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Dynamics of an optomechanical 
system with quadratic coupling: 
Effect of first order correction to 
adiabatic elimination
Cheng Jiang1,2, Yuanshun Cui1,2 & Guibin Chen1,2

We explore theoretically the dynamics of an optomechanical system in which a resonantly driven cavity 
mode is quadratically coupled to the displacement of a mechanical resonator. Considering the first order 
correction to adiabatic elimination, we obtain the analytical expression of optomechanical damping 
rate which is negative and depends on the position of the mechanical resonator. After comparing the 
numerical results between the full simulation of Langevin equations, adiabatic elimination, and first 
order correction to adiabatic elimination, we explain the dynamics of the system in terms of overall 
mechanical potential and optomechanical damping rate. The antidamping induced by radiation 
pressure can result in self-sustained oscillation of the mechanical resonator. Finally, we discuss the time 
evolution of the intracavity photon number, which also shows that the effect of first order correction 
cannot be neglected when the ratio of the cavity decay rate to the mechanical resonance frequency 
becomes smaller than a critical value.

The field of cavity optomechanics is concerned with the coupling between the cavity modes and mechanical 
degrees of freedom via radiation pressure, which has witnessed remarkable progress in the past decade (see 
refs 1–3 for recent reviews). The typical optomechanical system consists of a Fabry-Pérot cavity where one of the 
end mirrors can move. When the cavity is driven by a pump laser, the circulating light inside the cavity gives rise 
to radiation pressure force that deflects the mirror. Any displacement of the mirror will in turn change the cavity’s 
length and thus modulate the resonance frequency of the cavity. This dynamical back-action of photons caused 
by radiation pressure can influence the dynamics of the system, which depends on the frequency and power of 
the pump laser applied to the cavity. Applying a pump laser of a frequency red detued with respect to the cavity 
resonance allows for ground state cooling of the mechanical resonators4–7, quantum state transfer8–10, optome-
chanically induced transparency (OMIT)11–16, and light storage17. Recent efforts have shown that a blue-detuned 
pump laser can lead to self-sustained oscillations18–23 and even chaos24,25. More recently, attractor diagrams 
related with self-sustained oscillations have been experimentally demonstrated26–28. In addition, the pump laser 
is usually chosen to be resonant with the cavity field for the purpose of position, force, or mass sensing29–31. The 
above-mentioned achievements, as well as many others, have mainly relied on the optomechanical coupling that 
varies linearly with the displacement of the mechanical resonator.

However, some other optomechanical systems with quadratic coupling, i.e., the optical cavity mode is quad-
ratically coupled to the displacement of the mechanical resonator, have also attracted extensive attention in recent 
years. Experimental realizations with this kind of optomechanical coupling include “membrane-in-the-middle” 
configuration where the membrane is placed at a node or antinode of the cavity mode32,33, or trapping either a 
cloud of ultracold atoms34 or levitating nanoparticles35 in an optical cavity. Such a quadratic interaction offers 
new possibilities to investigate cooling36, squeezing37,38, photon blockade39, and slow light40 in optomechanical 
systems. Specifically, Buchmann et al. investigated macroscopic tunneling of a membrane in an optomechanical 
double-well potential41. Seok et al. first studied theoretically the dynamics of multiple mechanical oscillators cou-
pled to a single cavity field mode via quadratic optomechanical interactions42 and then they proposed a scheme 
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for realizing dynamic stabilization of an optomechanical oscillator by modulating the input power43. In refs 41–43,  
the authors mainly consider the situation where the cavity decay rate κ is much larger than the resonance fre-
quency ωm of the mechanical oscillator, therefore adiabatic elimination of the cavity field is valid. However, 
when the above condition is not satisfied, some correction to adiabatic elimination is needed to show the correct 
dynamics of the system. In the present paper, we first compare the numerical results between full simulation of 
Langevin equations, adiabatic elimination, and first order correction to adiabatic elimination by varying the value 
of κ/ωm. It is seen that the effect of first order correction to adiabatic elimination becomes more important when 
κ/ωm reduces. After considering the first order term of ωm/κ, we find that overall mechanical potential keeps the 
same with adiabatic elimination but there is an additional optomechanical damping rate which is negative in the 
chosen parameter regimes. The antidamping rate becomes larger when κ/ωm reduces, which can finally lead to 
self-sustained oscillation of the mechanical resonator. Therefore, the model in this paper can successfully predict 
interesting dynamics such as self-sustained oscillation only after including the first order correction to adiabatic 
elimination. Such nonlinear dynamics are drawing considerable interest in cavity optomechanics but have seldom 
been investigated with only quadratic optomechanical coupling. On the other hand, quadratic coupling in princi-
ple makes the system less susceptible to chaotic dynamics and thus may provide a new way of studying nonlinear 
dynamics in cavity optomechanical systems.

Results
Model and Methods. We consider an optomechanical system in which a driven cavity of resonance fre-
quency ωc is quadratically coupled to the displacement of a mechanical resonator of effective mass m and fre-
quency ωm. The Hamiltonian of the system can be written as
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where the first term describes the energy of the cavity field with ˆ ˆ†a a( ) being the annihilation (creation) operator 
such that =ˆ ˆ†a a[ , ] 1. The next two terms represent the energy of the free mechanical resonator, where x̂ and p̂ are 
the position and momentum operators for the mechanics with the commutation relation =ˆ ˆx p i[ , ] . The fourth 
term describes the quadratic optomechanical interaction where g is the quadratic optomechanical coupling con-
stant. In the “membrane-in-the-middle” optomechanical system, = =ω π
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wavelength of the pump field, L is the length of the cavity, R is the reflectivity of the membrane, and c is the speed 
of light in a vacuum. This dispersive quadratic coupling g/2π can now reach 30 MHz/nm2 for a thin dielectric 
membrane33. The single-photon quadratic coupling strength is then given by gx0

2, where  ω=x m/ m0  is the 
zero-point fluctuation of the mechanical resonator37. It is assumed throughout this paper that g is negative-valued 
as is appropriate to trapping around a maximum of the cavity intensity42,43. Finally, the last term represents the 
coupling between the cavity field and the pump field of frequency ωL with a rate η κ ω= P2 / L0  , where κ is the 
cavity decay rate and P0 is the input power of the pump field. In the rotating frame of the pump frequency ωL, the 
classical equations of motion can be derived by replacing operators by their c-number equivalent in the 
Heisenberg-Langevin equations:
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where Δ c =  ωL −  ωc is the cavity detuning and γm is the mechanical damping rate. According to Eq. (4), we can 
obtain

κ η η= − + +⁎ ⁎d
dt

a a a a (5)
2 2

Defining the intensity of the cavity field I =  a*a =  |a|2, normalized time τ =  ωmt19, we can easily get the follow-
ing equations according to Eqs (4) and (5):

ε
τ

η
κ

η
κ

= − + +⁎
⁎dI

d
I a a, (6)

ε
τ κ

η
κ

=





∆ −

−




 +

da
d

i gx a1
2

,
(7)

c
2

where we have introduced a small dimensionless parameter ε = ω
κ

m  in order to expand the quantities a and I. 
Given stable parameters, the cavity field approaches its steady state in a time scale κ−1. When κ ≫  ωm, thus ε is a 
small parameter, the cavity field adiabatically follows the position of the mechanical resonator, and the dynamics 
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of the resonator are robust against the fluctuations of the cavity field (adiabatic elimination is valid). Therefore, 
the cavity field stays in its quasi-steady state (da/dτ =  0) and can be given by

η
κ

≈
− ∆ − +

.a
i gx( ) /2 (8)c

0 2

Adiabatic elimination of the cavity field in optomechanical systems with quadratic coupling has been widely 
used in previous works, see refs 41–43 for example. Substituting Eq. (8) into Eq. (3) then gives the temporal evo-
lution of the momentum of the mechanical resonator42,43. However, if ε becomes larger, we have to consider 
higher order terms of ε. The cavity field a and I can be expanded in powers of ε, i.e., ε= ∑ =a am

m
m0  and 

ε= ∑ =I Im
m

m0
43. One can in principle solve the differential Eqs (6) and (7) to arbitrary order. In this paper, we 

mainly consider the regime where first order correction to adiabatic elimination is dominant. So we can expand I 
and a in powers of ε to the first order, i.e.,

ε ε= + = + .I I I a a a, (9)0 1 0 1

Upon substituting Eq. (9) into Eqs (6) and (7) and working to the first order of ε, one can have the following cou-
pled equations by comparing the coefficients of ε0 and ε1
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We can see that Eqs (10) and (11) can give the results of adiabatic elimination and Eqs (12) and (13) correspond 
to the first order terms of ε. Given that I is equal to |a|2, it is easy to check that I0 =  |a0|2 and = +⁎ ⁎I a a a a1 0 1 0 1 
according to Eqs (10)–(13), and we can obtain
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The first term in the right side of Eq. (14) is the result of adiabatic elimination43, and the second term represents 
the first order correction. Substituting Eq. (14) into Eq. (3) then gives
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From this equation we can see that besides the intrinsic mechanical damping rate γm, there is an additional damp-
ing term45, which can be named as optomechanically induced damping rate and is given by
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If γopt =  0, Eq. (15) is changed to the Newton’s equation of motion for the mechanics with adiabatic elimination.
In the absence of mechanical dissipation, Eq. (15) for the mechanical system can be put in the canonical form 
= − ∂

∂
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x
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The slowly changing potential is the sum of the harmonic potential and arctangent function which can be modi-
fied by the pump field, quadratic coupling constant g, and cavity decay rate κ. In this paper, we are mainly inter-
ested in the case where g <  0. When the pump power is greater than a critical value, the overall potential exhibits 
a symmetric double-well potential centered on x =  041,43.
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Dynamics of the system. The dynamics of the optomechanical system can be investigated by directly solv-
ing the classical Eqs (2)–(4). However, in order to obtain more physical understandings, we first compare the 
numerical results between full simulation of Eqs (2)–(4), adiabatic elimination, and first order correction to adi-
abatic elimination of Eq. (2) and Eq. (14). In our simulations, the position, momentum, and energy of the 
mechanical mode are measured in units of the natural length  ω=x m/ m0 , momentum ω=p m m0  , and 
energy E0 =  ħωm

43, respectively. Moreover, all the frequencies ( κ γ ∆gx , , ,m c0
2 ) are scaled in units of ωm

19. The 
Runge-Kutta method is used to solve these ordinary differential equations, and we use a|t=0 =  0, x|t=0 =  0, and 
p/p0|t=0 =  0.7126 as the initial condition43, which can be achieved by cooling the mechanical resonator to the 
ground state of motion4–7. As shown in Fig. 1, the normalized position x/x0 is plotted as a function of ωmt when 
κ/ωm =  200, 180, and 100, respectively. In the present paper, we mainly consider the situation where the pump 
field is resonant with the cavity field, i.e., Δ c =  0. We can see from Fig. 1(a) that when κ/ωm =  200, ε = ω

κ
m  is a 

small parameter, higher order terms of ε can be neglected and adiabatic elimination is valid, therefore, three 
numerical results coincide with each other. However, if κ/ωm is reduced to 180, ε becomes larger, the effect of first 
order term of ε cannot be neglected. As shown in Fig. 1(b), the result of adiabatic elimination (red dashed line) is 
a little different from that of full simulation (black solid line), but the first order correction (blue dash dotted line) 
still agrees well. If κ/ωm is further reduced to 100, it can be seen clearly that after a transient process the result of 
adiabatic elimination is quite different from those of full simulation and first order correction. If we adiabatically 
eliminate the cavity field, the mechanical oscillator should finally decay to a fixed position. But the full simulation 
of Eqs (2)–(4) shows that self-sustained oscillation appears when κ/ωm reaches a critical value. The smaller value 
of κ/ωm, the worse of adiabatic elimination is. However, we have checked that as long as κ/ωm is bigger than 50, 
first order correction to adiabatic elimination is still valid. In addition, Fig. 1 indicates that when the value of κ/ωm 
is changed, the oscillation frequency and the final equilibrium position of the mechanical resonator is different, 
which can be explained by the overall mechanical potential and effective mechanical damping rate.

Figure 2 plots the overall mechanical potential Us/E0 as a function of the normalized position x/x0 when 
κ/ωm equals to 200, 180, 150, and 100, respectively, which shows a double-well structure. In the center x/x0 =  0, 
there is a local maximum value, therefore the mechanical oscillator is unstable at this position. If the mechanical 
resonator starts to oscillate in the center of the double-well, it will eventually relax into either the bottom of the 
double-well due to mechanical damping, as shown in Fig. 2(a–c). However, when κ/ωm changes, the width and 
depth of the double-well potential also varies. The position of the minimum value of the double-well potential can 
be obtained when the first derivative of the potential equals to zero. If we define the normalized potential
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Figure 1. Numerical results of the time evolution of the normalized position x/x0 based on full simulation, 
adiabatic elimination, and first order correction when κ/ωm is equal to (a) 200, (b) 180 and (c) 100, respectively. 
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 Substituting the parameters into Eq. (19), we can find that the analytical 
results are consistent with Fig. 1(a,b).

On the other hand, Figs 1(c) and 2(d) indicate that the amplitude of the mechanical oscillation will keep 
almost the same when κ/ωm =  100, which can be called self-sustained oscillations. The reason for this phenome-
non can be explained in terms of effective mechanical damping rate. The effective mechanical damping rate is the 
sum of intrinsic and optomechanical damping rates, i.e.,

γ γ γ= + , (20)meff opt

where γopt is given by Eq. (16). Figure 3 plots the normalized optomechanical damping rate γopt/ωm versus nor-
malized position x/x0 when κ/ωm =  200, 180, 150, and 100, respectively. It should be noted that here Δ c =  0 and 

Figure 2. Overall mechanical potential for four different values of κ/ωm. (a) κ/ωm =  200, (b) κ/ωm =  180, (c) 
κ/ωm =  150, and (d) κ/ωm =  100. Other parameters are the same as in Fig. 1.

Figure 3. Normalized optomechanical damping rate γopt/ωm versus normalized position x/x0 when κ/ωm 
equals to 200, 180, 150, and 100, respectively. Other parameters are the same as in Fig. 1.
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ω = − .gx / 0 01m0
2 . We can see that optomechanical damping rate is negative and depends on the position of the 

mechanical resonator. Generally, when κ/ωm reduces, the antidamping becomes larger, which can lead to ampli-
fication of thermal fluctuations and finally to an instability if the full damping rates becomes negative γeff <  0. In 
our simulations, we have chosen γm/ωm =  0.02. When κ/ωm =  200 and 180, the antidamping is smaller than 0.02, 
therefore the effective damping rate is still positive and mechanical resonator should decay to either the bottom 
of the double-well potential, as shown in Fig. 1(a,b). When κ/ωm =  100, there are two regions where antidamping 
is larger than the intrinsic mechanical damping rate but antidamping is smaller in other regions. At the beginning, 
the negative γopt decreases the effective damping rate and leads to heating of the mechanical resonator. Once 
overall damping rate γm +  γopt becomes negative, an instability ensues and mechanical oscillation will at first grow 
exponentially in time. Later, the nonlinearity of the optomechanical coupling will saturate the growth of the 
mechanical oscillation amplitude, resulting in a steady-state regime with oscillations at a fixed amplitude, as 
shown in Fig. 1(c). When the mechanical resonator is driven in large amplitude, mechanical nonlinearity such as 
the Duffing effect should be considered. Discussions about the effect of the mechanical nonlinearity in 
self-sustained oscillation can be found in refs 20 and 22. In this paper we didn’t consider the mechanical 
nonlinearity.

Furthermore, the approximate expression of the oscillation frequency in the double-well can be derived by 
doing Taylor expansion to the second order at the position xdw. Supposing that
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the oscillation frequency around the bottom of the double-well is then given by
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Figure 1 also shows that the oscillation period almost keeps the same after a transient process, with the damping 
rate given by the effective mechanical damping rate. The oscillation frequency can be approximately expressed 
by Eq. (21). To verify this, we do the fast Fourier transform after the transient process. Figure 4 plots the fre-
quency spectra of the mechanical resonator under different pumping amplitudes and cavity decay rates. It can be 
seen that when P0/(ωLE0) or κ/ωm is changed, the position of the resonance peak varies. Substituting the specific 
parameters into Eq. (21), we can find that the analytical results are nearly consistent with the numerical results. 
Therefore, under the action of radiation pressure force, when the mechanical resonator relaxes into either well 
of the double-well potential, it undergoes the damped vibration, with normalized oscillation frequency approxi-
mately given by Eq. (21).

In the following, we will investigate the self-sustained oscillation in this optomechanical system in more 
details. From the numerical solutions of Eqs (2) and (15), we plot the time evolution of the normalized position 
x/x0, momentum p/p0, and the corresponding limit cycle in the phase space of the mechanical resonator in Fig. 5. 

Figure 4. Frequency spectra of the mechanical oscillator under different pumping amplitudes and cavity 
decay rates. (a) P0/(ωLE0) =  1260 and κ/ωm =  200, (b) P0/(ωLE0) =  1260 and κ/ωm =  180, (c) P0/(ωLE0) =  1460 
and κ/ωm =  200, and (d) P0/(ωLE0) =  1460 and κ/ωm =  180. Other parameters are the same as in Fig. 1.
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As discussed above, when κ/ωm =  100, the effective mechanical damping rate is negative in some regions, and the 
amplitudes of position and momentum will be fixed in the long-time limit due to the nonlinearity inherent to the 
optomechanical coupling, which can be clearly seen in Fig. 5(a,b). Therefore, the trajectory of mechanical motion 
in phase space can constitute a closed loop or limit cycle, as shown in Fig. 5(c). Each limit cycle corresponds to a 
stable self-sustained oscillation in the long-time limit, which should satisfy the energy-balance condition, i.e., the 
energy dissipated from friction must be equal to the energy gained from optical radiation pressure force in one 
whole cycle. When the pump power increases, the mechanical resonator gains more energy from optical radiation 
pressure, therefore, the amplitudes of the mechanical motion should also become bigger. This can be clearly seen 
in Fig. 5(c), where the outer and inner loop corresponds to P0/(ωLE0) =  1460 and 1260, respectively. Based on the 
energy-balance condition, several kinds of attractor diagrams have been investigated both theoretically21,22 and 
experimentally26–28 in optomechanical systems.

In the end, the effect of first order correction to adiabatic elimination is studied by considering the numerical 
results of intracavity photon number |a|2. Figure 6 shows the time evolution of photon number of the cavity field 
|a|2 for κ/ωm =  200, 180, and 100, respectively. When κ/ωm is equal to 200, it can be seen from Fig. 6(a) that the 
photon number suddenly jumps from zero to a large number and then almost keeps constant as time passes. 
Therefore, adiabatic elimination is valid in this case and the numerical results of adiabatic elimination, first order 
correction, and full simulation coincide with each other, as shown in Fig. 1(a). However, the inset of Fig. 6(a) shows 
that there is actually a small variation of photon number |a|2. If κ/ωm is reduced to 180, we can see from Fig. 6(b) 
that the variation of photon number is evident and the average photon number is bigger. In this case, the first order 
term in Eq. (9) can no longer be neglected and adiabatic elimination cannot show the correct dynamics of the 
system, which can be seen from Fig. 1(b). If κ/ωm is further reduced to 100, the photon number undergoes nearly 
periodic oscillation with big amplitude after a transient process and therefore adiabatic elimination is completely 
invalid. However, first order correction to adiabatic elimination can still show almost the same numerical results 
with the full simulation of Eqs (2)–(4). Based on the above discussions, we can see that when the optomechanical 
system works in the unresolved sideband regime, if κ/ωm is big enough, the dynamics of the system can be analyzed 
by employing adiabatic elimination of the cavity field. But if the value of κ/ωm is reduced to a certain range, first 
order correction to adiabatic elimination is good enough. However, when κ/ωm is much smaller, other higher order 
terms of ωm/κ have to be considered. It should be pointed out that the parameters we choose in this paper are the 
same as in the ref. 43, where the ratio of the quadratic coupling strength gx0

2 to the mechanical resonance fre-
quency ωm is − 0.01. In the recent experiment using a tunable photonic crystal optomechanical cavity46, this value 
is about 10−4. In addition, it has been proposed that quadratic optomechanical coupling can be simulated in a 
superconducting electrical circuit47, where the quadratic coupling strength can be greatly improved and even reach 
the strong-coupling regime. If we choose ω = − −gx / 10m0

2 4, much higher pump power P0 will be needed to get 
negative enough optomechanical damping rate and generate the double-well potential, as can be seen from 
Eqs (16) and (18). However, we have checked numerically that our results obtained above are still valid.

Figure 5. Normalized position x/x0 (a) and momentum p/p0 (b) as a function of ωmt when κ/ωm =  100.  
(c) Phase-space trajectories of the mechanical oscillator when P0/(ωLE0) =  1260 and 1460, respectively.  
Other parameters are the same as in Fig. 1.
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Discussion
In summary, we have investigated the dynamics of a quadratically coupled optomechanical system in the unre-
solved sideband regime. When the optical cavity is driven by a resonant laser field and the quadratic optomechan-
ical coupling constant is negative, we obtained a negative and position-dependent optomechanical damping rate 
after considering the first order correction to adiabatic elimination. By comparing the numerical results between 
full simulation of Langevin equations, adiabatic elimination, and first order correction, we found that adiabatic 
elimination is no longer valid when the cavity decay rate is smaller than a certain value, therefore first order cor-
rection is needed to show the correct dynamics of the system. The physical reason for the dynamics can be well 
understood by the double-well potential and optomechanical damping rate. We also discussed self-sustained 
oscillation of the mechanical resonator and time evolution of the intracavity photon number in this optome-
chanical system. Therefore, our work provided a simple and analytical method to investigate the dynamics of 
optomechanical systems with quadratic coupling.

References
1. Marquardt, F. & Girvin, S. M. Optomechanics. Physics 2, 40 (2009).
2. Meystre, P. A short walk through quantum optomechanics. Ann. Phys. 525, 215 (2013).
3. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).
4. Teufel, J. D., Donner, T., Li, D., Harlow, J. W., Allman, M. S., Cicak, K., Sirois, A. J., Whittaker, J. D., Lehnert, K. W. & Simmonds, R. 

W. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).
5. Chan, J., Alegre, T. P., Safavi-Naeini, A. H., Hill, J. T., Krause, A., Gröblacher, S., Aspelmeyer, M. & Painter, O. Laser cooling of a 

nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).
6. Liu, Y.-C., Xiao, Y.-F., Luan, X. S. & Wong, C. W. Dynamic dissipative cooling of a mechanical resonator in strong coupling 

optomechanics. Phys. Rev. Lett. 110, 153606 (2013).
7. Guo, Y. J., Li, K., Nie, W. J. & Li, Y. Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity 

optomechanical system. Phys. Rev. A 90, 053841 (2014).
8. Wang, Y. D. & Clerk, A. A. Using interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett. 108, 153603 

(2012).
9. Tian, L. Adiabatic state conversion and pulse transmission in optomechanical systems. Phys. Rev. Lett. 108, 153604 (2012).

10. Palomaki, T. A., Harlow, J. W., Teufel, J. D., Simmonds, R. W. & Lehnert, K. W. Coherent state transfer between itinerant microwave 
fields and a mechanical oscillator. Nature 495, 210 (2013).

11. Agarwal, G. S. & Huang, S. M. Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803 
(2010).

12. Weis, S., Rivière, R., Deléglise, S., Gavartin, E., Arcizet, O., Schliesser, A. & Kippenberg, T. J. Optomechanically induced transparency. 
Science 330, 1520–1523 (2010).

13. Safavi-Naeini, A. H., Mayer Alegre, T. P., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, J. T., Chang, D. E. & Painter, O. 
Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011).

14. Teufel, J. D., Li, D., Allman, M. S., Cicak, K., Sirois, A. J., Whittaker, J. D. & Simmonds, R. W. Circuit cavity electromechanics in the 
strong-coupling regime. Nature 471, 204–208 (2011).

15. Xiong, H., Si, L.-G., Zheng, A.-S., Yang, X. X. & Wu, Y. Higher-order sidebands in optomechanically induced transparency. Phys. 
Rev. A 86, 013815 (2012).

Figure 6. Photon number of the cavity field |a|2 as a function of ωmt when κ/ωm is equal to (a) 200, (b) 180, and 
(c) 100, respectively. The inset of Fig. 6(a) is the enlargement of the photon number between 49 and 51, which 
shows the small change of the photon number. Other parameters are the same as in Fig. 1.



www.nature.com/scientificreports/

9Scientific RepoRts | 6:35583 | DOI: 10.1038/srep35583

16. Jing, H., Özdemir, Ş. K., Geng, Z., Zhang, J., Lv, X.-Y., Peng, B., Yang, L. & Nori, F. Optomechanically-induced transparency in 
parity-time-symmetric microresonators. Sci. Rep. 5, 9663 (2015).

17. Fiore, V., Yang, Y., Kuzyk, M. C., Barbour, R., Tian, L. & Wang, H. L. Storing optical information as a mechanical excitation in a silica 
optomechanical resonator. Phys. Rev. Lett. 107, 133601 (2011).

18. Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. J. Analysis of radiation-pressure induced mechanical oscillation 
of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005).

19. Ludwig, M., Kubala, B. & Marquardt, F. The optomechanical instability in the quantum regime. New J. Phys. 10, 095013 (2008).
20. Poot, M., Fong, K. Y., Bagheri, M., Pernice, W. H. P. & Tang, H. X. Backaction limits on self-sustained optomechanical oscillations. 

Phys. Rev. A 86, 053826 (2012).
21. Zhang, L. & Kong, H. Y. Self-sustained oscillation and harmonic generation in optomechanical systems with quadratic couplings. 

Phys. Rev. A 89, 023847 (2014).
22. Gao, M., Lei, F. C., Du, C. G. & Long, G. L. Self-sustained oscillation and dynamical multistability of optomechanical systems in the 

extremely-large-amplitude regime. Phys. Rev. A 91, 013833 (2015).
23. Dong, C. H., Zhang, J. T., Fiore, V. & Wang, H. L. Optomechanically induced transparency and self-induced oscillations with 

Bogoliubov mechanical modes. Optica 1, 425 (2014).
24. Carmon, T., Cross, M. C. & Vahala, K. J. Chaotic Quivering of micron-scaled on-chip resonators excited by centrifugal optical 

pressure. Phys. Rev. Lett. 98, 167203 (2007).
25. Ma, J. Y., You, C., Si, L. G., Xiong, H., Li, J. H., Yang, X. X. & Wu, Y. Formation and manipulation of optomechanical chaos via a 

bichromatic driving. Phys. Rev. A 90, 043839 (2014).
26. Metzger, C., Ludwig, M., Neuenhahn, C., Ortlieb, A., Favero, I., Karrai, K. & Marquardt, F. Self-induced oscillations in an 

optomechanical system driven by bolometric backaction. Phys. Rev. Lett. 101, 133903 (2008).
27. Krause, A. G., Hill, J. T., Ludwig, M., Safavi-Naeini, A. H., Chan, J., Marquardt, F. & Painter, O. Nonlinear radiation pressure 

dynamics in an optomechanical crystal. Phys. Rev. Lett. 115, 233601 (2015).
28. Buters, F. M., Eerkens, H. J., Heeck, K., Weaver, M. J., Pepper, B., de Man, S. & Bouwmeester, D. Experimental exploration of the 

optomechanical attractor diagram and its dynamics. Phys. Rev. A 92, 013811 (2015).
29. MurchK., W., Moore, K. L., Gupta, S. & Stamper-Kurn, D. M. Observation of quantum-measurement backaction with an ultracold 

atomic gas. Nat. Phys. 4, 561 (2008).
30. Purdy, T. P., Peterson, R. W. & Regal, C. A. Observation of radiation pressure shot noise on a macroscopic object. Science 339, 801 

(2013).
31. Jiang, C., Cui, Y. S. & ZhuK, D. Ultrasensitive nanomechanical mass sensor using hybrid opto-electromechanical systems. Opt. 

Express 22, 13773–13783 (2014).
32. Thompson, J. D., Zwickl, B. M., Jayich, A. M., Marquardt, F., Girvin, S. M. & Harris, J. G. E. Strong dispersive coupling of a high-

finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008).
33. Sankey, J. C., Yang, C., Zwickl, B. M., Jayich, A. M. & Harris, J. G. E. Strong and tunable nonlinear optomechanical coupling in a 

low-loss system. Nat. Phys. 6, 707–712 (2010).
34. Purdy, T. P., Brooks, D. W. C., Botter, T., Brahms, N., Ma, Z.-Y. & Stamper-Kurn, D. M. Tunable cavity optomechanics with ultracold 

atoms. Phys. Rev. Lett. 105, 133602 (2010).
35. Kiesel, N., Blaser, F., Delić, U., Grass, D., Kaltenbaek, R. & Aspelmeyer, M. Cavity cooling of an optically levitated submicron particle. 

Proc. Natl. Acad. Sci. USA 110, 14180 (2013).
36. Bhattacharya, M., Uys, H. & Meystre, P. Optomechanical trapping and cooling of partially reflective mirrors. Phys. Rev. A 77, 033819 

(2008).
37. Nunnenkamp, A., Børkje, K., Harris, J. G. E. & Girvin, S. M. Cooling and squeezing via quadratic optomechanical coupling. Phys. 

Rev. A 82, 021806 (2010).
38. Asjad, M., Agarwal, G. S., Kim, M. S., Tombesi, P., Di Giuseppe, G. & Vitali, D. Robust stationary mechanical squeezing in a kicked 

quadratic optomechanical system. Phys. Rev. A 89, 023849 (2014).
39. Liao, J. Q. & Nori, F. Photon blockade in quadratically coupled optomechanical systems. Phys. Rev. A 88, 023853 (2013).
40. Zhan, X.-G., Si, L.-G., Zheng, A.-S. & Yang, X. X. Tunable slow light in a quadratically coupled optomechanical system. J. Phys. B 46, 

025501 (2013).
41. Buchmann, L. F., Zhang, L., Chiruvelli, A. & Meystre, P. Macroscopic tunneling of a membrane in an optomechanical double-well 

potential. Phys. Rev. Lett. 108, 210403 (2012).
42. Seok, H., Buchmann, L. F., Wright, E. M. & Meystre, P. Multimode strong-coupling quantum optomechanics. Phys. Rev. A 88, 

063850 (2013).
43. Seok, H., Wright, E. M. & Meystre, P. Dynamic stabilization of an optomechanical oscillator. Phys. Rev. A 90, 043840 (2014).
44. Huang, S. M. & Agarwal, G. S. Electromagnetically induced transparency from two-phonon processes in quadratically coupled 

membranes. Phys. Rev. A 83, 023823 (2011).
45. Dechant, A., Kiesel, N. & Lutz, E. All-Optical Nanomechanical Heat Engine. Phys. Rev. Lett. 114, 183602 (2015).
46. Paraso, T. K., Kalaee, M., Zang, L., Pfeifer, H., Marquardt, F. & Painter, O. Position-squared coupling in a tunable photonic crystal 

optomechanical cavity. Phys. Rev. X 5, 041024 (2015).
47. Kim, E., Johansson, J. R. & Nori, F. Circuit analog of quadratic optomechanics. Phys. Rev. A 91, 033835 (2015).

Acknowledgements
The authors would like to thank P. Meystre, F. Bariani, H. Seok, and Y. Dong for stimulating discussions. This 
work is supported by National Natural Science Foundation of China (Grant No. 11304110), Natural Science 
Foundation of Jiangsu Province (Grant No. BK20130413), Natural Science Foundation of the Jiangsu Higher 
Education Institutions of China (Grant Nos 13KJB140002 and 15KJB460004), and Huaian Science and 
Technology Funds (Grant No. HAG2014019).

Author Contributions
C.J. performed the theoretical as well as the numerical calculations and wrote the main manuscript. Y.C. and G.C. 
checked the calculations and participated in the interpretation of the work. All authors reviewed the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Jiang, C. et al. Dynamics of an optomechanical system with quadratic coupling: Effect 
of first order correction to adiabatic elimination. Sci. Rep. 6, 35583; doi: 10.1038/srep35583 (2016).



www.nature.com/scientificreports/

1 0Scientific RepoRts | 6:35583 | DOI: 10.1038/srep35583

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://creativecommons.org/licenses/by/4.0/

	Dynamics of an optomechanical system with quadratic coupling: Effect of first order correction to adiabatic elimination
	Introduction
	Results
	Model and Methods
	Dynamics of the system

	Discussion
	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                Dynamics of an optomechanical system with quadratic coupling: Effect of first order correction to adiabatic elimination
            
         
          
             
                srep ,  (2016). doi:10.1038/srep35583
            
         
          
             
                Cheng Jiang
                Yuanshun Cui
                Guibin Chen
            
         
          doi:10.1038/srep35583
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep35583
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep35583
            
         
      
       
          
          
          
             
                doi:10.1038/srep35583
            
         
          
             
                srep ,  (2016). doi:10.1038/srep35583
            
         
          
          
      
       
       
          True
      
   




