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Oxidative stress dependent 
microRNA-34a activation via PI3Kα 
reduces the expression of sirtuin-1 
and sirtuin-6 in epithelial cells
J. R. Baker1, C. Vuppusetty1, T. Colley1, Andriana I.  Papaioannou2, P. Fenwick1, 
Louise Donnelly1, K. Ito1 & P. J. Barnes1 

Sirtuin-1 (SIRT1) and SIRT6, NAD+-dependent Class III protein deacetylases, are putative anti-aging 
enzymes, down-regulated in patients with chronic obstructive pulmonary disease (COPD), which is 
characterized by the accelerated ageing of the lung and associated with increased oxidative stress. 
Here, we show that oxidative stress (hydrogen peroxide) selectively elevates microRNA-34a  
(miR-34a) but not the related miR-34b/c, with concomitant reduction of SIRT1/-6 in bronchial epithelial 
cells (BEAS2B), which was also observed in peripheral lung samples from patients with COPD. Over-
expression of a miR-34a mimic caused a significant reduction in both mRNA and protein of SIRT1/-6, 
whereas inhibition of miR-34a (antagomir) increased these sirtuins. Induction of miR-34a expression 
with H2O2 was phosphoinositide-3-kinase (PI3K) dependent as it was associated with PI3Kα activation 
as well as phosphatase and tensin homolog (PTEN) reduction. Importantly, miR-34a antagomirs 
increased SIRT1/-6 mRNA levels, whilst decreasing markers of cellular senescence in airway epithelial 
cells from COPD patients, suggesting that this process is reversible. Other sirtuin isoforms were not 
affected by miR-34a. Our data indicate that miR-34a is induced by oxidative stress via PI3K signaling, 
and orchestrates ageing responses under oxidative stress, therefore highlighting miR-34a as a new 
therapeutic target and biomarker in COPD and other oxidative stress-driven aging diseases.

Oxidative stress is a result of an imbalance between the production of free radicals and anti-oxidants, which 
detoxify or counteract the free-radicals’ harmful effects. It causes inflammation, damage of the cell membrane, 
protein modification (oxidation, carbonylation) and DNA damage1, and therefore, is suspected to be important 
in cardiovascular diseases, respiratory disease including asthma, chronic obstructive pulmonary disease (COPD) 
and cystic fibrosis, as well as rheumatoid arthritis, cancer and inflammatory bowel disease2–4. In addition, there 
is evidence to suggest free radicals are involved in the aging process and/or cellular senescence5. Particularly, the 
free radical aging theory is concerned with free radicals such as superoxide (O2−), hydrogen peroxide (H2O2) or 
peroxynitrite (OONO−), which are derived from different sources such as activated inflammatory cells and struc-
tural cells, cigarette smoke, air pollution and kitchen smoke6.

COPD is a chronic inflammatory lung disease, which is one of the leading causes of death and disability in 
the world and is now the third leading cause of death in high income countries7,8. The disease is progressive and 
affects mainly the elderly, being related to lung aging9. Chronic exposure to cigarette smoke and household air 
pollution are the major risk factors for the disease10. Once the disease is established, endogenous oxidative stress 
results from the release of reactive oxygen species (ROS) from inflammatory and structural cells of the lungs, 
enhanced further by impaired endogenous antioxidant defenses1,2. Therefore, in COPD patients the increased 
oxidative stress persists even after smoking cessation11. Cellular senescence and the inhibition of antioxidant 
genes are evident in COPD, which are known to be regulated by sirtuins12–14.

Sirtuins (SIRT) are Class III histone deacetylase (HDAC) enzymes that catalyze NAD+-dependent deacetyl-
ation and/or ADP-ribosylation of target proteins15, and are homologous to the yeast transcriptional repressor 
Sir216. SIRT1, the most studied family member, is involved in the regulation of numerous biological processes, 
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including inflammation, cellular senescence, DNA repair, genomic stability and autophagy; via the deacetyla-
tion of upstream regulatory proteins. SIRT1 deacetylates NF-κ B, forkhead box class O (FOXO)-3, p21, p16, p53, 
Klotho, β -catenin/Wnt and histones, all of which contribute to the pathology of COPD12,14,15,17,18. P16 and p21, 
which are cyclin-dependent kinase inhibitor proteins and induce G1 stage cell cycle arrest19, are well-known 
markers of senescence and have been shown to be elevated in expression in cells taken from COPD patients13,20. 
In this regard, SIRT1 has been implicated in the regulation of both senescence and the expression of p16 and 
p2114. SIRT1 and SIRT6 are down-regulated in expression in the peripheral lungs of patients with COPD, and 
this is mimicked in vitro by oxidative stress12,21. The down-regulation of SIRT1 in patients with COPD has been 
attributed to post-translational modifications and proteasomal degradation21. However, it is well documented 
that a decrease in the mRNA levels of SIRT1 and SIRT6 is found in patients with COPD, with no proposed 
mechanism12,22.

Micro-RNAs (miRNAs) are small endogenous non-coding RNAs, which are typically 18–23 nucleotides 
in length, and regulate the expression of several target genes and may act as a link between different signaling 
pathways. Mature miRNAs bind to a target mRNAs at complementary sites within the 3′ –untranslated region  
(3′ -UTR), triggering the down-regulation and suppression of the target gene23. miRNAs have been extensively 
studied in relation to disease due to their importance in an array of biological processes; including aging, cell 
proliferation, and apoptosis17,18,24. Recent studies have examined the roles of miRNA in COPD25–28, with miR-34a 
being shown to be up-regulated in patients with severe COPD29. MiR-34a has been shown to be an important reg-
ulator of SIRT1 in colon epithelial, breast cancer and endothelial cells30–32. MiR-34a has also been recently linked 
with the down-regulation of SIRT6 when over-expressed in primary human keratinocytes33. As well as regulating 
the expression of the SIRT1 and SIRT6, miR-34a has been shown to directly regulate the expression of Protein 
phosphatase-1 nuclear targeting subunit (PNUTS)24; this protein is associated with ageing and regulates several 
pathways involved in accelerated aging, including the regulation of telomere length, DNA damage responses and 
cell cycle progression24,34.

Currently no link has been demonstrated between miR-34a and the decreased levels of SIRT1 and SIRT6 in 
patients with COPD. It is therefore hypothesized that elevated levels of miR-34a, found within the peripheral lung 
of patients with COPD, may regulate the expression of SIRT1 and SIRT6 under conditions of increased oxidative 
stress. Understanding whether miR-34a regulates the translation of SIRT1 and SIRT6 is crucial in understanding 
this miRNAs role in the pathology of COPD or oxidative stress driven aging diseases.

Results
SIRT1 and miR-34a expression in COPD lung. The expression of SIRT1 and miR-34a were examined 
in peripheral lung samples taken from control subjects (which included non-smokers and smokers) and COPD 
patients who had various stages of the disease (patient details described in Table S1). As previously reported12 
SIRT1 mRNA, normalized to the expression of a house keeper gene (GNB2L1), was confirmed to be significantly 
down-regulated in the peripheral lungs of patients with COPD (Fig. 1A). In contrast, miR-34a was significantly 
up-regulated in patients with COPD compared to age-matched subjects without the disease (Fig. 1B). Within these 
samples there was a trend towards higher miR-34a expression with lower SIRT1 mRNA expression, but the corre-
lation was not statistically significant (data not shown). MiR-34a gene expression also showed a trend towards an 
increase with age (data not shown), in agreement others previous finding in aged mice24. This induction seemed 
to be selective for miR-34a as the other two closely related miRNA-34 family members, miRNA-34b and miR-
NA-34c, showed a trend towards reduced expression in COPD (Fig. 1C,D). Both have previously been shown 
to be down-regulated in patients with COPD, with significance being associated with emphysema severity35.  
MiR-34a was also shown to be significantly up-regulated in sputum cell samples taken from a different cohort 
of COPD patients (Table S2, Fig. 1E) and in primary epithelial cells taken from COPD patients undergo lung 
revision surgery (Fig. 1F).

Oxidative stress regulates expression of both miR-34a and SIRT1 in airway epithelial cells. To 
evaluate the effects of oxidative stress on both miR-34a and SIRT1 expression, immortalized human bronchial 
epithelial cells (BEAS2B) were treated for 48 hours with varying concentration of hydrogen peroxide (H2O2). A 
concentration-dependent increase in the levels of miR-34a was observed in cells treated with H2O2, with signif-
icant increases at concentrations 75, 100 and 150 μ M (Fig. 2A). Conversely, both the mRNA and protein levels 
of SIRT1 were reduced at 100 and 150 μ M of H2O2 (Fig. 2B,C). Time-course studies demonstrated that miR-
34a induction was observed at 24 hours, indicating that miR-34a expression is induced prior to the maximal 
decrease of SIRT1 mRNA at 48 hours (Fig. 2D,E). SIRT1 protein was also decreased 48 hours after H2O2 treatment 
(Fig. 2F). These data suggest that oxidative stress modulates the expression of both SIRT1 and miR-34a in bron-
chial epithelial cells.

MiR-34a directly regulates the expression of SIRT1. To assess whether miR-34a was directly regulat-
ing the expression of SIRT1 in bronchial epithelial cells luciferase reporter experiments were performed, assessing 
whether miR-34a directly bound to the 3′ UTR of SIRT1. A luciferase reporter plasmid with the 3′ UTR of SIRT1 
cloned downstream of the luciferase gene was transfected into BEAS2B cells. At the same time, a double-stranded 
RNA mimic of miR-34a was over-expressed. In both the presence and absence of oxidative stress, over-expression 
of a miR-34a mimic significantly reduced luciferase activity, suggesting that miR-34a directly binds to the  
3′  UTR of SIRT1 mRNA under normal and oxidative conditions (Fig. 3A,B). In addition, over-expression of a 
miR-34a mimic led to a decrease in both the mRNA and protein levels of SIRT1 under normal and oxidative stress 
(Fig. 3C,D), suggesting a direct causal link between increased miR-34a and decreased SIRT1.
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Inhibition of miR-34a restores SIRT1 expression to pre-oxidative stress levels. To assess 
whether the effects of oxidative stress on the expression of SIRT1 could be prevented, a miR-34a antagomir was 
over-expressed in BEAS2B cells. Over-expression led to increased SIRT1 mRNA expression under non-oxidative 
conditions, but this was not significant. Under conditions of oxidative stress (H2O2 100 μ M), where SIRT1 mRNA 
levels are decreased, over-expressing the miR-34a antagomir restored the level of SIRT1 mRNA and protein to 
baseline conditions (Fig. 3E,F).

MiR-34a antagomirs were also over-expressed in primary epithelial cells from COPD patients. Over- 
expression of the antagomir significantly decreased miR-34a expression, with this decrease leading to a significant 
increase in the mRNA expression of SIRT1 (Fig. 3G,H). These data suggested that miRNA antagomirs have the 
ability to rescue the loss of SIRT1 mRNA in COPD cells. The mRNA expression of p16 and p21 were also exam-
ined after the over-expression of miR-34a antagomirs. The expression of both of these markers of senescence was 
decreased after treatment (Fig. 3I,J), suggesting miR-34a antagomirs to prevent the induction of senescence in 
these cells. Similarly, the expression of hTERT, a key component of telomerase was examined, although not signif-
icant, an increase in hTERT expression was observed (Fig. 3K).

MiR-34a also regulates the expression of SIRT6. Along with SIRT1, SIRT6 is the only other sirtuin 
isoform down-regulated in patients with COPD12. MiR-34a has also been shown to directly regulate SIRT6 
expression by binding to the 3′UTR of SIRT6 mRNA, decreasing both the mRNA and protein expression33. To 
assess whether miR-34a regulates the expression of this isoform or any other members of the sirtuin family in 
epithelial cells, a miR-34a mimic was over-expressed and the mRNA expression of each sirtuin isoform assessed. 

Figure 1. Decreased SIRT1 and increased miR-34a in COPD patients. Lung tissue from resections were 
obtained from 4 healthy volunteers and 9 non-COPD smoker volunteers (Controls), 15 mild COPD (Gold 1 
plus Gold 2) and 11 severe COPD (Gold 3 plus Gold 4) (COPD) and RNA was extracted. (A) SIRT1 mRNA 
expression was examined in these lung samples and detected by QRT-PCR using a TaqMan assay normalized 
to GNB2L1 expression. (B) miR-34a levels, normalized to RNU48, were examine in lung samples from Control 
and COPD. (C,D) miR-34b and miR-34c levels, normalized to RNU48, were examined in lung samples from 
Control and COPD subjects. (E) miR-34a levels were examine in sputum cells samples from Control (N =  5) 
(1 non-smoker and 4 smokers) and COPD (N =  12) subjects. (F) miR-34a levels, normalized to RNU48, were 
examine in primary epithelial cells from Control (N =  5) (all non-smokers) and COPD (N =  7) subjects. Data 
are means ±  SEM and analyzed by a Mann-Whitney U test * P <  0.05, **P <  0.01.
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Data showed that SIRT1 and SIRT6 were the only members of the sirtuin family down-regulated by the miR-34a 
mimic, with the mRNA expression of SIRT2, 3, 4, 5 and -7 being unaffected by the mimic (Fig. 4A), implying the 
importance of miR-34a in COPD.

SIRT6 expression was examined in our peripheral lung sample cohort, with data showing SIRT6 to be 
down-regulated at the mRNA level in COPD patients, but only when comparing non-smoking controls to patients 
with the most severe form of COPD (GOLD stage 4) (Fig. 4B). To assess whether oxidative stress was involved in 
the down-regulation of SIRT6, BEAS2B cells were treated with increasing concentrations of H2O2 and the mRNA 
and protein levels of SIRT6 examined. At the higher concentrations of H2O2 (75, 100 and 150 μ M) a significant 
decrease in the expression of SIRT6 was seen at both the mRNA and protein level (Fig. 4C,D). Over-expression 
of a miR-34a mimic led to the suppression of both the mRNA and protein expression of SIRT6 in epithelial cells 
under normal and oxidative conditions (Fig. 4E,F). When an antagomir of miR-34a was over-expressed, under 
conditions of oxidative stress, the expression of SIRT6 mRNA and protein was restored to pre-oxidative condi-
tions (Fig. 4G,H). An antagomir of miR-34a over-expressed in bronchial epithelial cells taken from patients with 
COPD also led to a significant increase in the mRNA expression of SIRT6, suggesting the reduction of SIRT6 is 
reversible (Fig. 4I). These data, as similarly seen for SIRT1, suggest that miRNA antagomirs have the capability to 
restore the loss of SIRT6 mRNA in patients with COPD.

Figure 2. Correlation between oxidative stress-mediated reduction in SIRT1 and increased miR-34a 
expression. BEAS2B cells were stimulated for 48 hours with H2O2 at concentrations of 25, 50, 75, 100 and 
150 μM, and protein or RNA extracted. (A) RNA was extracted to examine miR-34a (n =  6) (B) and SIRT1 
(n =  6). (C) Protein was extracted and SIRT1 protein expression was determined by SDS-PAGE/Western 
blotting normalized to β -actin (n = 5). BEAS2B cells were stimulated for 4, 8, 24 and 48 hours with 100 μ M H2O2 
and protein and RNA extracted, (D) changes in miR-34a expression was examined (n =  5), as well as changes 
in (E, F) SIRT1 gene and protein expression (n =  5). The band density of each blot is represented as a histogram 
and and is the average of all experiments performed. Data are means ±  SEM, analyzed by Kruskal–Wallis test 
with post hoc Dunns and One-way Anova with post hoc Bonferroni *P <  0.05, **P <  0.01, ***P <  0.001.
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Figure 3. MiR-34a directly binds to SIRT1 mRNA 3′UTR and inhibits protein and mRNA expression. 
Luciferase assays were performed in BEAS2B cells. Co-transfection of a luciferase reporter with the 3′ UTR of 
SIRT1 downstream of a luciferase gene (0.25 μ g) and either a miR-34a mimic (15 nM) or control for 24 hours. 
(A) Cells were either left un-stimulated or (B) were stimulated for 48 hours with 100 μ M H2O2 (n =  4). (C,D) A 
miR-34a mimic or control were over-expressed for 24 hours and left un-treated or treated with 100 μ M H2O2 for 
48 hours and RNA or protein was extracted, SIRT1 gene and protein expression was assessed (n =  5). BEAS2B 
cells were transfected with either a miR-34a antagomir (30 nM) or control and then left untreated or treated for 
48 hours with 100 μ M H2O2. RNA or protein was extracted and levels of SIRT1 (E) mRNA (n =  6) or (F) protein 
(n =  4) were assessed. Primary epithelial cells isolated from 7 COPD patients undergoing lung resection  
surgery were treated with miR-34a antagomirs (30 nM) for 24 hours. RNA was then extracted and (G) miR-
34a, (H) SIRT1, (I) p21, (J) p16 or (K) hTERT mRNA levels were detected. The band density of each blot is 
represented as a histogram and is the average of all experiments performed. Data are means ±  SEM analyzed by 
Mann-Whitney, Paired student t-test, Kruskal–Wallis test with post hoc Dunns and One-way Anova with post 
hoc Bonferroni *#P <  0.05, **P <  0.01, ***P <  0.001.
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Oxidative stress modulates miR-34a expression via the PI3K pathway. To understand the poten-
tial mechanisms by which oxidative stress elevates the levels of miR-34a, the role of the PI3K signaling pathway 
was examined. This pathway has previously been implicated the regulation of SIRT1 via oxidative stress36 and 
is a crucial signaling pathway in the pathogenesis of COPD37. As PI3Kα  is the dominant isoform expressed in 
bronchial epithelial cells35 PI3Kα  was inhibited using PIK75, a PI3Kα  selective inhibitor. PI3Kα  inhibition led to 
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Figure 4. MiR-34a reduces the protein and mRNA expression of SIRT6. (A) A miR-34a mimic or control 
was over-expressed for 24 hours and the expression of SIRT1, 2, 3, 4, 5, 6 and 7 assessed (n =  4–7). (B) Lung 
tissue from resections were obtained from 4 healthy volunteers and 7 COPD Gold stage 4 and RNA extracted, 
SIRT6 mRNA levels then examined. (C) BEAS2B cells stimulated for 48 hours with H2O2 at concentrations 
of 25, 50, 75, 100 and 150 μ M and protein or RNA extracted and changes in SIRT6 gene expression examined 
(n =  5). (D) SIRT6 protein expression was also assessed (n =  5). (E,F) A miR-34a mimic (15 nM) or control was 
over-expressed for 24 hours and left un-treated or treated with 100 μ M H2O2 for 48 hours. RNA or protein was 
extracted, SIRT6 gene and protein expression assessed (n =  5). A miR-34a antagomir (30 nM) or control was 
over-expressed for 24 hours and left untreated or treated for 48 hours with 100 μ M H2O2. RNA or protein was 
extracted and levels of SIRT6 (G) mRNA (n =  6) or (H) protein were assessed (n =  3–5). (I) Primary bronchial 
epithelial cells taken from 7 patients with COPD were transfected with either a miR-34a antagomir (30 nM) or 
control for 24 hours. RNA was extracted and SIRT6 mRNA were detected (n =  7). The band density of each blot 
is represented as a histogram and is the average of all experiments performed. Data are means ±  SEM analyzed 
by Mann-Whitney, Paired student t-test, Kruskal–Wallis test with post hoc Dunns and One-way Anova with 
post hoc Bonferroni *P <  0.05, **P <  0.01, ***P <  0.001.
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a significant increase in the expression of both SIRT1 and SIRT6 in cells treated with H2O2 compared to vehicle 
control (Fig. 5A,B), showing the importance of this pathway in the reduction of SIRT1 and SIRT6 under condi-
tions of oxidative stress.

To further understand the mechanism by which the PI3K pathway regulates both SIRT1 and SIRT6, we exam-
ined the effect of PI3K inhibition on miR-34a expression, using 4 isoform specific PI3K inhibitors. H2O2-induced 
miR-34a expression in epithelial cells was significantly abrogated by PI3Kα  (PIK75) and PI3Kγ  inhibition (AS-
605240), but not when PI3Kβ  (GSK2636771) or PI3Kδ  (IC-87114) were inhibited (Fig. 5C–F). When phosphatase 
and tensin homolog (PTEN), a negative regulator of PI3K signaling was knocked-down (Fig. 5G) under oxidative 
conditions, a significant decrease in SIRT1 and SIRT6 mRNA expression was seen (Fig. 5H,I). In addition to the 
loss of SIRT1 and SIRT6, an induction of miR-34a was seen (Fig. 5J), further implicating the dysregulation of the 
PI3K pathway in the expression of miR-34a, SIRT1 and SIRT6 in COPD.

MiR-34a regulates PNUTS, an age associated driver of the accelerated ageing phenotype 
in COPD patients. PNUTS (also known as PPP1R10), a direct target of miRNA-34a, has been shown to 
be down-regulated with age as well as being associated with the regulation of telomere length, DNA damage 
responses and apoptosis24, all of which are deregulated in COPD. The role of PNUTS in COPD pathogenesis has 
not been examined, with no previous studies investigating the expression of this phosphatase in COPD patients. 
When examining the mRNA expression of PNUTS, in our peripheral lung samples, a significant decrease in 
expression was seen in COPD patients (Fig. 6A), with the decrease being observed in patients with the most 
severe form of the disease (Figure S1). The effects of oxidative stress on the mRNA expression of PNUTS was 
examined, showing PNUTS gene expression to be significantly down-regulated in epithelial cells treated with 
H2O2 (100 and 150 μ M) (Fig. 6B). To assess direct regulation of PNUTS by miR-34a, a miR-34a mimic was 
over-expressed. Over-expression induced a significant decrease in the mRNA expression of PNUTS at basal levels 
and a further reduction in expression was seen in conditions of oxidative stress, although this was not significant 
(Fig. 6C). Over-expression of a miR-34a antagomir rescued the loss of PNUTS mRNA expression to above basal 
levels when treated with H2O2 (Fig. 6D). An antagomir of miR-34a was also over-expressed in bronchial epithe-
lial cells taken from patients with COPD. This led to a significant increase in the mRNA expression of PNUTS, 
suggesting the reduction of PNUTS in COPD patients could be reversible (Fig. 6E). These data, as similarly seen 
for SIRT1 and SIRT6, suggest that miRNA antagomirs have the capability to restore the loss of PNUTS mRNA in 
patients with COPD.

Discussion
SIRT1 and SIRT6 are putative anti-ageing molecules that have been shown to be significantly reduced in the lungs 
of COPD patients, in agreement with the view that COPD represents acceleration of lung aging12,23. They have 
both been shown to down-regulate inflammation through the modulation of NF-κ B signaling, reduce emphy-
sema through inhibition of matrix metalloproteinase expression, and also regulate the expression of several 
anti-oxidant genes12,14,38,39. These findings have shown the importance of these two deacteylases in the pathology 
of COPD. Oxidative stress, a key feature of COPD, is believed to be a main driver of the down-regulation of SIRT1 
and SIRT6 protein expression in COPD patients12,21,39. However, the mechanism by which the mRNA levels of 
these deacetylases are down regulated in COPD has not been understood until now.

MiRNAs have been extensively documented in COPD, with many miRNAs being associated with disease 
severity and clinical phenotypes27,28,40. However, much of this work has focused on alterations in expression 
between healthy and COPD patients, with little information on how the dysregulation of these miRNAs contrib-
ute to disease mechanisms35,41. Although miR-34a has been previously been shown to be up-regulated in the lungs 
of patients with COPD29, here, we show for the first time that abnormal regulation of miR-34a by oxidative stress 
causes parallel down-regulation of SIRT1 and SIRT6.

MiR-34a is known to regulate SIRT1 expression30, but this has not been examined in the context of COPD. 
Elevated levels of this miRNA were seen in lung homogenates from COPD patients in association with reduced 
expression of SIRT1. MiR-34a was also elevated in sputum and primary bronchial epithelial cells taken from 
COPD patients, suggesting increased miR-34a expression in a heterogeneous population of cells. To explore the 
specificity of these findings the expression of the two other members of the miRNA-34 family, miR-34b and miR-
34c, were examined. These two miRNAs have previously been shown to be down-regulated in COPD patients35 
and we confirmed that both were reduced in COPD lung parenchyma, although this did not quite achieve 
statistical significance35. When, however, the control samples were further analyzed, separating smokers and 
non-smokers, a significant decrease in the expression of both miR-34b and miR-34c is seen (Figures S2 and S3). 
These data suggest smoking to regulate their expression, this however was not observed for miR-34a (Figure S4). 
One explanation for the decreased expression of these two miRNAs could be the reduced expression of FOXO3a 
in COPD42. This transcription factor has been shown to regulate the expression of both these miRNAs43, but we 
found that FOXO3a silencing had no effect on the expression of miR-34a (Figure S5).

Increased oxidative stress is a key mechanism driving COPD pathogenesis, with elevated levels of oxida-
tive stress persisting after smoking cessation11. Oxidative stress causes lung injury by inducing the depletion 
of glutathione (and other antioxidants), increasing and activating proteinases; all of which further perpetuate 
the levels of oxidative stress as well as inducing damage to lipids, nucleic acids and proteins44. However, the role 
of oxidative stress in the regulation of miRNAs has not previously been examined in COPD. Elevated oxida-
tive stress decreased both the protein and mRNA levels of SIRT1, whilst up-regulating the expression of miR-
34a. Interestingly, the induction of miR-34a began at between 8–24 hours after treatment, prior to the maximal 
decrease in SIRT1 mRNA and protein expression. This correlation led us to believe that oxidative stress may be 
inducing miR-34a, leading to a decrease in SIRT1, via the binding of miR-34a to SIRT1 mRNA, thereby inhibiting 
its translation and/or decreasing mRNA stability of SIRT1, resulting in its degradation.
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Figure 5. Pathways through which oxidative stress may regulate miR-34a expression. BEAS2B cells were 
treated with either PIK75 (at 10 μ M) or vehicle (DMSO) for 1 hour prior to stimulation with or without 100 μ M 
H2O2 for 48 hours, RNA extracted and (A) SIRT1 or (B) SIRT6 expression examined (n =  6). BEAS2B cells were 
treated with either (C) PIK75, (D) AS-605240, (E) IC-87114 and (F) GSK2636771 (10 μ M) or vehicle (DMSO) 
for 1 hour prior to stimulation with or without 100 μ M H2O2 for 48 hours, RNA extracted and miR-34a levels 
assessed (n =  3–5). BEAS-2B cells were transfected with small interfering RNA (siRNA) against either PTEN for 
24 h or a random oligonucleotide control and then either left un-stimulated or stimulated with 100 μ M H2O2 for 
48 hours (n =  4). RNA was extracted and either (G) PTEN, (H) SIRT1, (I) SIRT6 or (J) miR-34a levels assessed. 
Data are means ±  SEM analyzed by Mann-Whitney and Kruskal–Wallis test with post hoc Dunns #P <  0.05, 
*P <  0.05, ***P <  0.001.
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MiR-34a directly binds to the 3′ UTR of SIRT1 mRNA30, inducing a decrease in the protein and/or mRNA 
expression of this gene; this is via translation repression but may also be due to increased mRNA decay. Our 
data show that in bronchial epithelial cells, miR-34a directly binds to the 3′ UTR of SIRT1 mRNA, in both the 
absence and presence of oxidative stress, suggesting a direct regulatory effect. As the regulation of SIRT1 by 
miR-34a has been shown to decrease just the protein levels of SIRT1 in certain cell types30,31, but also the mRNA 
and protein levels of SIRT1 in other cell types45, we assessed the regulation of both in bronchial epithelial cells. 
Over-expression studies showed miR-34a regulated both mRNA and protein expression of SIRT1, with the same 
results also being observed for SIRT6. These data imply a new mechanism by which the mRNA and protein levels 
of both SIRT1 and SIRT6 are decreased in parallel in patients with COPD.

As miR-34a has only been shown previously to regulate the expression of SIRT1 and SIRT630,33, the only two 
members of the sirtuin family to be down-regulated in COPD12, we wanted to assess whether miR-34a was spe-
cific against just these two isoforms or the rest of the family. We first examined multiple miRNA target prediction 
websites; two target prediction websites miRanda and miRTarBase predicted only SIRT7 to also be a target of 
miR-34a. To further validate this we over-expressed a miR-34a mimic and assessed these effects on the mRNA 
expression of SIRT2, 3, 4, 5 and − 7. Over-expression of miR-34a mimics had no effect on the expression of either 
of these family members, including SIRT7. These data suggest not only the specificity of this mimic, but also the 
importance of miR-34a in regulating only the sirtuin isoforms that are down-regulated in COPD, showing the 
importance of this miRNA in the disease.

To investigate whether the decrease in expression of SIRT1 and SIRT6 under conditions of oxidative stress 
could be prevented, miR-34a was inhibited in the presence of H2O2. Results showed both the mRNA and protein 
levels of SIRT1 and SIRT6 to be down-regulated in conditions of oxidative stress, but this decrease was completely 

Figure 6. MiR-34a regulates the expression of the age associated protein, PNUTS. (A) RNA was extracted 
from lung resection tissue and PNUTS mRNA levels examined. (B) BEAS2B cells were stimulated for 48 hours 
with H2O2 at concentrations of 25, 50, 75, 100 and 150 μ M and RNA extracted. PNUTS gene expression was 
assessed (n =  4). (C) A miR-34a mimic or control were over-expressed in BEAS2B cells for 24 hours and left un-
treated or treated with 100 μ M H2O2 for 48 hours. RNA or protein was extracted and PNUTS gene expression 
assessed. (D) BEAS2B cells were transfected with either a miR-34a antagomir (30 nM) or control and either 
left untreated or treated for 48 hours with 100 μ M H2O2. RNA was extracted and PNUTS mRNA expression 
assessed (n =  8). (E) Primary bronchial epithelial cells taken from 7 patients with COPD were transfected with 
either a miR-34a antagomir (30 nM) or RNA control for 24 hours. RNA was then extracted and PNUTS mRNA 
levels were detected (n =  7) Data are means ±  SEM analyzed by Mann-Whitney, Paired student t-test, Kruskal–
Wallis test with post hoc Dunns and One-way Anova with post hoc Bonferroni *P <  0.05, **P <  0.01.
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prevented when miR-34a was inhibited by a specific antagomir. These findings were further validated when exam-
ining the effects of the miR-34a antagomir in COPD epithelial cells, which are known to have decreased sirtuin-1 
and sirtuin-6 expression. A significant increase in the mRNA expression of SIRT1 and SIRT6 was seen in these 
primary epithelial cells when miR-34a was suppressed using the antagomir. These data imply that the reduction 
in SIRT1 and SIRT6 mRNA levels could be restored in COPD patients, suggesting administration of these antag-
omirs as a potential therapy to reverse the accelerated aging phenotype of COPD patients.

P21 and p16 are two important cyclin-dependent kinase inhibitors, which mediate cellular senescence19 and 
are associated with the ageing phenotype in COPD patients46. Over-expression of the miR-34a antagomir in 
COPD primary epithelial cells led to a significant decrease in the expression of p21 and p16. The mechanism by 
which miR-34a may be regulating the expression of p21 and p16 is not fully elucidated. However, SIRT1 has been 
previously shown to decrease the expression of p2130 in a miR-34a-dependent manner and SIRT1 is known to 
regulate both p21 and p16 expression under oxidative conditions14. In addition to examining the effects of the 
antagomir on these senescence markers we examined the antaogmirs effect on hTERT expression, a key com-
ponent of telomerase. MiR-34a has previously been shown to regulate the expression of this protein, inducing 
cellular senescence47. Although not significant, an increase in the expression of hTERT is seen, suggesting a fur-
ther mechanism by which miR-34a may be inducing cellular senescence. These data suggest miR-34a may act as 
a master regulator of the accelerating ageing phenotype, driving three distinct pathways, all of which can lead to 
accelerated ageing of the lung.

Previous studies of the signaling pathways regulating miR-34a expression have implicated p53 and NF-κ B 
signaling, with both of these transcription factors being shown to bind directly to the promoter of miR-34a48,49. 
NF-κ B signaling is up-regulated in patients with COPD15 and plays an important role in the up-regulation of 
inflammatory mediators seen within disease50. p53 is also up-regulated in patients with COPD and correlates 
with increased miR-34a expression29,51. However, in p53 knock-out mice the high expression of miR-34a in lungs 
persists, suggesting that p53-independent mechanisms may also regulate miR-34a transcription in the lung52. We 
therefore sought to understand whether further upstream mechanisms, known to be induced by oxidative stress 
and associated with COPD, were involved in the induction of miR-34a.

The PI3K signaling pathway is an important signaling pathway in the progression of COPD, being implicated 
in corticosteroid insensitivity in COPD patients and also being shown to be activated by oxidative stress37,53. 
To assess the role of this pathway in the regulation of SIRT1, SIRT6 and miR-34a various PI3K inhibitors were 
utilized. Inhibition of PI3Kα , the predominant isoform in bronchial epithelial cells, led to a significant increase 
in the expression of both SIRT1 and SIRT6 compared to controls when under conditions of oxidative stress. To 
understand the potential mechanism by which PI3K signaling modulated SIRT1 and SIRT6 expression the effect 
of isoform specific inhibition of the PI3K pathway on the expression of miR-34a was examined. Inhibition of 
PI3Kα  led to a significant decrease in the expression of miR-34a, suggesting that activation of PI3K signaling 
by oxidative stress may induce miR-34a expression in patients with COPD. Interestingly, PI3Kγ , but not PI3Kδ  
or PI3Kβ , also appears to be involved in the regulation of miR-34a in epithelial cells. However, this inhibitor is 
believed to inhibit PI3Kα  at the concentration used54 and may therefore suggest that only PI3Kα  is regulating 
miR-34a expression in these conditions. The role of PTEN was also examined, as previously unpublished work 
by our group has shown this protein to be down-regulated in COPD patients. Knock-down of PTEN, the major 
endogenous inhibitor of PI3K signaling resulted in a significant increase in the levels of miR-34a and concomitant 
decrease in the mRNA expression of SIRT1 and SIRT6, further demonstrating the importance of the PI3K path-
way in the regulation of miR-34a by oxidative stress. How PI3Kα  and PI3K–γ  isoforms regulate the expression 
of miR-34a remains unclear. However, PI3K signaling is known to induce NF-κ B signaling via Akt55, suggesting 
that PI3K signaling may activate this transcription factor leading to its binding to the miR-34a promoter, thereby 
inducing miR-34a expression in bronchial epithelial cells.

As well as regulating the expression of SIRT1 and SIRT6, miR-34a has been shown to directly inhibit the 
expression of PNUTS24. This age associated protein has been shown to be important in the regulation of telomere 
length, apoptosis and DNA damage repair, all of which are deregulated in COPD. We therefore hypothesized that 
this protein might be down-regulated in patients in COPD, via the induction of miR-34a, through its induction 
by elevated oxidative stress. A decrease in the mRNA expression of PNUTS was seen in peripheral lung samples 
taken from COPD patients, with further data suggesting that the mRNA levels of PNUTS could be decreased 
by oxidative stress in BEAS2B cells. MiR-34a mimic and antagomir studies also confirmed the direct regulation 
of this protein by miR-34a. The over-expression of a miR-34a antagomir rescued the mRNA levels of PNUTS in 
epithelial cells from diseased patients, suggesting the reduction in the expression of this gene could be reversible 
in patients with COPD. The loss of PNUTS, via miR-34a, may induce apoptosis, cell cycle suppression and also 
senescence in COPD patients.

This study shows miR-34a to directly and specifically regulate the expression of SIRT1 and SIRT6 in bronchial 
epithelial cells. These data suggest a potential new mechanism by which the elevated levels of oxidative stress 
found within the peripheral lungs of patients with COPD decreases both the mRNA and protein expression of 
SIRT1 and SIRT6, as observed in patients with COPD. Over-expression of a miR-34a antagomir in bronchial 
epithelial cells from COPD patients suggests the decrease in SIRT1 and SIRT6 mRNA levels can be restored, 
preventing any further loss of these putative anti-ageing molecules. We also show PNUTS to be down-regulated 
in COPD patients and that miR-34a directly regulates the expression of this protein. These data suggest miR-34a 
may act as a master regulator in the expression of several anti-ageing molecules, showing the importance of this 
miRNA in the progression of COPD. MiR-34a antagomirs may therefore have the potential to be a new therapy to 
prevent further down-regulation of these anti-ageing molecules, slowing down the accelerated ageing phenotype 
of the lung and the loss of lung function in COPD patients. Finally, miR-34a may be a potential biomarker of 
cellular senescence in COPD.
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Materials and Methods
Reagents and antibodies. H2O2 (Hydrogen peroxide) and 3-(4,5- dimethylthiazol-2 yr)-2-5-diphenyl tetra-
zoliumbromide (MTT) were purchased from Sigma (Poole, UK). PI3K inhibitors PIK75 hydrochloride (PI3K α )  
was purchased from Abcam (Cambridge, UK), GSK2636771 (PI3K β ), AS-605240 (PI3K γ ) and IC-87114 (PI3Kδ )  
were all purchased fromVWR International Ltd. (Leicestershire, UK). Antibodies against the following were used 
for immunoblotting: β -actin (Santa Cruz Biotechnology, Santa Cruz, CA), Sirtuin 1 (Epitomics, Cambridge, UK),  
Sirtuin 6 and Sirtuin 2 (Cell Signaling Biotechnology Beverly, MA, USA). Anti-rabbit (P0448) and anti-mouse 
(P0260) secondary antibodies were from Dako (Cambridge shire, UK Liopofectamin RNAimax and lipo-
fectamine LTX plus were both purchased from (ThermoFischer, Massachusetts, USA).

Cell culture and transfections. BEAS2B cells (human airway epithelial) (ATCC Teddington, UK) were 
cultured in keratinocyte media (Invitrogen, Paisley, UK) containing human recombinant epithelial growth factor 
(EGF) and bovine pituitary extracts (BPE). Human primary bronchial epithelial cells were cultured as monolayers 
in LHC-9 media (Invitrogen, Paisley, UK) on collagen (1% w/v) coated plates. Cells were extracted from lung tissue  
from patients undergoing lung resection surgery at the Royal Brompton Hospital. The subjects were matched 
for age and smokers and COPD patients for smoking history (Table S1). All subjects gave informed written con-
sent and the study was approved by the NRES London-Chelsea Research Ethics committee, study number 09/
H0801/85. All methods were performed in accordance with the relevant guidelines and regulations. All cells were 
serum starved 16 h before stimulation. Cells were stimulated with varying concentrations of H2O2 for time points 
indicated. BEAS2B and primary bronchial epithelial cells were transfected with mirVana miRNA mimics (mir-
Vana™  miRNA Mimic Negative Control #1, has-miR-34a MC11030,) and inhibitors (mirVana™  miRNA Inhibitor 
Negative Control #1, has-miR-34a MH11030) (30 or 60 nM) (Ambion, Life Technologies, Foster City, CA)  
using Lipofectamine RNAimax for 24 or 48 hours prior to stimulation with H2O2. BEAS2B cells were trans-
fected with siRNA (PTEN # 6251 and FOXO3a #6303 (Cell Signaling Technology), Negative control #1 (Ambion 
Silencer Select siRNA) (100nM) using Lipofectamine RNAimax for 24 hours prior to stimulation with H2O2.

Lung tissue. COPD severity was graded according to the Global Initiative for Chronic Obstructive Lung 
Disease (GOLD) guidelines56 with lung function and symptoms. Lung tissues were obtained from an established 
tissue bank linked to an established patient registry which has previously been used57. mRNA and miRNAs were 
extracted using the miRNeasy kit (Qiagen) according to the manufacturer’s instructions.

Sputum samples. Sputum was induced using 3% (weight/volume) nebulized hypertonic saline. Saliva was 
removed from the sputum samples and then protein and RNA was extracted using the mirVana PARIS RNA 
and Native Protein Purification Kit, as instructed by the manufacturer’s instructions. RNA samples were then 
reverse transcribed as previously stated and qPCR performed. Sputum samples were a kind gift from Andriana I 
Papaioannou and written informed consent was acquired.

RNA extraction and Real-Time quantitative PCR. mRNA and miRNAs were extracted using the miR-
Neasy kit (Qiagen) according to the manufacturer’s instructions. RNAs were then reverse-transcribed using the 
TaqMan normal RNA and MicroRNA Reverse Transcription Kit (Life Technologies). Both normal and miRNA 
levels were detected by either TaqMan Assays (SIRT1 Hs01009006, SIRT2 Hs00247263, SIRT3 Hs00953477, SIRT4 
Hs00202033, SIRT5 Hs00978335. SIRT6 Hs0021303, SIRT7 Hs01034735, GNB2L1 Hs00272002, and PTEN 
Hs02621230, PNUTS Hs00160391, p21 Hs00355782, p16 Hs00923894), or TaqMan MicroRNA Assay (hsa-miR-
34a-5p 000426, has-miR-34b-5p 000427, has-miR-34c-5p 000428) (Applied Biosystems, Life Technologies, Foster 
City, CA). RNU 48 (001006), a small noncoding RNA, was detected as the endogenous control for miRNA detec-
tion and guanine nucleotide binding protein -polypeptide 2-like 1 (GNB2L1), as endogenous control for normal 
cDNA. After the reactions, the CT values were determined using fixed-threshold settings.

Luciferase assay. Briefly, the day before transfection, cells were seeded onto 24-well plates. After 24 hours, 0.2 μ 
g of Luc-SIRT1 3′ UTR (Luc-SIRT1 3′ UTR was a gift from Charles Lowenstein (Addgene plasmid #20379), 0.1 μ g of 
renilla expression vector, were transfected into cells for 24 hours using Lipofectamine LTX plus reagent. These were 
co-transfected with and 30 nM of mirVana mimics or control. Cells were then serum starved for 16 h and stimulated 
with H202 (100 μ M) for 48 hours. Dual-luciferase assay was conducted using Dual-Luciferase Reporter Assay System 
(Promega, Madison, WI, USA), with changes in firefly luciferase expression being normalized to renilla expression.

Western Blotting. Protein extracts were prepared using RIPA buffer (Sigma: 150 mM NaCl, 1.0% IGEPAL®  
CA-630, 0.5% sodium deoxycholate, 0.1% SDS, and 50 mM Tris, pH 8.0.) completed with protease (Roche, 
Welwyn Garden City, UK). Protein extracts (40 μ g) were analyzed by SDS-PAGE (Invitrogen, Paisley, UK) and 
detected with Western Blot analysis by chemiluminescence (ECL Plus; GE Healthcare, Hatfield, UK). Protein 
expression levels were expressed relative to β -actin.

Statistical Analysis. Data are expressed as SEM. Results were analyzed using t-test and one- or two-way 
ANOVA for repeated measures with Dunnett or Bonferroni post-tests using the Graph Pad Prism 6 Software 
(Prism, San Diego, CA) was used for statistical calculations. Clinical data was analyzed by using Kruskal Wallis 
followed by Mann Whitney. P ≤  0.05 was considered statistically significant.
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