m
n i
N
n

1

(5)i

k

0

1

n is the number of DE genes identified from N genes in a dataset and k of them are annotated in a pathway with 
m genes.

The p values were adjusted using the Benjamini and Hochberg procedure62, controlling the False Discovery 
Rate (FDR) at the 10% level.
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