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Thermodynamic Calculation among 
Cerium, Oxygen, and Sulfur in 
Liquid Iron
Fei Pan1,2,3,*, Jian Zhang1,4,*, Hao-Long Chen5, Yen-Hsun Su1, Yen-Hao Su6 &  
Weng-Sing Hwang1

Thermodynamic calculation has been applied to predict the inclusion formation in molten SS400 steel. 
When the Cerium addition in liquid iron is 70 ppm and the initial Oxygen and Sulphur are both 110 ppm, 
the formation of oxides containing Cerium would experience the transformation from Ce2O3 to CeO2 
and also the formation of sulfides containing Cerium would experience the transformation from CeS 
to Ce2S3 and then to Ce3S4. Below 2000 K the most thermodynamic stable matter is CeO2 and the less 
thermodynamic stable inclusion is CeS. Only when the amount of [O] is extremely low and the amount 
of [S] and [Ce] is relatively high, Ce2S3 has the possibility to form.

Rare earth (RE) metals have many applications1–5 and their addition to molten iron has attracted increasing 
research attention6. Such addition affects inclusion structures7 and can be used to purify steel8. The conjugation 
between oxygen and RE metals9 and between sulfur and RE metals10 is very strong. A lot of research11–13 has been 
done on the equilibrium relation between O, S, and RE metals. It has been found that extremely low oxygen and 
sulfur concentrations in steel can be achieved via the addition of an RE metal14. A lot of research15–18 has also been 
done on steel deoxidization and desulfurization via titanium and magnesium. RE metals can be used to deoxidize 
and desulfurize steel to control inclusion size and chemical composition. Few studies have performed thermody-
namic calculations on the use of cerium to modify inclusions.

This paper focuses on the thermodynamic calculations of the cerium-oxygen-sulfur system in molten SS400 
steel. The formation conditions of CeS, Ce2S3, Ce3S4, CeO2, and Ce2O3 in molten steel are examined using 
Wagner’s relation and Lupis’s relation based on the Gibbs free energy change. The transformation mechanism is 
analyzed by determining the thermodynamic conditions of Ce-desulfurized and Ce-deoxidized steel. The seg-
regation of Ce2O3 in molten iron is also analyzed. In addition, a model for predicting the formation of various 
inclusions is established for SS400 steel with cerium addition.

Calculations
The thermodynamic calculations of the Ce-O-S system are based on Wagner’s relation19 and Lupis’ relation20. 
These calculations were implemented in C+ + . The segregation of Ce2O3 in molten SS400 steel, whose chemical 
composition is shown in Table 1, was calculated in Matlab 2015a.

The Ce-O-S system is the thermodynamic relation between the dissolved Oxygen, Sulphur and Cerium in 
liquid iron to explore the formations of inclusions containing Cerium. The first stage for thermodynamic calcu-
lation is to derive the thermodynamic equations for the inclusion formations by Wagner’s relation19 and Lupis’ 
relation20. Then the second stage is to use C+ +  programming software to derive the unknown chemical compo-
sition values for every equation.

Results and Discussion
For the addition of cerium into molten SS400 steel, the reactions of [O], [S], and [Ce] are of interest because 
Ce has strong affinity with S and O. As reported previously21, when w(RE)/(w[O] +  w[S]) =  3.9, the function of 
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cerium is optimal. To determine the separation sequence for various oxides and sulfides of cerium, the amount of 
cerium in the calculations was set as 1 mol to compare the Gibbs free energy of formation for various inclusions, 
which can be derived as:

∆ = ∆ +θG G RT Jln (1)

∆ = −θG RT Kln (2)

where J denotes the reaction quotient (unitless), ∆ G is the Gibbs free energy change of reaction (J/mol), ∆ Gθ 
denotes the Gibbs free energy change of reaction for unmixed reactants and products at standard conditions  
(J/mol), R is the gas constant (J·mol−1·K−1), T is temperature (K), and K is the equilibrium constant (unitless).

The Gibbs free energy of oxides, sulfides and oxysulfides of cerium are shown in Table 2 14,21–26.
Below 2000 K, the most thermodynamically stable inclusion was CeO2, as shown in Fig. 1. Therefore, CeO2 

likely formed in the molten iron when the temperature reached the simulated steelmaking temperature of 1873 K. 
In Fig. 1, it could be read that the least thermodynamic stable inclusion is CeS and the thermodynamic stale 
sequence of the possible inclusion formed in liquid steel is CeO2 >  Ce2O3 >  Ce2O2S >  Ce2S3 >  Ce3S4 >  CeS. 
However, the most thermodynamically stable matter does not guarantee the formation of CeO2, because the 
formation of oxides containing cerium are controlled not only by the equilibrium constant but also by the con-
centrations of cerium and oxygen in the molten iron. That is to say, the formation of CeO2 at 1873 K is also deter-
mined by the solubility product of CeO2 and the concentration of cerium and oxygen, even though the Gibbs Free 
Energy of CeO2 is the lowest at 1873 K.

The activities and activity coefficient of Ce, O and S can be written as Eqs (9) and (10) from Wagner’s relation7 
and Lupis’ relation20 as follow,

α = ⋅f w i[ ] (9)i i

C Si Mn P S O

0.14 0.26 0.90 0.02 0.03 0.018

Table 1.  Chemical composition of SS400 steel (wt. %).

Reaction
Standard Gibbs Free 

energy, J/mol No.

[Ce] +  2[O] =  CeO2(s) Δ Gθ =  − 854270 +  250T (3)

[Ce] +  3/2[O] =  1/2Ce2O3(s) Δ Gθ =  − 715560 +  180T (4)

[Ce] +  [S] =  CeS(s) Δ Gθ =  − 211390 +  60.5T (5)

[Ce] +  3/2[S] =  1/2Ce2S3(s) Δ Gθ =  − 537290 +  164T (6)

[Ce] +  4/3[S] =  1/3Ce3S4(s) Δ Gθ =  − 498480 +  146.3T (7)

[Ce] +  [O] +  1/2[S] =  1/2Ce2O2S(s) Δ Gθ =  − 676795 +  166T18 (8)

Table 2.  Formation equations and Gibbs free energy of oxides, sulfides and oxysulfides of cerium14,21–26.

Figure 1. Gibbs free energy of formation for various oxides and sulfides containing cerium at various 
temperatures. 
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where fi is the Henrian activity coefficient of component i relative to the dilute solution and ei
j is the first-order 

interaction parameter of i on j in molten iron; w[i] and w[ j] are the mass percentages of elements i and j, respec-
tively (Table 3); αi is the activity of element i.

By using data22,23 from Tables 2 and 3, the following curves for Ce-S and Ce-O in Fig. 2 can be calculated. 
The key to derive every line in Fig. 2 is the relation of equilibrium constant, Gibbs free energy and the amount 
of the chemical compositions for every possible inclusion according to Wagner’s relation19 and Lupis’ relation20. 
When the equilibrium constant is linked to the amount of the chemical compositions for every possible inclusion, 
equations for Fig. 2 can be obtained. When the weight percentage of cerium, oxygen and sulphur are known in 
the molten iron at 1873 K, the main inclusion formed would be found in Fig. 2. As shown in Fig. 2, if the cerium 
addition in liquid iron is 70 ppm and the initial oxygen and sulphur are both 110 ppm, the formation of oxides 
containing cerium would experience the transformation from Ce2O3 to CeO2 and also the formation of sulfides 
containing cerium would experience the transformation from CeS to Ce2S3 and then to Ce3S4. From Fig. 2, when 
the temperature of molten iron reached 1873 K, Ce3S4 is the main product, as the amount of cerium in molten 
iron is high and the amount of sulphur is relatively lower compared to the formation of CeS and Ce2S3.

In order to investigate the formation conditions of Ce2O3, Ce2S3 and Ce2O2S, the doubly saturated curve 
with Ce2O3/Ce2O2S and Ce2S3/Ce2O2S are calculated, using the thermodynamic data derived in Tables 2 and 
Equation 1–2.

In molten iron, it is assumed that = ⋅ = −K [%Ce] [%O] 10Ce O ,1873K
2 3 11

2 3
 and = ⋅K [%Ce]Ce S ,1873K

2
2 3

 
= −[%S] 103 6. Based on the reaction Ce2O2S +  [O] =  Ce2O3 +  [S], it is found that [%S] =  10[%O] when Ce2O2S 

and Ce2O3 coexist. When Ce2O2S and Ce2S3 coexist in molten iron, it is derived that [%S] =  100[%O], based on 
the thermodynamic calculation of the reaction Ce2S3 +  2[O] =  Ce2O2S +  2[S]. Figure 3 was derived from the 
above calculations. In Fig. 3, it can be concluded that Ce2O3 and Ce2O2S can exist in molten iron in a wide amount 
range of [Ce], [O] and [S]. More importantly, only when the amount of [O] is extremely low and the amount of 
[S] and [Ce] is relatively high, Ce2S3 has the possibility to form.

Cerium is a perfect deoxidizer and desulfurizer for steel purification. Compared with other elements, for 
example Aluminum, Titanium, Magnesium and Calcium27,28, which can also deoxidize and desulfurize, cerium 
can formed a complex compound Ce2O2S which contains Oxygen and Sulphur together. The formation possi-
bility of Ce2O2S has been verified by Hu’s research29 when they studied the effect of Ce addition on the C-Mn 
steel microstructure. It is reproted by Wang26 that Ce2O3 is easier to form in molten iron when the iron molten 
temperature is 1873 K. However, the thermodynamic conditions were changed when the temperature decreases 
from 1873 K to solidus temperature. On the other hand, when the temperature of molten iron decreases to that 
at which solid steel starts to form, the cerium and oxygen in the molten iron begin to segregate. Their amounts 
are respectively:

= − −W W f(1 )Ce Ce s
k

( ) ( )
1Ce

0

ei
j eCe

Ce eS
Ce eCe

S eS
S eO

Ce eCe
O eO

O

T =  1873 K 0.0039 − 9.1 − 40 − 0.046 − 64 − 560 − 0.17

Table 3.  First-order interaction parameter ei
j of cerium, oxygen, and sulfur at 1873 K30.

Figure 2. Deoxidation and Desulphurization with Cerium in liquid iron at 1873 K. 
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where W(Ce) and W(O) are the percentage amounts of cerium and oxygen of molten iron during the molten iron 
solidification, respectively; W Ce( )0

and W O( )0
 are the initial percentage amounts of cerium and oxygen in the liquid 

phase, respectively; kCe (= 0.005) and kO (= 0.022) are the solvent partition coefficients at equilibrium for cerium 
and oxygen, respectively; fs is the solid fraction.

The solidus temperature of SS400 is 1777 K. The solubility product of the Ce2O3 formed in molten iron can be 
expressed as:

Figure 3. Relationship of [O] and [S] when Ce2O2S, Ce2O3, and Ce2S3 can form as stable compounds in 
molten iron at 1873 K. 

Figure 4. Segregation of Ce2O3 in solid and liquid phases when α [o] is (a) 10, (b) 50, (c) 100, and (d) 200 ppm.
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= ⋅Q W W (13)Ce O Ce O
2 3
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The solubility product of the Ce2O3 formed in molten iron at equilibrium can be expressed as:

α α= ⋅ = − + .K 10 (14)Ce O Ce O T2 3 ( 74695 18 75)
2 3

From Eqs (11) to (14), the solubility products versus solidification ratio (fs) are plotted in Fig. 4. In Fig. 4(a), 
where the simulated oxygen concentration in liquid steel is 10 ppm and the cerium concentration varies from 
0.1% to 0.5%, the solubility products versus solidification ratio (fs) are plotted with the varying cerium concentra-
tion (shown in the colorful lines of Fig. 4(a)) and the equilibrium constant of Ce2O3 (KCe2O3) versus solidification 
ratio fs is curved as the black solid line in Fig. 4(a). It is read in Fig. 4(a) that the colorful lines are all in the above 
of the black solid line, which means Ce2O3 prefers to segregate in liquid phase with the 10 ppm Oxygen concen-
tration in liquid iron. Moreover, the same conclusion can be drawn from the similar Fig. 4(b–d) with 50 ppm, 
100 pmm, 200 ppm oxygen concentration in liquid iron. The inset red diagrams in Fig. 4(a–d) are the detailed 
solid black curves appeared in Fig. 4(a–d). Figure 4 shows that when the oxygen concentration in molten iron was 
increased from 10 to 200 ppm and the cerium concentration was in the range of 0.1% to 0.5%, Ce2O3 preferred to 
segregate in the liquid phase.

Conclusion
By the addition of cerium in molten SS400 steel, when the temperature of molten iron reached 1873 K, at the same 
time that the Cerium addition in liquid iron is 70 ppm and the initial Oxygen and Sulphur are both 110 ppm, the 
formation of oxides containing Cerium would experience the transformation from Ce2O3 to CeO2 and also the 
formation of sulfides containing Cerium would experience the transformation from CeS to Ce2S3 and then to 
Ce3S4. Below 2000 K the most thermodynamic stable matter CeO2 and the least thermodynamic stable inclusion is 
CeS. And the thermodynamic stable sequence of the possible inclusions formed in liquid steel is CeO2 >  Ce2O3 >   
Ce2O2S >  Ce2S3 >  Ce3S4 >  CeS. Only when the amount of [O] is extremely low and the amount of [S] and [Ce] 
is relatively high, Ce2S3 has the possibility to form. With the amount of oxygen in molten iron increasing from 
10 ppm to 200 ppm and the amount range of cerium increasing from 0.1% to 0.5%, Ce2O3 prefers to segregate in 
liquid phase all the time.
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