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How Humans Solve Complex 
Problems: The Case of the  
Knapsack Problem
Carsten Murawski1 & Peter Bossaerts1,2

Life presents us with problems of varying complexity. Yet, complexity is not accounted for in theories 
of human decision-making. Here we study instances of the knapsack problem, a discrete optimisation 
problem commonly encountered at all levels of cognition, from attention gating to intellectual 
discovery. Complexity of this problem is well understood from the perspective of a mechanical device 
like a computer. We show experimentally that human performance too decreased with complexity as 
defined in computer science. Defying traditional economic principles, participants spent effort way 
beyond the point where marginal gain was positive, and economic performance increased with instance 
difficulty. Human attempts at solving the instances exhibited commonalities with algorithms developed 
for computers, although biological resource constraints–limited working and episodic memories–
had noticeable impact. Consistent with the very nature of the knapsack problem, only a minority of 
participants found the solution–often quickly–but the ones who did appeared not to realise. Substantial 
heterogeneity emerged, suggesting why prizes and patents, schemes that incentivise intellectual 
discovery but discourage information sharing, have been found to be less effective than mechanisms 
that reveal private information, such as markets.

The knapsack problem (KP) is a combinatorial optimisation problem with the goal of finding, in a set of items 
of given values and weights, the subset of items with the highest total value, subject to a total weight constraint1,2 
(Supplementary Methods 1.1). It is a member of the complexity class non-deterministic polynomial-time (NP) 
hard2–4. For those problems, there are no known efficient solution algorithms, that is, algorithms whose computa-
tional time only grows as a polynomial of the size of the problem’s instances5. This feature obtains despite the fact 
that one can compute relatively fast whether a given candidate solution reaches a certain value level.

The KP permeates the lives of humans (and non-human animals). It emerges at a low level of cognition, for 
example in the choice of stimuli to attend to (visual, auditory, tactile). At an intermediate level of cognition, the 
KP can be recognised in tasks like budgeting and time management6. At the highest level, it occurs for example 
in production (cutting problems7), logistics (bin packing problems8), combinatorial auctions, and, in financial 
economics, in portfolio optimisation9. It has also been argued that the KP reflects an important aspect of innova-
tion and intellectual discovery10–14. Consistent with this view, a recent empirical study showed that most patents 
filed at the U.S. Patent Office between 1790 and 2010 were for inventions that combined existing technologies 
in novel ways14. Furthermore, the KP is related to mental disorders. For example, several of the symptoms of 
attention-deficit/hyperactivity disorder can be regarded as impaired ability to solve the KP6.

Here, we examine whether the degree of complexity of a computational problem affects human behaviour, and 
if so, what strategies humans resort to. Twenty healthy participants attempted to solve eight instances of the 0–1 
knapsack problem12, administered on a computer (Fig. 1a–b, Supplementary Methods 1.6). In each instance, par-
ticipants were presented with a set of items of differing values and weights (Table S1). Participants used a mouse 
to add available items to, and remove items from, the knapsack. Total value and weight of the selected items were 
displayed at the top of the screen. Participants were offered two attempts per instance. The time limit per attempt 
was four minutes. Participants were asked to press the space bar when they believed that they had found the solu-
tion of an instance, to submit the solution. Submitted attempts were rewarded based on an economic performance 
measure that increased in closeness in values between the solution submitted (“attained value”) and the optimal 
knapsack (“optimal solution value”).
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Results
Performance. Computational performance, defined as the proportion of attempts (“score”) of an instance 
in which participants found the maximum value, was 37.4%. The mean time on task at submission was 172 s 
(SD =  57 s), and 97.5% of attempts were submitted before the time limit of four minutes. While computational 
performance indicates that our instances were difficult indeed, there was substantial variability across instances 
(min =  0.027, M =  0.367, max =  0.744, SD =  0.19; Fig. 2a), and across participants (min =  0.062, M =  0.374, 
max =  0.562, SD =  0.157; Fig. 2b). Computational performance was significantly higher than what participants 
would have achieved by implementing stochastic search (‘trial and error’). Participants on average submitted 
only 14 different sets of items (SD =  7). In comparison, the average number of possible configurations of full 
(capacity-constrained) knapsacks in the different instances was 1,381. The chance that any capacity-constrained 
knapsack was the optimal one was a mere 0.7%, implying an expected computational performance from ran-
dom search equal to only 0.10 (SD =  0.05). The total number of correct attempts was significantly above chance 
(P < 0.001, one-sided binomial test). This suggests that searches were systematic, that is, based on a non-random 
protocol.

Economic performance was defined as the value attained in the submitted solution as a percentage of optimal 
solution value. Participant earnings were based on economic performance (Supplementary Methods 1.6). We 
found that, on average, participants submitted solutions with value equal to 97.4% of optimal solution value. This 
value was significantly higher than the expected economic performance of an algorithm that randomly picks a 

Figure 1. Overview of experimental paradigm. (a) Example instance of the 0–1 knapsack problem with 
five items. The goal is to find the subset of available items that maximises total value of the knapsack, subject 
to a capacity constraint. Values and weights of available items are provided in the table. The capacity of the 
knapsack is 7. (b) In the experiment, instances were presented on a computer screen. Each item was represented 
by a square. An item could be added to and removed from the knapsack by clicking on it. Selected items were 
displayed in green. (c) The state of the knapsack can be represented by an array of 0 s and 1 s with length equal 
to the number of items available. (d) Admissible states (possible compositions of the knapsack that do not 
violate the weight constraint) can be represented as vertices in a graph. The position of a vertex on the abscissa 
is determined by the value of the knapsack it represents, and the position on the ordinate is determined by the 
distance, in item space, of the vertex from the optimal solution, i.e., by the number of items that need to be 
removed and added in order to reach the optimal solution (CG; see Supplementary Methods 1.2).
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capacity-constrained knapsack, which was 85.3% (P < 0.001, one-sample t-test, t(307) =  36.382). Similar to com-
putational performance, economic performance varied more by instance (min =  95.8%, M =  97.4%, max =  99.0%, 
SD =  1.1%) than by participant (min =  88.9%, M =  97.4%, max =  99.3%, SD =  2.4%).

Effort. We examined whether participant behaviour in our task was consistent with key principles of decision 
theory. One such principle is that economic performance is related to effort extended. As effort increases, eco-
nomic performance should too, that is, effort is revealed through (economic) performance. In the context of the 
KP, it is not immediately clear, however, how to define effort. For a computational device like a Turing machine, 
effort could be defined as the number of computational steps or running time of an algorithm that solves the 
problem. Since we cannot directly observe the number of computations performed by participants, we relied on 
proxies. Or first proxy is the length of the sequence of item additions to and removals from the knapsack in an 
attempt. These sequences can be mapped into a graph where vertices correspond to possible solutions, and edges 
indicate additions/removals of items (Fig. 1c–d, Fig. S1; Supplementary Methods 1.2). Path length then corre-
sponds to the number of additions/removals (number of steps) required to travel from the initial vertex (empty 
knapsack) to a particular vertex. Terminal vertices in the graph correspond to capacity-constrained knapsacks: 
further additions would violate the weight constraint.

We first investigated whether path length measured human effort. According to decision theory, if path length 
is an appropriate measure of effort, economic performance should increase with path length. We found that 
economic performance increased in path length of attempts (P < 0.05, main effect of path length, linear mixed 
model (LMM) with random effects on intercept for individual participants; Supplementary Results 2.3, Table S3 
Model 3; Fig. 3a).

A related, alternative measure of effort is clock time. In principle, there was no opportunity cost to time 
in our experimental setting, because participants were barred from other activities while engaged in our task. 
Thus, clock time in itself cannot measure effort. However, clock time increases in the number of computations 
performed, as well as other dimensions of effort. The latter include differences in energy required across types 
of computations. These dimensions of effort are not recognised as effort in Turing machines, but may constitute 
effort for humans. As such, clock time may provide a catch-all measure of effort. Indeed, we found that time spent 
on solving an instance was related to higher economic performance (P < 0.05, main effect of clock time, LMM 
with with random effects on intercept for individual participants; Supplementary Results 2.3, Table S3 Model 4; 
Fig. 3b).

In our task, earnings increased with a reduction in distance of value of submitted solution relative to optimal 
solution. As such, participants were not incentivised to find the optimal solution but only to get as close as pos-
sible to the optimal solution value. We therefore did not expect our measures of effort to correlate with compu-
tational performance, that is, whether the optimal solution was reached. Path length was indeed not related to 
computational performance (P > 0.05, main effect of path length, generalised linear mixed model (GLMM) with 
random effects on intercept for participants; Supplementary Results 2.3, Table S3 Model 1); nor was time spent 
on an attempt (P > 0.05, main effect of clock time, GLMM with random effects for participants on intercept, 
Supplementary Results 2.3, Table S3 Model 2).

Difficulty and Economic Performance. A second key economic principle is related to marginal value 
of effort. A traditional economic agent (“Homo Economicus”) would search for a solution until marginal gain 
equaled marginal cost of effort. Measuring effort in terms of our ‘catch-all’ metric, clock time, marginal cost 
of effort must have been strictly positive because participants almost never exhausted the time limit in their 
attempts. With strictly positive marginal cost of effort, we therefore expected mean marginal gain to remain 
strictly positive throughout their effort spending. To this end, we plotted economic gain against time (Fig. S2a). 
Contrary to expectations, mean marginal gain quickly dropped to zero, and participants continued to search well 
beyond this point. As such, most of the search time was spent at zero marginal gain, violating one of the basic 

Figure 2. Variation in performance. (a) Success rates (proportion of successful attempts) for each of the eight 
instances administered in the task (see Table S1 for instance properties). (b) Success rates for each of the 20 
participants. Blue lines indicate standard errors of means.
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principles of economic theory. The same picture emerged when we plotted marginal gain in economic perfor-
mance against path length, our other measure of effort (Fig. 3c).

Recently, the principle that economic agents work until marginal gain equals marginal cost, has become the 
subject of criticism15. An alternative proposal is that economic agents are boundedly rational and, due to their 
cognitive limitations, work only until they reach an aspiration point, which is less computationally demanding. 
Even if this was the case, in our setting economic gains should have remained positive until participants stopped 
spending effort, while they were not. One might rebut that our results could be explained by unrealistically high 
aspiration levels, and that participants therefore continued to spend effort even if economic performance did not 
increase. However, in this case, we would expect participants to spend effort until the end of allotted time, which 
they did in only 12 out of 320 attempts (see above).

Turning to difficulty, instance difficulty could be measured by success rate, that is, computational perfor-
mance, which should reveal instance difficulty as experienced by our participants. One can reasonably posit that, 
as difficulty increases, marginal gain in economic performance decreases faster as effort increases. Because of 
this, we expected participants to have spent less effort, and hence, have attained lower economic performance, in 
instances where they were less successful. Contrary to this expectation, we actually found that economic perfor-
mance increased with instance difficulty (Pearson correlation r =  0.838; P < 0.01; Fig. 3d). This is rather paradox-
ical and raises a question: how could participants have sensed which instances were more difficult? To answer this 
question, we need to explore the nature of instance difficulty for humans, which we turn to in the next section.

The positive correlation between difficulty and economic performance could have been the result of the 
overall negative relation between path length from a solution to the optimum solution (CG, see Supplementary 
Methods 1.2), on the one hand, and solution value, on the other hand. To be specific, in our case, the aver-
age correlation between the values of the vertices and their distances from the optimum solution was −0.22 
(min =  −0.41; max =  0.04; Supplementary Methods 1.2). Because of this negative relation, solution attempts with 
higher economic performance (that is, with values closer to the optimum value) tended to be farther away from 
the optimum. Nevertheless, while computational performance was higher in instances where this negative rela-
tion was stronger, the correlation was insignificant (Pearson correlation r =  −0.256; P >  0.05).

Figure 3. Economic Performance, Effort and Difficulty. (a) Scatter plot of economic performance (value attained 
as percentage of optimal solution value) and effort measured as mean length of the search path across attempts of an 
instance (instance means). Black dashed line: 100%, red dashed line: main effect of path length, linear mixed model 
(LMM) with random effects on intercept for individual participants (Table S3 Model 3), r: Pearson correlation, β: 
coefficient estimate of main effect. (b) Scatter plot of economic performance and effort measured as mean amount 
of clock time spent across attempts of an instance (instance means). Red dashed line: main effect of path length, 
LMM with random effects on intercept for individual participants (Table S3 Model 4). (c) Mean marginal gain in 
economic performance across all attempts, per step in the search path. (d) Scatter plot of economic performance 
against difficulty (as revealed by mean success rate across attempts of an instance; inverted scale) (instance means).
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Difficulty. In the next step, we investigated what constituted difficulty for participants. We wanted to deter-
mine whether difficulty was related to the notion of (computational) complexity as developed on the basis of 
idealised models of computation such as a Turing machine. However, we also went beyond those notions of com-
plexity and investigated the link between difficulty and the potential for computational mistakes.

For a computational problem like the KP, the number of computations required to solve the problem in a 
mathematical model of computation such as a Turing machine, increases in the number of items. We found that 
computational performance indeed decreased in the number of items in an instance, that is, instances with more 
items were revealed to be more difficult (P < 0.001, main effect of number of items, GLMM with random effects 
on intercept for individual participants; Supplementary Results 2.5, Table S4 Model 1). This is evidence for a rela-
tion between instance difficulty as experienced by humans, and as defined on the basis of a mathematical model 
of computation such as a Turing machine.

Computer science assigns computational problems to complexity classes, which are sets of functions that 
can be computed within given resource bounds16. Resource constraints of particular interest are time and mem-
ory. The problem of finding the solution to the 0–1 KP is a member of the complexity class non-deterministic 
polynomial-time hard. Membership of the complexity class is determined based on the worst instances of the 
problem. Other instances may require far less resources. To investigate the effect of computational complexity on 
human behaviour, we constructed measures that are related to the computational resources required by various 
computer algorithms designed for the 0–1 KP. We then related those measures to task performance.

In particular, we considered two classes of algorithms (Supplementary Methods 1.3, 1.6). One class of algo-
rithms are uninformed search algorithms, which find the solution by exhaustive listing of elements in the search 
space17. The latter can be formalised as a graph and thus its size can be expressed as the number of vertices in this 
graph (Supplementary Methods 1.2). We found that difficulty experienced by humans increased with the total 
number of vertices in an instance’s graph (P <  0.001, main effect of number of vertices, GLMM with participant 
random effects on intercept; Supplementary Results 2.5, Table S4 Model 2), as well as with the number of terminal 
vertices (P <  0.01, main effect of number of terminal vertices, GLMM with participant random effects on inter-
cept; Supplementary Results 2.5, Table S4 Model 3).

Another class of algorithms are informed search algorithms, which use a set of rules or heuristics to guide 
search17. The first algorithm we considered is based on dynamic programming2. It represents the KP in a way 
so that it can be solved by dynamic programming. The representation is a two-dimensional matrix of size equal 
to (number of items) ×  (base-2 logarithm of instance capacity), which is referred to here as input size. With this 
representation, a Turing machine with no memory constraints can solve the instance in polynomial time as a 
function of the size of the representation (Supplementary Methods 1.3, 1.5). However, this representation requires 
working memory larger than that of a typical human. For our first instance, for example, a Turing machine would 
need a memory of size 10 ×  log2 1900 ≈  109 bits, many times larger than the capacity of human working mem-
ory18. Therefore, we did not expect that humans would resort to dynamic programming. Consistent with this con-
jecture, the relation between input size and computational performance was not significant (P >  0.05, main effect 
of input size, GLMM with participant random effects on intercept; Supplementary Results 2.5, Table S4 Model 4).

Another important algorithm for the 0–1 KP is the Sahni-k algorithm19 (Supplementary Methods 1.3, 1.5). 
It solves an instance by a combination of brute-force search through a subset of items of cardinality k, and sub-
sequently the greedy algorithm20. The greedy algorithm fills up the knapsack by picking items in reverse order 
of their value-to-weight ratio. If k equals zero, the Sahni-k algorithm coincides with the greedy algorithm. If k is 
equal to the number of items in the solution, the algorithm is similar to a brute-force search through the entire 
search space. k is proportional to the number of computational steps and the memory required to compute the 
solution of an instance. We define complexity of an instance as the minimum level of k necessary to solve the 
instance with the Sahni-k algorithm. If human approaches to the KP shared features with the Sahni-k algorithm, 
we would expect human-experienced difficulty to increase, and hence success rates to decrease, with k. Indeed, we 
found that computational performance was negatively correlated with Sahni-k (P <  0.001, main effect of Sahni-k, 
GLMM with participant random effects on intercept; Supplementary Results 2.5, Table S4 Model 5; Fig. 4b).

Many of the solution algorithms for the KP require arithmetic, which can be difficult for humans. For exam-
ple, humans find it difficult to divide sequences of two numbers. Inaccuracies are more likely when numerators 
and denominators are highly correlated, that is, when the conditioning number is high21. In the greedy algorithm, 
items are ranked in descending order of their ratio of value over weight, and the knapsack is filled in this order 
until capacity is reached. The ranking will be less accurate if values and weights are more highly correlated. 
When correlation is perfect (as in our instance 7), ranking is impossible, and the greedy algorithm cannot be 
implemented. Therefore, if humans in part resort to applying the greedy algorithm, human-experienced diffi-
culty should increase with, and economic performance should decrease with, the correlation between values and 
weights. We found indeed that computational performance was negatively related to this correlation (P < 0.05, 
main effect of conditioning number, GLMM with participant random effects on intercept; Supplementary Results 
2.5, Table S4 Model 6, Fig. 4c). However, the correlation did not explain differences in computational perfor-
mance that Sahni-k could not capture (P > 0.05, interaction effect Sahni-k × conditioning number, GLMM with 
participant random effects on intercept; Supplementary Results 2.5, Table S4 Model 7). This may have been the 
result of low power: with only 8 instances, insufficient independent variability is obtained across the Sahni-k 
metric and value-weight correlation.

Solution Search Strategies. We found that economic performance decreased with Sahni-k, suggesting 
that participants’ search approaches combined the greedy algorithm with protocol that provided a disciplined, 
though not error-free, complement. This made us hypothesise that, at least in the early stages of solution attempts, 
our participants tended to use the greedy algorithm. Consistent with this hypothesis, we found that in the first few 
steps of their attempts, participants were more likely to add items with the highest value-to-weight ratio (Fig. 4d, 
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Fig. S3). Since participants searched longer and with more success than the greedy algorithm (Supplementary 
Results 2.7), we conjectured that their complimentary protocol featured aspects of a branch-and-bound algo-
rithm, where one starts with the greedy algorithm but then searches for improvements until a termination crite-
rion is reached22 (Supplementary Methods 1.3). For high Sahni-k instances, where branch-and-bound algorithms 
deviate from from the greedy algorithm, we expected participants who were trying to replace multiple items at 
once, to realise a higher score. Indeed, with higher Sahni-k, only branch-and-bound algorithms that consider 
replacing several items at once can successfully find the optimal solution. We therefore tested whether individ-
ual differences in computational performance could be explained by the interaction between Sahni-k and the 
number of items replaced simultaneously between solution attempts. We measured the latter as the length of the 
shortest path between two full knapsack attempts, that is, between two terminal vertices in the instance graph 
(Supplementary Methods 1.2). The interaction term was indeed significant (P < 0.01, interaction Sahni-k × mean 
distance, GLMM with random effect for instances on intercept; Supplementary Results 2.7, Table S6). As such, 
heterogeneity in search strategies across participants could be partly explained by how many items participants 
reconsidered and changed during their searches, and hence how complex the search protocol was as the distance 
between the greedy algorithm and the optimal solution increased.

Many algorithms depend on partial or complete memory of the search history in an attempt, for example, the 
highest value achieved so far and the items contained in the highest-valued knapsack. Here, too, humans may 
encounter difficulties, related to episodic memory. For example, some participants may not remember well why an 
item was put into the knapsack early on, and therefore decide to keep it in “because it must have been reasonable 
at the time.” We examined to what extent there was a tendency not to eliminate incorrect items that were added 
early on, and whether this determined computational performance. To this end, we considered the distribution 
of the age of incorrect items that were eventually deleted (Fig. 5). We measured age as the number of steps taken 

Figure 4. Properties of search. (a) Scatter plot of mean success rates across attempts of an instance and 
number of vertices in the graph of the instance. Red dashed line: main effect of number of vertices, general 
linear mixed model (GLMM) with random effects on intercept for individual participants (Table S4 Model 2), 
r: Pearson correlation, β: coefficient estimate of main effect. (b) Mean success rates across attempts of instances, 
stratified by Sahni-k level (Supplementary Methods 1.5). Blue lines: standard errors of means. (c) Scatter plot 
of mean success rates across attempts of an instance and Pearson correlation of item values and weights. Red 
dashed line: main effect of Pearson correlation between values and weights in instance, GLMM with random 
effects on intercept for individual participants (Table S4 Model 6), r: Pearson correlation, β: coefficient estimate 
of main effect. (d) Time course of choice frequencies of items. The items available in an instance were sorted 
in reverse order of their density (value-to-weight ratio; vertical axis). The heat map shows average choice 
frequencies for the items for the first 11 steps (horizontal axis) in the search path across all attempts.
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since the beginning of an attempt and until deletion, as a fraction of the total number of steps taken in an attempt; 
age equals 1 if the item was the first one to be added to the knapsack and removed only at the end of the attempt. 
The vast majority of deleted incorrect items were added very recently (M =  0.2920, SE =  0.0001); only rarely did 
participants eliminate incorrect items that were added to the knapsack early on. A similar pattern emerged for 
correct items that were deleted (M =  0.2352, SE =  0.0001; Fig. 5). This means that participants were reluctant to 
re-consider incorrect items that were added early on, introducing path dependence in search. Mean age of correct 
items was significantly higher than age of incorrect items (P < 0.001, two-sample t-test, t =  6.98) and their distri-
butions were significantly different (P < 0.001, Kolmogorov-Smirnov test for independence of samples, D =  0.10). 
Direct evidence for path dependence emerged when we found that the initial full knapsack heavily determined 
eventual computational success: distance (path length) to the submitted solution from the optimum depended 
significantly on distance to optimum from the first terminal vertex (P < 0.001, main effect of distance of first 
vertex, LMM with random effects for participants on intercept; Supplementary Results 2.8, Table S7 Model 1).

Heterogeneity. We also examined variation in searches between participants. We found that there was little 
overlap in the knapsacks that participants attempted. On average, individuals only visited 3.6% of all vertices 
in the instance graph (Fig. S4a), yet combining all attempts, the twenty participants visited 42.1% of all vertices  
(Fig. S4b, Supplementary Results 2.6). This means that the group of 20 participants together explored more than 
fifteen times more of the search space than each individual participant explored on their own. This suggests that 
there was substantial heterogeneity in search strategies (Video S1–16). However, in all instances, at least one par-
ticipant found the solution quickly (Fig. S5).

Awareness. In the theory of computation, the problem of finding the solution of an instance, referred to as 
a optimisation version of the KP, is distinguished from the problem of deciding whether a given target value or 
greater is obtainable, referred to as the decision version. Given that the optimisation version of KP is NP-hard and 
the decision version is NP-complete, we wanted to determine whether participants who found the solution knew 
that they found the solution, and found it again in the second attempt. To test this, we examined their second 
attempts at the same instance. Among participants who found the solution in their first attempt, 31.2% did not 
solve the instance in the second attempt (Supplementary Results 2.9), which suggests that participants mostly 
were not aware that they had found the solution.

Discussion
It has often been argued that humans resort to heuristics in order to solve complex problems23. Two questions 
have remained unanswered, however: (i) What type of complexity affects human decision-making? (ii) Are the 
heuristics humans use, adapted to this complexity? Here, we investigated how computational complexity affects 
human decision-making. We discovered that various measures of complexity explained computational perfor-
mance, and hence, difficulty. Most prominently, the Sahni-k measure predicted success. This measure increases in 
the minimal number of items over which a combinatorial search has to be performed before the remainder of the 
knapsack can be filled using the greedy algorithm and the optimal solution can be attained.

This result replicates a finding of our earlier study12. In this study, 124 participants were asked to solve the 
same set of instances used in the present study. In this study, too, success rates were negatively correlated with 
Sahni-k12, suggesting that the reported relation between behaviour and computational complexity is robust.

The concept of computational complexity is defined with regards to mathematical models of computation, 
such as a Turing machine, an ideal model of computation. Our results demonstrate clearly that computational 
complexity, and hence the theory of computation, does help to understand when and how complexity impacts 
human decision-making. Our results were obtained in the context of the KP, a canonical example of a complex 
computational and decision problem, and future research should investigate to what extent computational com-
plexity affects human behaviour in other problems.

Figure 5. Distribution of item ages. Histogram of age of items (Supplementary Results 2.8). Age of an item 
was calculated as the fraction of number of steps taken since the beginning of an attempt (age equals 1 if the 
item was the first added to the knapsack). Green bars: correct items, red bars: incorrect items: Mcorr: mean age 
and standard error of mean of correct items, Mincorr: mean age and standard error of mean of incorrect items.
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Like for a Turing machine, we discovered that effort can be measured in terms of number of computations. 
However, we also found that this gives an incomplete picture. Our results indicate that problem-solving ability 
was limited by biological constraints including limited working and episodic memories as well as difficulty with 
arithmetic. Success rates decreased with Sahni-k, likely because more working memory is required for instances 
with higher Sahni-k. Working memory is known to vary between individuals; in our task, better working memory 
allows one to consider replacing multiple items at once, which is needed in order to be more successful at solving 
more difficult instances. Unwillingness to reconsider items selected many steps ago suggests that episodic mem-
ory constraints also affected behaviour. We further observed difficulties with division of numbers, required for 
successful implementation of the greedy algorithm. However, the number of instances participants were asked to 
solve was insufficient to disambiguate the influence of Sahni-k and division errors.

Despite memory and other computational constraints, participants scored well on our instances. We attribute 
this to algorithmic flexibility: humans appear not to stick to a single algorithm, but instead opportunistically 
change search procedures when encountering difficulties, for example, by deviating from the greedy algorithm 
when values and weights are highly correlated. Algorithmic flexibility was also evident in the surprisingly low 
overlap in composition of knapsacks attempted by the different participants.

To overcome memory and other computational constraints, humans could be provided with tools to facilitate 
solving the KP. A table akin to the one used in dynamic programming may resolve working memory problems. 
Likewise, forcing participants to re-consider items included early on in the search may help avoid the cognitive 
inflexibility caused by episodic memory. Explicit ranking of items by their value-to-weight ratios may facilitate 
the use of the greedy algorithm in the early stages of the search process.

One of our key findings is that participants tended to spend more effort on, and hence, improved economic 
performance in, more difficult problems. Relatedly, they tended to search way beyond the point where marginal 
economic gain decreased to zero. These results contradict basic principles of economic theory. Our results may 
explain important situations where humans do not trade off marginal utility against marginal effort, such as in 
labour-leisure choices. For instance, taxi drivers do not increase time spent on the job when marginal gains are 
high; instead, they increase effort per unit of economic gain on “difficult” days (days when passengers are harder 
to locate)24. An important question is how participants in our experiment were able to recognise that an instance 
was more difficult, because the measure that explained difficulty, Sahni-k, cannot be constructed until one knows 
the solution of an instance.

Our results cast doubt on a basic tenet of preference-based decision theory, namely, the assumption that 
decision-makers always optimise25. Decision theory assumes that agents will be able to identify the option they 
most prefer when faced with any finite, though potentially large, set of alternatives from the choice space. Our 
results suggest, however, that humans cannot find the optimum in many instances of an ubiquitous choice prob-
lem. Our results therefore cast doubt on the empirical relevance of modern preference-based decision theory. 
One real-world example of the KP is attention gating, which has been the subject of study in the emerging theory 
of optimal inattention26. There, economic agents choose optimally which items to attend to and which to ignore, 
trading off the benefits of attending to more items and the cost of doing so. It is questionable whether humans 
can execute the policies that emerge from such a preference-based theory of inattention. Our critique cannot be 
brushed aside by the argument that optimisation is merely “as if ” (agents merely have to choose “as if ” they opti-
mise). The ability to represent choice in terms of optimisation rests on a basic axiom of preference theory, namely, 
completeness. If the optimisation problem is intractable, the preferences it represents are effectively incomplete. 
In general, we would advocate further development of a decision theory that takes seriously the computational 
demands involved27–29.

Across participants, we found little overlap in the knapsacks that they visited. This implies, first, that there 
does not seem to be a “representative heuristic” which captures the essence of all participants’ strategies. Second, 
it implies that information sharing has the potential to increase the number of participants that manage to solve a 
given instance. Markets are one way to indirectly share information, through prices. Our earlier study, involving 
124 participants, indeed demonstrated that markets perform better than mechanisms such as prizes or patents 
that do not involve information sharing12. Our findings therefore have major implications for incentivising cru-
cial human activities that can be thought of as solving instances of the KP, such as intellectual discovery and 
innovation10–14. There, recent advances have generally been attributed to the establishment of the patent system. 
But the patent system discourages information sharing, and as a result, could be improved upon through some 
information sharing mechanism. Or maybe this has already happened, because indeed, along with the introduc-
tion of patents, we have also witnessed a surge in the use of markets, which does lead to information sharing12. 
In any case, future research should more closely examine the relation between the KP and intellectual discovery 
and innovation.

We found that computational performance decreased with the size of the search space measured by the size of 
the graph of an instance. This result may potentially explain earlier findings that the number of decision options 
negatively affects choice, a phenomenon referred to as “choice overload”30. Our findings offer an algorithmic 
explanation of this phenomenon: the larger the number of choice options, the larger the search space through 
which the decision-maker has to search, and the less likely the decision-maker is able to discover the solution.

Interpretability of our results may be somewhat limited by the relatively small size of our sample (20 partic-
ipants). Nevertheless, each participant solved 16 instances of the KP, resulting in 320 trials, and one of the main 
results, on the relation between participant success and a metric of difficulty from computer science, replicates 
the findings of an earlier study12 with 124 participants. This should suffice for the purpose at hand, which was to 
investigate average behavior.

Given the central importance of the KP in human life, we would advocate further investigation as a way to 
gain a more comprehensive understanding of human decision-making. This is bound to improve welfare not 
only through better incentivisation of, for example, intellectual discovery and innovation. It likewise promises 
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to contribute to health through better diagnosis and treatment of mental disorders that implicate choice that is 
detrimental to successful KP solving, because of lack of cognitive flexibility (obsessive-compulsive disorder31), 
sub-optimal time allocation (attention deficit/hyperactivity syndrome32), or stringent adherence to “rational” 
economic principles (autism spectrum disorder33).

Methods
Participants and experimental task. Twenty human volunteers (age range =  18–30, mean age =  21.9, 10 
female, 10 male), recruited from the general population, took part in the study. Inclusion criteria were based on 
age (minimum =  18 years, maximum =  35 years), right-handedness and normal or corrected-to-normal vision. 
The experimental protocol was approved by The University of Melbourne Human Research Ethics Committee 
(Ethics ID 1443290), and written informed consent was obtained from all participants prior to commence-
ment of the experimental sessions. Experiments were performed in accordance with all relevant guidelines and 
regulations.

Participants were asked to solve eight instances of the 0–1 knapsack problem2. For each instance, participants 
had to select from a set of items of given values and weights, the subset of items with the highest total value, sub-
ject to a total weight constraint (Supplementary Tables, Table S1). The instances used in this study were used in a 
prior study12 and differed significantly in their computational complexity (Table S2).

The instances were displayed on a computer display (1000 ×  720 pixels; Fig. 1b). Each item was represented 
by a square. Value and weight of an item were displayed at the centre of the square. The size of an item was pro-
portional to its weight and the colour (share of blue) was proportional to its value. At the top of the screen, total 
value, total weight and weight constraint of the knapsack were displayed. When the mouse was moved over an 
item, a black frame around the square appeared and the counters at the top of the screen added this items’ value 
and weight to the totals. When the mouse was moved over an item that could not be added to the knapsack at 
that time, because its addition would have violated the weight constraint, the counters turned red. An item was 
selected into the knapsack by clicking on it. Once an item was selected into the knapsack, it turned green. The 
item stayed green until it was removed from the knapsack (by clicking on it again). A solution was submitted by 
pressing the space bar. An attempt was automatically terminated after 240 s and time remaining was displayed by 
a progress bar in the top-right corner of the screen.

Each participant had two attempts per instance. The order of instances was randomised across an experimen-
tal session. We recorded the time course of selection of items to and removals from the knapsack. To make the 
task incentive compatible, participants received a payment proportional to the values of their attempts (between 
$0 and $4 per attempt). In addition, participants received a show-up fee of $5.

Data analysis. For each attempt, we recorded the sequence of additions of items to and removals of items 
from the knapsack. Each element in this sequence represents a state of the knapsack, and each state of the knap-
sack corresponds to a vertex in the graph G of the instance (the first element of the sequence always corresponds 
to the initial vertex of G, and the last element always corresponds to the participant’s proposed solution of the 
instance). A sequence of additions and removals can be represented as a path in the graph (see Supplementary 
Methods 1.2).

For each attempt, we recorded the time when the attempt was submitted as well as the sequence of additions 
and removals of items. For each step in this sequence, we computed the total value of items selected as well as 
the distance CG(i, s) to the solution vertex s from the vertex i in the graph representing this subset of items (see 
Supplementary Methods 1.2). The subset of items selected at the time of submission was the participant’s pro-
posed solution of the instance. The attempt was marked correct if the subset of items in the participant’s proposed 
solution was the solution of the instance (that is, CG(i, s) was equal to zero), and incorrect otherwise.

To evaluate an attempt in value space, we computed the value of the proposed solution normalised by the value 
of the solution, on which the reward schedule depended. We also computed the difference between the proposed 
solution and the mean of the values of all terminal vertices in the graph representing the problem. The latter is 
the mean of the values of all maximally admissible knapsacks, which is equal to the expected value of randomly 
selecting items into the knapsack until the knapsack is full.

All analyses were performed in Python (version 2.7.6) and R (version 3.2.0).
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