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Depth-distribution patterns and 
control of soil organic carbon in 
coastal salt marshes with different 
plant covers
Junhong Bai, Guangliang Zhang, Qingqing Zhao, Qiongqiong Lu, Jia Jia, Baoshan Cui & 
Xinhui Liu

This study was carried out in three kinds of salt marshes according to the vegetation covers, including 
Phragmites australis salt marsh (PSM), Suaeda salus salt marsh (SSM) and Tamarix chinensis-Suaeda 
salus salt marsh (TSSM). We applied allometric function, exponential function and logistic function 
to model the depth distribution of the SOCv and SOCc for each salt marsh, respectively. The results 
showed that the exponential function fits the depth distribution of the SOCv more well than other two 
functions. The SOCc can be fitted very well by all three functions for three salt marsh (Adj. R2 > 0.99), 
of which the allometric function was the best one. The mean topsoil concentration factors (TCFs) of 
three salt marshes were beyond 0.1, which means the SOC enrichment in surface soils due to plant 
cycling, but TCFs in PSM were significantly higher than those in SSM (P < 0.05). Nearly 30% of SOC was 
concentrated in the top 20 cm soils. The results of general linear model (GLM) suggested that four soil 
properties (soil water content, pH, soil salt content and silt+clay) and their interactive effects explained 
about 80% of the total variation of SOC stock in the top 20 cm soils and the 20–100 cm soil layers.

Coastal salt marshes play an important role in maintaining the balance of atmospheric carbon dioxide and serve 
as carbon sink with an estimated carbon burial rate of 210 g C/m2/yr1,. Unlike most upland soils, coastal salt 
marshes can continuously sequester carbon through the plant production and burial process2–4. Therefore, coastal 
salt marshes are an important blue carbon ecosystem and serve as highly efficient carbon sink.

The soil organic carbon (SOC) in salt marshes can indicate the climate change5, and the dynamic changes in 
SOC storage have a significant impact on the global carbon cycle6. However, our current understanding of the 
SOC quantity and distribution in salt marshes is limited. The SOC stocks in coastal salt marshes could be under- 
or overestimated as a result of large uncertainties7. Therefore, it is essential to make an accurate estimate of the 
SOC stocks in the coastal salt marshes to quantify the SOC sink capacity of the coastal salt marshes6.

Coastal salt marshes are complex ecosystems due to the interactions between fluvial and marine processes. 
Under the influence of hydrological fluctuations, vegetation succession and burial processes, the SOC in salt 
marshes typically have a large spatial variation. Previous studies have estimated the SOC stocks on the global1,8, 
national9,10 and regional scales11–13, but these estimates have shown large discrepancies. Limited attention has 
been given to coastal salt marshes with high hydrological fluctuations and large amounts of sediment supplies. 
Currently, the profile distribution model14–16 and multiple regression approach11,12,17, combined geostatistics14,15 
and artificial neural network18 techniques are the main methods for estimating the SOC stocks in a selected 
region. Several models have been applied to describe and extrapolate the SOC content16, and the exponential 
functions might be most widely used in modelling the vertical SOC distribution14 due to its mathematical sim-
plicity and its apparent similarity to the SOC decline with the soil depth15. However, it remains unknown whether 
the exponential function could be fitted to the vertical SOC distribution in salt marshes.

The Yellow River Delta (YRD) is the broadest, youngest and most efficiently conserved wetland ecological 
system in the warm temperate zone of China19. Large amounts of sediment inputs from the Loess Plateau caused 
the delta to expand fast at a rapid rate of ~9.11 km2/yr from 1976–200920. According to the results of Yu et al.19, the 
SOC density of the YRD ranged from 0.73 kg/m2 to 4.25 kg/m2 at a depth of 0–30 cm. There were approximately 
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3.55 ×  106 t SOC stored in the YRD. To our knowledge, few studies have reported the SOC stocks at depths of 
0–100 cm in salt marshes of the YRD. In addition, vegetation types, via the shoot/root allocations combined with 
vertical root distributions16, can significantly affect the depth distribution of the SOC. Therefore, the study area 
was divided into three types of salt marshes based on the dominant vegetation covers: the Phragmites australis salt 
marsh (PSM), the Suaeda salus salt marsh (SSM) and the Tamarix chinensis-Suaeda salus salt marsh (TSSM). The 
primary objectives of this study were: (1) to simulate the depth distribution patterns of volumetric SOC (SOCv, 
kg/m3) and cumulative SOC stocks (SOCc, kg/m2) using different mathematic equations in three salt marshes; 
(2) to predict the SOC stocks (0–80 cm and 0–100 cm depth) using three functions in three salt marshes and to 
compare the prediction accuracy, and (3) to compare the depth distribution patterns of the SOC under the three 
vegetation covers and analyse the controls of the SOC stocks at different depth intervals.

Results and Discussion
Soil characterization. The summary statistics of the SOC, bulk density (BD), pH, soil salt content (SSC) and 
soil texture (sand, silt and clay) of all samples (n =  28) in the study area are shown in Table 1. The SOC contents 
ranged from 0.48 to 8.20 g/kg in the study area, with mean SOC values of 1.65 to 3.96 g/kg. A decreasing trend 
was observed along the soil profile according to the mean values of SOC, with the exception of the 40–60 cm soil 
layer, which was more similar to the SSC trend. The soil pH values indicated a weak alkaline environment. A rel-
atively high BD (> 1.55 g/cm3) could be attributed to the serious compaction and breakdown of the soil structure 
in coastal areas21.

Soil BD and pH exhibited weak variability (Coefficient of Variation (CV), with CV values less than or equal to 10%),  
whereas SOC and SSC exhibited moderate variability (10% <  CV <  100%)22 at all depth intervals. For the soil 
texture, strong variability (CV greater than or equal to 100%) was found in the clay content despite its lower 
content. The sand and silt also exhibited moderate levels of variability, thus implying the existence of intensive 
hydrological fluctuations in the study area.

Modelling the depth distribution of the soil organic carbon. The data in the calibration data sets 
were used to model the depth distribution of volumetric SOC (SOCv, kg/m3) and cumulative SOC stocks (SOCc, 
kg/m2). The results of the fitting using three equations are shown in Figs 1 and 2. The detailed fitting equation and 
fitting results are listed in Tables 2 and 3. When modelling the depth distribution of the SOCv, the exponential 
function showed the best modeling result compared with allometric and logistic functions in spite of its low good-
ness of fit, with mean Adj. R2 =  0.76, 0.95 and 0.82 for PSM, SSM and TSSM, respectively. The decay exponential 
function has been widely applied to describe the vertical SOC distribution in forestland22–24, agricultural land25,26 
and grassland16. The exponential function might therefore be used to predict the SOC stocks regardless of the 
soil type or land use13,15. In our study, the fitting results indicated that the exponential function is also useful in 
modelling the vertical distribution of volumetric SOC (kg/m3) in coastal salt marshes.

Interestingly, the values of SOCc were theoretically equal to the integral values of SOCv in terms of the soil 
depth from 0 cm to the desired soil depth. However, this could produce many errors when using the integral 
values of SOCv given its irregular distribution (Fig. 2) and low goodness of fit (Table 2). Therefore, we calculated 
the SOCc based on the SOCv and used three mathematical functions to describe the depth distribution of the 
SOCc. When modelling the depth distribution of SOCc, three equations all showed high goodness of fit (Adj. 
R2 >  0.99) for the three salt marshes (Table 3). Therefore, it is necessary to determine which function would 
result in lower errors when predicting the SOC stocks among three modelling functions. Figure 3 showed the 

Soil depth

SOC BD pH SSC

Mean 
(g/kg)

Min  
(g/kg)

Max  
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CV  
(%)
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(g/cm3)

Min  
(g/cm3)

Max  
(g/cm3)

CV  
(%) Mean Min Max

CV 
(%)

Mean 
(‰)

Min 
(‰)

Max 
(‰)

CV 
(%)

0–10 cm 3.96 1.12 8.20 41.3 1.69 1.28 2.03 10.28 8.05 7.56 8.75 3.73 1.54 0.10 4.86 80.75

10–20 cm 2.62 0.48 5.05 52.67 1.70 1.42 2.03 10.21 8.18 7.58 8.73 4.12 1.24 0.10 3.56 71.45

20–40 cm 1.92 0.68 4.46 48.94 1.42 1.92 1.71 9.53 8.24 7.58 8.83 4.69 1.23 0.10 4.21 78.65

40–60 cm 2.46 0.66 4.83 39.11 1.74 1.32 2.02 11.57 8.22 7.62 8.82 4.21 1.31 0.10 3.19 62.82

60–80 cm 1.68 0.56 3.63 47.58 1.75 1.45 1.93 8.80 8.26 7.40 8.90 4.32 1.09 0.10 2.66 56.88

80–100 cm 1.65 0.56 3.71 51.92 1.76 1.45 2.01 9.68 8.30 7.48 9.20 4.79 1.04 0.10 2.93 61.08

Soil depth
Sand Silt Clay

Mean 
(%)

Min  
(%)

Max 
(%) CV (%) Mean 

(%)
Min  
(%)

Max 
(%)

CV  
(%)

Mean 
(%)

Min 
(%)

Max 
(%)

CV 
(%)

0–10 cm 41.34 16.60 91.95 66.68 55.77 8.05 78.43 47.28 2.88 0.00 8.59 78.72

10–20 cm 60.05 16.87 100.00 43.86 40.61 0.00 79.24 63.83 1.09 0.00 6.99 170.82

20–40 cm 69.05 24.99 99.58 30.91 32.06 0.42 71.48 69.21 1.17 0.00 4.97 8.61

40–60 cm 48.99 10.11 96.70 47.65 51.01 3.30 79.88 42.66 3.57 0.00 15.86 14.61

60–80 cm 63.84 26.81 100.00 41.57 39.00 0.00 97.66 71.32 1.06 0.00 2.89 189.40

80–100 cm 67.58 22.15 100.00 48.88 34.87 0.00 97.77 96.30 1.43 0.00 3.14 148.28

Table 1. Summary statistics of soil properties at different depth intervals (n = 28). CV: Coefficient of 
Variation.
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relationship between the calculated SOCc values (0–80 cm and 0–100 cm) and the predicted SOCc values using 
the three functions in the three salt marshes.

Prediction and validation of the cumulative soil organic carbon stock (SOCc). In many cases, we 
need to predict the SOC density (kg/m2) for a given type of land. This process would be time-consuming and 
expensive if we measured the SOC values of all samples at different depths. Therefore, it can be helpful to predict 
the SOC stocks of a desired depth using the SOCv content in the surface soils. In our study, we used the SOCc of 
four intervals of upper soil layers (0–10, 0–20, 0–40, and 0–60 cm) in validation data sets to predict the SOCc of 

Figure 1. Fitting curves of vertical distribution of volumetric SOC (SOCv) using three functions in Phragmites 
australis salt marsh (PSM, (a)), Suaeda salus salt marsh (SSM, (b)) and Tamarix chinensis-Suaeda salus salt 
marsh (TSSM, (c)).
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the other two intervals (0–80 and 0–100 cm). The results of predicted SOCc values (0–80 and 0–100 cm) in the 
three salt marshes are shown in Fig. 3. The data in Table 4 show the validation indices (MPE and RMSE) of the 
predicted SOCc values at the 0–80 and 0–100 cm intervals in the three salt marshes using the three functions.

As shown in Fig. 3, all of the SOCc values predicted using logistic function were in area B, which means that 
the predicted values were smaller than the calculated values. In contrast, almost all of the SOCc values predicted 
using exponential functions were in area A, which indicates that the exponential function may result in larger 
predicting outcomes. Further, the predicted SOCc values using the allometric function were distributed on both 

Figure 2. Fitting curves between cumulative SOC stocks (SOCc) and soil depths using three functions in PSM 
(a), SSM (b) and TSSM (c).
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sides of an oblique line with a slope of 1, which indicated that the allometric function might be applied to predict 
the SOC stocks in coastal salt marshes. The validation indices shown in Table 4 confirm the availability of the allo-
metric function. Positive values of MPE indicated that the predicted values were larger than the observed values, 
and this was reversed for negative MPE values. The lowest absolute values of MPE and RMSE were found in the 
three salt marshes when using an allometric function. The lower absolute values of MPE and RMSE suggest that 
the allometric function fitting method of SOCc produces fewer errors when predicting the SOC stocks14.

The results of the single sample t-test shown in Table 5 indicate that the slope of the regression line of pre-
dicted and calculated SOCc based on the allometric and exponential functions is not significantly different than 
1, thus suggesting acceptable predictions of SOCc compared to the logistic function. However, the slopes based 
on the allometric and exponential functions are significantly different than 1, which suggests that the SOC stocks 
are either under- or overpredicted14.

Topsoil concentration factors (TCFs) of the three salt marshes. Topsoil concentration factors 
(TCFs) can be used to evaluate the effects of plant cycling on biogeochemical elements27. The box plots shown in 
Fig. 4 illustrate the TCFs in the three salt marshes. The mean TCFs (0–10 cm/0–100 cm) of the three salt marshes 
were all greater than 0.1, which indicates the presence of an SOC enrichment in the surface soil (0–10 cm) due 
to plant cycling. The TCF values of the PSM were significantly higher than those in the SSM and slightly higher 
than those in the TSSM (P <  0.05). These differences should be ascribed to the different vegetation covers in the 
salt marshes.

Plant characteristics such as tissue stoichiometry, biomass cycling rates, above- and below-ground allocation, 
root distribution, and maximum rooting depth27 might play an important role in the distribution patterns of 
SOC. Figure 5 illustrates the proportional distribution of the SOC content ((soil layer/0–100 cm) ×  100%) in the 
PSM, SSM and TSSM. The SOC content in the surface soil layer (0–20 cm) was relatively higher than that in the 
other layers in the three salt marshes. There was a decreasing trend for SOC, with the exception of the 40–60 cm 
soil layer. The unexpected peak of SOC in the 40–60 cm layer may be explained by the following two reasons. On 
one hand, it may be associated with the high silt and clay contents in this layer (Table 1). Zinn et al.28 also demon-
strated that the SOC content was directly and linearly correlated with the combined clay +  silt (but not the clay 
alone) content for all depths at the 0–1 m interval. On the other hand, this unexpected peak could be explained by 
downward migrating of soil organic carbon by leaching and microbial activities29,30 in the surface soils.

Many researches have shown that plant production is a major SOC input to soil in arid and semi-arid ecosys-
tems16,31,32. However, with the exception of plant litter input, the organic carbon burial due to the sediment accu-
mulation33 and tidal flooding input play an important role in the SOC budgets and depth distribution patterns of 
the SOC for coastal salt marshes.

Relationships between the SOC stocks and soil properties at different depth intervals. The 
relationships between the cumulative SOC stocks (SOCc) at different depth intervals (0–20, 0–40 and 0–100 cm) 
and soil properties such as pH, SSC, soil water content (SWC) and silt +  clay content are shown in Fig. 6. Positive 
liner relationships were found between SOCc at different depth intervals and silt + clay (Fig. 6(d,h,l)). Similarly, 
a SOC =  a +  b(silt +  clay) function was proposed by Zinn et al.28 to describe the relationship between the SOC 
and clay+ silt, which was also available for any depth at the 0–1 m interval. As reported by Yang et al.31, the soil 
texture influences the SOC storage in two ways. First, it increases the clay and silt contents and reduces microbial 

Salt marsh Function Allometric Y = a*x^b Exponential Y = y0+A*exp(−x/t) Logistic Y = (A1−A2)/(1+(x/x0)^p)+A2

PSM

mean
SOCv =  3.43*H^−0.30 SOCv =  3.85 +  8.31*exp(−H/0.107) SOCv =  (7.07−3.87)/(1 +  (H/0.20)^35.75) +  3.87

R2 =  0.72931 R2 =  0.76365 R2 =  0.69706

mean-STD
SOCv =  2.52*H^−0.19 SOCv =  2.77 +  60.77*exp(−H/0.027) SOCv =  (4.28−2.77)/(1 +  (H/0.17^20.22) +  2.77

R2 =  0.27039 R2 =  0.38739 R2 =  0.0811

mean +  STD
SOCv =  4.35*H^−0.35 SOCv =  4.87 +  10.61*exp(−H/0.138) SOCv =  (9.86−4.97)/(1 +  (H/0.20)^26.45) +  4.97

R2 =  0.80683 R2 =  0.8334 R2 =  0.84607

SSM

mean
SOCv =  3.05*H^−0.35 SOCv =  −0.36 +  7.63*exp(−H/0.99) SOCv =  (6.57−1.12)/(1+ (H/0.58)^2.03)+ 1.12

R2 =  0.8434 R2 =  0.95147 R2 =  0.93606

mean-STD
SOCv =  1.89*H^−0.36 SOCv =  1.51 +  3.43*exp(−H/0.40) SOCv =  (32.90 +  13.63)/(1+ (H/9.62)^0.10)-13.63

R2 =  0.87492 R2 =  0.83537 R2 =  0.77208

mean +  STD
SOCv =  4.21*H^−0.35 SOCv =  −81008.37 +  810097.81*exp(−H/124043.19) SOCv =  (8.76−2.11)/(1+ (H/0.56)^2.76)+ 2.11

R2 =  0.78358 R2 =  0.9483 R2 =  0.96931

TSSM

mean
SOCv =  2.79*H^−0.36 SOCv =  3.33 +  16.22*exp(−H/0.066) SOCv =  (6.86−3.33)/(1+ (H/0.19)^21.97)+ 3.33

R2 =  0.69743 R2 =  0.82459 R2 =  0.74399

mean-STD
SOCv =  1.72*H^−0.21 SOCv =  2.50+ (− 0.02)*exp(−H/(− 0.24)) SOCv =  (2.45−1.29)/(1 +  (H/0.79)^63.32)+ 1.29

R2 =  0.23265 R2 =  0.15737 R2 =  −0.03645

mean +  STD
SOCv =  3.84*H^−0.41 SOCv =  4.71 +  24.53*exp(−H/0.071) SOCv =  (10.73−4.70)/(1+ (H/0.19)^25.74)+ 4.70

R2 =  0.72665 R2 =  0.90381 R2 =  0.87026

Table 2. Model parameters and fitting results of volumetric SOC (SOCv) values using mathematic 
equations for the three salt marshes. STD: standard deviation.
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decomposition by stabilizing the SOC and decreasing C leaching, thus leading to an accumulation of SOC. 
Second, increasing the clay and silt contents stimulate plant production by increasing the water holding capacity 
and thereby increasing C inputs to soil. The SOCc would reach a relatively stable value based on the relationships 
between SSC, SWC and SOCc (Fig. 6(b,c,f,g,j,k)). In terms of the SSC, a low level of salinity may increase the 
microbial decomposition rates by stimulating extracellular enzyme activity and enhancing the bacterial abun-
dance34, which eventually causes, at least in part, a decreased level of SOC accumulation, accretion and carbon 
sequestration rates in tidal areas. This explanation is consistent with our study results, which indicate that low 
SOC stock levels can be found in salt marshes with low SSC levels (SSC <  5‰) (Fig. 6b,f,j). A high SSC content 
may reduce the microbial activity to affect the SOC decomposition34,35, and the accumulation of salts in the root 
zone may have an adverse effect on plant growth by decreasing the availability of water to the plants and affecting 
the metabolism due to specific ion toxicity and ion imbalances36. Consequently, a moderate salinity level might 
be beneficial for the carbon sequestration of coastal salt marshes.

Our study showed that nearly 30% of the SOC (based on the 0–100 cm reserve) was concentrated in the soil 
surface (0–20 cm) of the coastal salt marshes of the YRD (Fig. 5). Furthermore, the soil surface area is more 
obviously affected by processes such as weathering, plant litter decomposition and water flooding than are deep 
soil layers (20–100 cm in this study). Therefore, a GLM was applied to the soil surface and the deep soil layers to 
analyse the relationships between the SOCc and soil physicochemical properties and to identify the contributing 
factors, respectively. The results of the GLM suggested that the four selected soil properties (i.e., SWC, pH, SSC 
and silt +  clay) explained 81.23% and 79.02% of the total variation of SOC stock in the top 20 cm and 20–100 cm 
layers, respectively (Table 6). SWC explained the largest proportion (41.64%) of the SOC stock variation, whereas 
the pH explained approximately 11.3% of the variation for the 0–20 cm layer. However, the pH explained the 
largest proportion (32.54%) of the variation in the SOC stock, and SWC only explained 9.42% of the variation 
for the 20–80 cm soil layer. It is important to note that the controlling factors described above are interactively 
affected. For example, increased soil pH can limit the binding capacity of clay compounds, leading to decreased 
organic matter (e.g., humic acid) sorption in soil34,37. Furthermore, weather factors (e.g., rain) and hydrological 
fluctuation (e.g., tidal flooding and flow-sediment regulation projects) would also significantly change the water 
content (SWC) and soil salinity (SSC) in surface soils and other soil physicochemical properties38 in this area.

Conclusions
The depth distributions of the volumetric SOC contents (SOCv, kg/m3) and the cumulative SOC stocks (SOCc, 
kg/m2) were modelled using allometric, exponential and logistic functions in three salt marshes with different 
plant covers. The modelling data were based on our sampling results in representative coastal salt marshes of the 
Yellow River Delta in China. The decay exponential function can better fit the depth distribution of SOCv in the 
coastal salt marshes than the other two functions despite its low goodness of fit, which is widely used in terrestrial 
ecosystems for the estimation of SOC stock. The depth distribution of the SOCc can be fitted very well by three 
functions for each salt marsh (Adj. R2 >  0.99), however, the values of MPE and RMSE, and t-test results indicated 
more accurate predictions of SOCc in the top 100 cm soils using the allometric function in comparison to both 
exponential and logistic functions. Vegetation cover types can affect the depth distribution pattern of SOC by 
plant cycling, root distribution changes and above- and below-ground allocation differences according to the top-
soil concentration factor analysis. The general linear model analysis showed that the pH and soil moisture (SWC) 
were the main controlling factors of the SOC storage in the study area. The co-effects of environmental factors 

Salt marsh Function Allometric Y = a*x^b Exponential Y = y0+A*exp(−x/t) Logistic Y = (A1−A2)/(1+(x/x0)^p)+A2

PSM

mean
SOCc =  4.30*H^0.81 SOCc =  23.35+ (− 23.05)*exp(−H/5.20) SOCc =  (0.23–679.4)/(1+ (H/264.3)^0.91)+ 679.4

R2 =  0.99673 R2 =  0.99696 R2 =  0.99551

mean−STD
SOCc =  3.79*H^0.92 SOCc =  35.18+ (−35.08)*exp(−H/8.96) SOCc =  (0.05–1990.7)/(1+ (H/758.7)^0.95)+ 1990.7

R2 =  0.99522 R2 =  0.99369 R2 =  0.9906

mean +  STD
SOCc =  4.82*H^0.74 SOCc =  19.38+ (− 18.88)*exp(−H/3.80) SOCc =  (0.45–62.5)/(1+ (H/15.14)^0.95)+ 62.5

R2 =  0.99448 R2 =  0.99559 R2 =  0.99341

SSM

mean
SOCc =  4.14*H^0.73 SOCc =  5.71+ (−5.72)*exp(−H/0.82) SOCc =  (−0.001–8.188)/(1+ (H/x1.03)^1.05)+ 8.188

R2 =  0.99235 R2 =  0.9916 R2 =  0.99426

mean−STD
SOCc =  3.14*H^0.80 SOCc =  4.85+ (−4.94)*exp(−H/0.988) SOCc =  (0.276–4.19)/(1+ (H/0.61)^1.75)+ 4.19

R2 =  0.98734 R2 =  0.99353 R2 =  0.99883

mean +  STD
SOCc =  5.15*H^0.68 SOCc =  6.67+ (− 6.61)*exp(−H/0.728) SOCc =  (− 1.30–51.62)/(1+ (H/52.30)^0.50)+ 51.62

R2 =  0.99211 R2 =  0.99838 R2 =  0.99993

TSSM

mean
SOCc =  3.75*H^0.79 SOCc =  20.36+ (− 20.05)*exp(−H/5.26) SOCc =  (0.49–10.14)/(1+ (H/1.65)^1.33)+ 10.14

R2 =  0.99524 R2 =  0.99653 R2 =  0.99544

mean−STD
SOCc =  2.49*H^0.98 SOCc =  − 22.71+ 22.77*exp(−H/(–9.81)) SOCc =  (0.19–7.87)/(1+ (H/1.82)^1.43)+ 7.87

R2 =  0.99687 R2 =  0.99661 R2 =  0.99598

mean +  STD
SOCc =  5.02*H^0.71 SOCc =  15.71+ (− 15.15)*exp(−H/2.83) SOCc =  (0.77–12.62)/(1+ (H/1.56)^1.28)+ 12.62

R2 =  0.99462 R2 =  0.99613 R2 =  0.9946

Table 3. Model parameters and fitting results of cumulative SOC (SOCc) values, as determined using 
mathematic equations for the three salt marshes. STD: standard deviation.
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Figure 3. Prediction results obtained using three functions and the relationship between predicted and 
calculated cumulative SOC stocks (SOCc) in PSM (a), SSM (b) and TSSM (c). Some unusual predicted values 
are not shown in this figure. Area A denotes overestimations, and area B denotes underestimations.
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such as the pH, soil moisture, soil salt and soil texture on the SOC distribution and the quantitative mathematic 
functions among them will require further research in coastal salt marshes.

Salt marsh Index Allometric function Exponential function Logistic function

PSM
MPE − 0.15 1.97 − 0.81

RMSE 0.47 4.94 0.87

SSM
MPE 0.14 4.03 − 0.92

RMSE 0.50 7.40 1.06

TSSM
MPE 0.28 1.61 − 0.82

RMSE 0.54 3.33 0.99

Table 4. Validation indices of cumulative SOC stocks (SOCc) using three functions in three salt marshes. 
MPE: mean predictive error, kg/m2. RMSE: root mean square error, kg/m2.

Salt marsh PSM(2 m = 8) SSM(2 m = 6) TSSM(2 m = 8)

Function t statistic P value t statistic P value t statistic P value

Allometric − 1.283 0.240 1.138 0.307 2.176 0.066

Exponential decrease 1.223 0.261 1.845 0.124 1.632 0.147

Logistic − 7.944 0.000 − 7.818 0.001 − 6.639 0.000

Table 5. Results of a t-test used to test the hypothesis that the slope of the regression line equals 1 
between calculated and predicted SOCc values using three functions. 2 m is the number of predicted values 
(cumulative SOC stock in 0–0.8 m and 0–1 m) used for a single sample t-test (confidence interval =  95%). m is 
the number of soil samples in the validation data sets of each type of salt marsh.

Figure 4. Topsoil concentration factors (TCFs, 0–10 cm/0–100 cm) of volumetric SOC values (SOCv, kg/m2) 
in the three salt marshes (abValues with different letters represent significant differences between different 
salt marshes, P < 0.05). 

Figure 5. Profiles of volumetric SOC (SOCv) distributions in PSM (a), SSM (b) and TSSM (c). (mean + SD). 
There were not significant differences among the three salt marshes in the same layers (P >  0.05) based on one-
way ANOVA.
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Materials and Methods
Study area. The study was conducted in the newly formed salt marshes of the Yellow River Delta, China. This 
region is characterized by a warm-temperate and continental monsoon climate, with an annual mean precipita-
tion of 640 mm and an annual mean evaporation of 1962 mm. The air temperature varies from − 23.3 to 41.9 °C 
and the annual mean value is 12.3 °C39. The Yellow River water and sediment discharges have significant seasonal 
variability, and more than 60% of the river water and sediment40 is discharged during the flooding season (from 
June to July). The soil is typical Fluvisols, which is derived from the upstream of the Loess Plateau41. Dominant 
vegetation types in the study area are Phragmites australis, Suaeda salus and Tamarix chinensis. PSM was mainly 
distributed along the Yellow River banks. The distribution area of SSM was near the coastline. The TSSM was 
in the ecotone of Phragmites australis and Suaeda salus. Some Suaeda saluses were growing under the cover of 
Tamarix chinensis.

Sample collection and analysis. We identified 10, 8 and 10 profiles in PSM, SSM and TSSM, respectively. 
The soil samples were collected from soil pits at depths of 0–10, 10–20, 20–40, 40–60, 60–80, and 80–100 cm. In 
total, 60, 48 and 60 samples were obtained from the PSM, SSM and TSSM, respectively, and the soil samples were 
used for the determination of the SOC, pH, soil salt content (SSC) and soil texture. All samples were sealed in 
polyethylene bags and brought to the laboratory, then air dried at room temperature for three weeks. All air-dried 
samples were sieved through a 2-mm nylon sieve to remove coarse debris and stones, then ground with a pestle 
and mortar until all particles passed a 0.149-mm nylon sieve for the determination of their soil chemical proper-
ties (i.e., SOC, pH and SSC). Additionally, in each profile, a single 4.8-cm diameter soil core was collected from 
each depth interval. The soil core was oven dried at 105 °C for 24 h and weighed for the determination of its bulk 
density (BD) and soil water content (SWC).

A Hach pH meter (Hach Company, Loveland, CO, USA) was used to measure the soil pH (soil:water =  1:5). 
SSC was determined in the supernatant of 1:5 soil-water mixtures using a salinity meter (VWR Scientific, West 
Chester, PA, USA). The SOC mass concentration (g/kg) was measured using the bichromate oxidation method42. 
Soil particle size analysis was conducted on a laser particle size analyzer (Microtrac S3500, America). All samples 
were analysed in triplicate.

Data processing. The SOC data were divided into calibration and validation data sets. In the PSM, there 
were 36 calibration data points and 24 validation data points. Similarly, there were 30 calibration data points 
and 18 validation data points for the SSM, 36 calibration data points and 24 validation data points for the TSSM, 
respectively. We applied allometric, exponential and logistic functions to model the depth distribution of the 
SOCv and SOCc for each salt marsh. The formulas of the three functions are shown as follows:

= •y a x (1)b

= + • −y y A e (2)
x t

0
( / )

Figure 6. Relationships between the cumulative SOC stocks (SOCv) at different intervals (i.e., 0–20 cm, 
0–40 cm and 0–100 cm) and soil properties. The green shaded areas show the mean 95% confidence intervals.
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= − + +y A A x x A( 1 2)/[1 ( / ) ] 2 (3)p
0

where eq. (1) is the allometric function, eq. (2) is the exponential function, and eq. (3) is the logistic function. The 
volumetric SOC (SOCv, kg/m3) can be obtained by multiplying the SOC mass concentration (g/kg) by the soil 
BD (kg/m3) (Eq. (4)):

= •SOC BD SOC( /1000) (4)v m

where SOCv is the volumetric SOC (kg/m3), BD is the bulk density (kg/m3) of the soil sample, and SOCm is the 
SOC mass concentration (g/kg) of the sample.

For a given profile, we assumed that the SOC is distributed uniformly in a given depth interval. Therefore, the 
SOC stock (kg/m2) in this interval is the product of the volumetric SOC and interval depth (m) (Equation (5)).  
We define the numbers 1, 2, 3, 4, 5, and 6 as denoting the depths of 0–10, 10–20, 20–40, 40–60, 60–80, and 
80–100 cm, respectively. Thus, the SOCc from the surface (0 cm) to a givendepth is the sum of SOC stock in soil 
layers, which is calculated by eq. (6). Thus, for a profile, the SOCc at the depth of 0 to 60 cm is calculated by the 
sum of the SOC stocks in the 0–10, 10–20, 20–40, and 40–60 cm layers.

= •SOC SOC H (5)s v

∑=
=

SOC SOC i
(6)c

i

n

s
1

=SOC SOCi (7)s s

where SOCs is the SOC stock of a given depth interval, H is the interval depth, and SOCc is the cumulative SOC 
stock in a desired depth. In our study, n is from 1 to 6, SOCsi is the SOC stock for the ith layer, and SOCsi is equal 
to SOCs (Eq. (7)) when eq. (5) is used to calculate the SOC stock in the ith layer.

Three different functions were used to model the depth distribution of the volumetric SOC (SOCv) and the 
cumulative SOC stock (SOCc). In the process of modelling the depth distribution of SOCv, the allometric, expo-
nential and logistic functions were fitted to describe the depth distribution of SOCv for each profile using a non-
linear least squares procedure in the calibration data sets. The fitting depth was from the surface (0 cm) to 100 cm. 
In contrast, when modelling the depth distribution of SOCc, three functions were fitted to describe the depth 
distribution of SOCc in the individual soil profiles.

Validation of predicted cumulative SOC stocks. In this study, we used the SOCc of four intervals of the 
layers (0–10, 0–20, 0–40, and 0–60 cm) in validation data sets to predict the SOCc values of the other two intervals 
(0–80 and 0–100 cm). Three equations were all applied for this prediction. By calculating different validation indi-
ces, such as, the mean predictive error (MPE) and root mean square error (RMSE), we can compare the predictive 
veracity among the three equations. The formulas of MPE and RMSE are shown below.

Source(0–20 cm) df Parameters SE MS SS(%) Source(20–100 cm) df Parameters SE MS SS(%)

SWC 1 − 328.5** 90.99 0.47625*** 41.64 SWC 1 − 182.8 117.1 0.046087* 9.42

pH 1 − 8.834** 2.474 0.12924** 11.30 pH 1 − 4.935 3.115 0.159209*** 32.54

SSC 1 − 25.00* 11.31 0.0016 0.14 SSC 1 7.733 3.686 0.008865 1.81

Silt.Clay 1 0.1909* 0.06963 0.02865 2.51 Silt.Clay 1 − 0.6013 0.6509 0.014703 3.00

SWC ×  pH 1 40.97** 11.15 0.01207 1.06 SWC ×  pH 1 22.61 14.13 0.016776 3.43

SWC× SSC 1 121.7* 50.34 0.01856 1.62 SWC ×  SSC 1 − 9.083 4.870 0.004218 0.86

pH ×  SSC 1 3.119* 1.418 0.06719* 5.87 pH ×  SSC 1 − 0.6463 0.3724 0.07188** 14.69

pH ×  Silt.Clay 1 − 0.02329* 0.008423 0.09024* 7.89 SWC ×  Silt.Clay 1 3.149 2.903 0.018718 3.83

SSC ×  Silt.Clay 1 − 0.09336 0.04943 0.00004 0.00 pH ×  Silt.Clay 1 0.07363 0.07744 0.000104 0.02

SWC ×  pH ×  SSC 1 − 15.16* 6.332 0.05666 4.95 SSC ×  Silt.Clay 1 − 0.1844* 0.08258 0.010461 2.14

pH ×  SSC ×  Silt.Clay 1 0.01166 0.006138 0.04847 4.24 SWC ×  pH ×  Silt.Clay 1 − 0.3829 0.3466 0.000171 0.03

Residuals 16 0.01342 18.77 SWC ×  SSC ×  Silt.Clay 1 0.1721 0.1354 0.009405 1.92

pH ×  SSC ×  Silt.Clay 1 0.01688 0.008957 0.026051 5.32

Residuals 14 0.007332 20.98

Table 6. Summary of the results obtained from a general linear model (GLM), showing the integrative 
effects of the soil water content (SWC), pH, soil salinity content (SSC) and soil texture (silt + clay) on soil 
organic carbon (SOC) stocks in surface (0–20 cm) and deep (20–100 cm) layers. ***P <  0.001; **P <  0.01; 
*P <  0.05; P <  0.1. df, degree of freedom; SE, standard errors; MS, mean squares (F-test); SS, proportion of 
variances explained by the variable; Silt. Clay, silt+clay SOC density was log10-transformed before analysis. The 
parameters of the GLM model and their standard errors (SE) were also presented (t-test).
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where Cpi is the predicted value of the cumulative SOC stock, Cci is the calculated value of the cumulative SOC 
stock based on measured values, and m is the number of samples used to validate the model in each salt marsh. 
The MPE represents the bias of the prediction and the RMSE represents the average error of the prediction14. 
These values should approach zero for an optimal prediction. The performance of an extrapolated function was 
evaluated by the regression analysis of predicted and observed values through comparisons with a 1:1 relation-
ship16,43. Furthermore, the t-test was used to test the hypothesis that the slope of the regression line between the 
calculated and predicted SOC stocks (SOCc) equals 114,44.

Topsoil concentration factors (TCFs). In this study, TCFs were employed to evaluate the effects of dif-
ferent vegetation on the SOC in salt marshes. If the TCFs (0–10 cm/0–100 cm) were greater than 0.1, the SOC 
enrichment in the surface soil (0–10 cm) could be attributed to plant cycling.

= − −TCFs SOC SOC/ (10)c cm c cm(0 10 ) (0 100 )

where SOCc(0–10 cm) is the cumulative SOC stock in the surface soil (0–10 cm) and SOCc(0–100 cm) is the cumulative 
SOC stock in 0–100 cm soil.

Statistical analysis. The Origin 8.0 software package was used to model the depth distribution patterns of 
the SOCv and SOCc in the PSM, SSM and TSSM, respectively. One-way analysis of variance (ANOVA) was used to 
test the significant differences of topsoil concentration factors (TCFs) among the three salt marshes, Differences 
were considered to be significant if P <  0.05. A general linear model (GLM) was used to assess the integrative 
effects of the four individual soil properties (i.e.,pH, soil water content, soil salt content and silt +  clay content) on 
the SOC density (SOCv in this study)31 at 0–20 cm and 20–100 cm intervals. GLM analysis and one-way ANOVA 
were performed using the R (R version 3.2.4) for Windows software package.
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