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Low Complexity Compression and 
Speed Enhancement for Optical 
Scanning Holography
P. W. M. Tsang1, T.-C. Poon2,3, J.-P. Liu3, T. Kim4 & Y. S. Kim4

In this paper we report a low complexity compression method that is suitable for compact optical 
scanning holography (OSH) systems with different optical settings. Our proposed method can 
be divided into 2 major parts. First, an automatic decision maker is applied to select the rows of 
holographic pixels to be scanned. This process enhances the speed of acquiring a hologram, and 
also lowers the data rate. Second, each row of down-sampled pixels is converted into a one-bit 
representation with delta modulation (DM). Existing DM-based hologram compression techniques 
suffers from the disadvantage that a core parameter, commonly known as the step size, has to be 
determined in advance. However, the correct value of the step size for compressing each row of 
hologram is dependent on the dynamic range of the pixels, which could deviate significantly with 
the object scene, as well as OSH systems with different opical settings. We have overcome this 
problem by incorporating a dynamic step-size adjustment scheme. The proposed method is applied 
in the compression of holograms that are acquired with 2 different OSH systems, demonstrating 
a compression ratio of over two orders of magnitude, while preserving favorable fidelity on the 
reconstructed images.

Based on a single-pixel optical sensor and a sequential scanning process, optical scanning holography (OSH)1–3 
is capable of acquiring the complex hologram of a wide-view three-dimensional scene at video rate. From the 
hologram captured by OSH, the 3-D scene recorded by the hologram can be reconstructed numerically4,5, or 
displayed with spatial light modulator. Being different from other techniques in hologram acquisition (such as 
phase-shifting holography6–8), OSH does not require a digital camera to record the hologram. An object scene is 
scanned in a row-by-row manner, and a hologram pixel is recorded instantaneously at each scan point. An OSH 
system is intended to be compact, implemented with a simple integration of optical and electronic framework 
that generally involves only small amount of computing elements. The field of vision of OSH is governed by the 
coverage of the scanning area, and the acquisition rate determined by the speed of scanning. These imply that the 
hologram size, and hence the data rate and the time taken to capture a hologram, could be extensive. As such, 
compression and reducing the number of scan rows are often required to enable efficient transmission of the 
hologram pixels with a throughput that is compatible with practical constraint.

In the past, it has been demonstrated holographic data can be compressed through popular techniques such as 
JPEG2000 and JPEG9–11 and Vector Quantization (VQ)12–15. On the downside, these methods are computational 
intensive, and require capturing of the entire hologram prior to compression, hence unsuitable to be incorporated 
in a compact OSH system. In addition, compression based on VQ requires a codebook that is obtained through 
a time consuming training process, hence further increasing the complexity of the system. Alternatively, it is also 
possible to apply the principles of compressive sensing16 to acquire a sparse hologram through spiral scanning17. 
Although this could lead to certain degree of reduction in the hologram data, a time consuming iterative optimi-
zation process is required to recover the hologram. Straightforward approach based on down-sampling18, though 
simple, is only effective for compressing a hologram by 2 to 4 times. As the compression ratio increases, the deg-
radation to the hologram will become severe. A more promising method is to compress each scanned row of the 
OSH hologram with Delta Modulation (DM)19–21. The method is simple, but suffers the disadvantage of having to 

1Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong. 
2Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061 USA. 
3Department of Photonics, Feng Chia University, No. 100 Wenhwa Rd., Taichung 407, Taiwan. 4Department of 
Optical Engineering, Sejong University, 98 Kunja-dong, Kwangjin-gu, Seoul 143-747 South Korea. Correspondence 
and requests for materials should be addressed to P.W.M.T. (email: eewmtsan@cityu.edu.hk)

received: 20 July 2016

accepted: 14 September 2016

Published: 06 October 2016

OPEN

mailto:eewmtsan@cityu.edu.hk


www.nature.com/scientificreports/

2Scientific Reports | 6:34724 | DOI: 10.1038/srep34724

estimate a core parameter known as “step size” which is set to certain percentage (e.g., 10%) of the dynamic range 
of each scanned row of pixels. However, the dynamic range of the hologram pixels is dependent on the object 
scene, as well as the optical settings (such as depth range of objects and power of the laser beam, etc.) of the OSH 
system. In refs 19–21, the step size is determined through trial and error from a set of hologram samples, hence 
restricting the compression algorithm to a specific OSH system with fixed optical setup. However even if a step 
size can be estimated through this learning process, it may not be applicable to compressing the entire hologram 
as each row of the hologram can be very different from the others. Grossly speaking, this technique is not suitable 
for capturing hologram of arbitrary object scene without prior calibration of the OSH system.

In this paper, we propose a method to overcome the above problems. In the following sections, we shall outline 
the OSH system and present our proposed method.

Optical Scanning Holography
For the sake of completion, a brief outline on the OSH system is presented in this section. Further details on the 
technology and its recent development can be found in refs 1–3. We refer to Fig. 1 on a typical OSH system that 
is used to capture the hologram of a 3-D object with an intensity distribution given by Io (x, y; z). In the illustrated 
setup, we have assumed the object is transparent so that the transmitted light is collected by a lens to reach pho-
todetector PD1. If the object is diffusely reflecting, its back-scattered light will then be captured instead. On the 
right hand side of the figure, we also include the functional block of our proposed method. Suppose the scene 
is comprising of a 3-D object having an intensity distribution represented by Io (x, y; z). The object is uniformly 
scanned by a time-dependent Fresnel zone plate (TD-FZP) beam in a row by row manner with a X-Y scanner. The 
TD-FZP beam is a combination of 2 optical beams that are generated from a common laser source of frequency 
ω0. The 2 beams are upshifted by frequencies Ω, and Ω +​ Δ​Ω with the acousto-optic modulators AOM1 and 
AOM2, respectively, and collimated by collimators BE1 and BE2. The beam emerges from BE2 is a plane wave at 
frequency ω0 +​ Ω +​ Δ​Ω, while the beam exiting from BE1 is cast on lens L1 to produce a spherical wave at ω0 +​ Ω. 
The TD-FZP, which oscillates at the beat frequency Δ​Ω, is formed by combining the plane wave and the spherical 
wave with beamsplitter BS2 so as to project onto the 3-D object through the X-Y scanner. Lens L2 collects the 
optical signal scattered by the object and focuses the energy onto photodetector PD1 to form an electrical infor-
mation signal at the heterodyne frequency Δ​Ω. Photodetector PD2 gives a heterodyne frequency as a reference 
signal. Both of the outputs from the photodetectors are delivered to the lock-in amplifier to give the in-phase and 
the quadrature (Q)-phase outputs, resulting in a cosine hologram Hcos (x, y) and a sine hologram Hsin (x, y) that 
together form a complex digital hologram H(x, y) given by

= + .H x y H x y jH x y( , ) ( , ) ( , ) (1)cos sin

In a typical OSH system, the scanning is conducted through mechanical-driven scanning mirrors. As such the 
scanning speed is lengthy, and the data rate is high for scanning a wide view scene. Moreover, different OSH sys-
tems can have different optical settings (such as power of laser and depth range of object scene) that could affect 
the dynamic range of the hologram, and hence the compression process that follows. In the following section, we 
shall address these problems with our proposed compression method.

Figure 1.  Typical OSH system for acquiring the hologram of an object. 
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Proposed Compression Method
Scanning and compression of hologram rows.  Referring to Fig. 1, which shows the classical OSH sys-
tem and the inclusion of the functional block of our proposed method. An overview framework of our proposed 
compression method is shown in Fig. 2(a). Briefly, we have employed the concept of adaptive optical scanning 
holography (AOSH)22, whereby a decision maker is employed to select the next hologram row to be scanned, 
based on the difference between the current and the previous scanned rows as shown in Fig. 2(b). In the course 
of scanning of each selected row of the hologram, each scanned pixel is compressed with delta modulation, and 
the parameters required for the decision maker and the step-size for compressing of the next scanned row are 
determined in an autonomous manner. Being different from the classical OSH system which requires scanning 
of every rows of the hologram, fewer number of rows are being scanned with our proposed method, hence saving 
the time taken to acquire a hologram.

We denote each row of the scanned hologram pixels by H(x, s(τ)), where 0 ≤​ τ <​ M is the index of the scanned 
row of hologram pixels, and M is the total number of rows that will be scanned, and is an unknown quantity to 
start with. The vertical position of the τth scanned row is denoted by s(τ). The horizontal and vertical extents of the 
hologram and the object scene are assumed to be identical, and given by X and Y, respectively.

Details of our proposed method are described as follows. The first row H(x, 0) and the second row H(x, 1) of 
hologram pixels are always scanned (i.e., s(0) =​ 0 and s(1) =​ 1). For the first row (i.e., τ =​ 0), the step-sizes Δcos (τ) 
and Δsin (τ), which are required to compress the cosine and sine holograms with delta modulation, respectively, 
are both set to an arbitrary value of 0.1 V, where V is the maximum signal amplitude that can be reached in the 
system. In the scanning of the each row, there are 2 steps for each scanned pixel to determine the parameters for 
the decision maker and the DM compression process. After a row of hologram pixels have been scanned and 
compressed, a 3th step is conducted to deduce the position and step-size of the next scan row. For simplicity of 
description, we shall only present the process of compressing the cosine hologram, with the understanding that 
the same will be performed for the sine hologram. The process is shown in Fig. 3. We shall now describe the 3 
steps in detail.

Step 1: This step is comprised of 2 operations. First, the maximum and minimum values, i.e., ucos (τ) and lcos (τ), 
respectively, of the pixels in the cosine hologram is updated for each newly scanned pixel as

Figure 2.  (a) Framework of our proposed compression method, (b) Example showing predicting the next scan 
row from the current and previous scanned row by the Decision maker.
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Figure 3.  Compression and processing of a row of scanned pixels. 

Figure 4.  An example showing the updating of the maximum and minimum pixel values in a row of 
hologram pixels. 

Figure 5.  (a) Cosine hologram of “A”, (b) Sine hologram of “A”, (c) Cosine hologram of “B”, (d) Sine hologram of “B”.
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τ τ τ τ= >u H x s H x s u( ) ( , ( )) if ( , ( )) ( ), (2)cos cos cos cos

τ τ τ τ= < .l H x s H x s l( ) ( , ( )) if ( , ( )) ( ) (3)cos cos cos cos

Initially, ucos (τ) and lcos (τ) are set to V and −V, respectively for x <​ 0, and the updating of the maximum and 
minimum values is conducted from the first (x =​ 0) to the last (x =​ X −​ 1) scanned pixel. An example of updating 
ucos (τ) and lcos (τ) for the first six pixels of the τth row is shown in Fig. 4, assuming that V =​ 1.

Next, the difference between current and previous scanned rows is updated as

τ τ
τ τ
τ τ

= − +
− −
+ −

E x s E x s H x s H x s
H x s H x s

( , ( )) ( 1, ( )) [ ( , ( )) ( , ( 1))]
[ ( , ( )) ( , ( 1)) ]

,
(4)

2

2 2

where E(x, s(τ)) =​ 0 for x <​ 0. Note that in Eq. 4, a small memory buffer is required to store a line of the previous 
scanned row of pixels. In addition, the denominator of the right-hand-side normalized the difference of each pair 
of pixels to the range [0, 1].

Step 2: One out of every 2 scanned pixel in the cosine holograms is compressed into a 1-bit representation with 
delta modulation, resulting in a binary sequences Bcos (x, s(τ)) as given by the following recursive equation:

τ τ τ=





− ≤
∼

−
≤ <

B x s H x s H x s
otherwise

( , ( )) 1 (2 , ( )) (2( 1), ( ))
1

,
(5)x Xcos 0 /2

cos cos

τ τ τ τ∼
− =

∼
− + ∆ × −H x s H x s B x swhere (2( 1), ( )) (2( 2), ( )) ( ) [ 1, ( )], (6)cos cos cos cos

and τ∼
− =H s( 2, ( )) 0cos . It can be inferred that with Eq. 6 that τ∼H x s(2 , ( ))cos  is in fact de-compression of the 

hologram pixels from the compressed binary sequence Bcos (x, s(τ)), and only even pixels are included. As such, 
the number of samples in τ∼H x s( , ( ))cos  and Bcos (x, s(τ)) is only half of that of Hcos (x, s(τ)), equivalent to 
down-sampling the hologram by 2 times horizontally. An example showing the compression of the six pixels in 
Fig. 4 is shown in Table 1. Note that only the even pixels at x =​ 0, 2, 4 are compressed while the odd samples are 
discarded. From Table 1, we can see that only 3 out of the original 6 pixels (the pixel at x =​ −​2 is a virtual pixel that 
is only used in the compression process, but does not exist in the input signal or the compressed data) are being 
included and compressed due to the down-sampling mechanism. The step-size is assumed to be 0.25.
Step 3: Determine position and the step-size for the next scan row.

Upon scanning and compressing the current row of pixels, the root-mean-square (RMS) value of the mean 
difference between the current and the previous scanned rows is computed as

τ τ= − .D E X s X( ) ( 1, ( ))/ (7)

x Hcos (2x, s(τ)) ∼ τH x s2( , ( ))cos Bcos (x, s(τ))

−​2 — 0 —

0 0.6 0.25 1

1 0.52 0.50 1

2 −​0.35 0.25 −​1

Table 1.   Example of compressing the six hologram pixels in Fig. 4 with delta modulation.

Object Depth Hologram size Pixel size Bits per pixel (Q)

A 0.20 m 500 ×​ 500 10.583 um ×​ 10.583 um 16

B 0.022 m 512 ×​ 512 5 um ×​ 5 um 16

Table 2.   Optical setups in the pair of OSH systems.

Object
Percentage of row scanned, as 

compared with the original hologram Compression ratio Correlation score/PSNR (dB)

A 27.80% 115 0.974/33.46 dB

B 27.54% 116 0.921/29.02 dB

Table 3.   Scanning and compressing test objects “A” and “B” with our proposed method.
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The RMS value D(τ) reflects the smoothness between a pair of hologram rows. A small value of D(τ) implies 
generally smooth variation of the hologram along the vertical direction, so the interval between the current and 
the next scan rows can be increased, and vice versa. The position of the next scan row is now determined adap-
tively by the decision maker as

τ τ τ+ = + − × + .s s D N( 1) ( ) (1 ( )) 1 (8)1

The separation between the current and the next scan row will be within the range from [1, (N1 +​ 1)]. The 
larger the values of N1, the fewer will be the number of scan rows, but more degradation will be imposed on the 
hologram. Next, the step size for compressing the next row of the cosine hologram is determines as

∆ τ δ τ τ+ = × −u l( 1) [ ( ) ( )], (9)cos cos cos

where δ <​ 1. Eq. 9 adjusts the step-size to a fraction δ of the dynamic range of the current scan row. The compressed 
data for each scanned row is comprising of its position s(τ), the compressed sequences Bcos [x, s(τ)] and Bsin [x, s(τ)], 
and the step-size values Δ​cos (τ) and Δ​sin (τ). Disregarding the inclusion of Δ​cos (τ), Δ​sin (τ), and s(τ) that are negli-
gible in data-size as compared with that of the compressed bit-stream, the compression ratio is given by

= × ×CR Y Q M2 / , (10)

where Y and Q are the total number of rows, and the number of bits representing each pixel in the original holo-
gram, respectively. M is the number of rows that are actually scanned with our proposed method. The factor ‘2’ on 
the right-hand-side of Eq. 10 is resulted from the compression of only one out of 2 scanned pixels.

Recovering hologram from compressed data.  The de-compression process is conducted in 2 stages. 
First, the hologram pixels in each scanned row are recovered with Eq. 6, resulting in a row of hologram pixels 

τ∼H x s(2 , ( ))cos . The missing odd pixels are interpolated from a pair of adjacent even pixels as

τ τ τ∼
+ = .

∼
+
∼

+ .
≤ <

⌊ ⌋H x s H x s H x s(2 1, ( )) 0 5 (2 , ( )) (2( 1), ( )) (11)x Xcos 0 /2 cos cos

Next, the area in between consecutive scan rows are filled up with bi-linear interpolation as

Figure 6.  (a,b) Reconstructed image of original holograms of “A” and “B”, (c,d) Reconstructed image of 
compressed holograms of “A” and “B”.
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τ τ∼
=
∼

− +
∼

τ τ− < <
H x p bH x s aH x s( , ) ( , ( 1)) ( , ( )), (12)s p scos ( 1) ( ) cos cos

where a =​ [p −​ s(τ −​ 1)]/[s(τ) −​ s(τ −​ 1)] and b =​ (1 −​ a).

Experimental Results
Our proposed method is evaluated with the hologram of 2 objects “A” ( a dice) and “B” (2 Chinese characters) that 
are captured with 2 different OSH systems. The cosine and sine holograms of the objects, acquired with the OSH 
system based on the optical settings shown in Table 2, are shown in Fig. 5(a–d). The numerical reconstructed 
images of the 2 holograms at the focused plane are shown in 6(a,b). Next, we applied our proposed method to 
capture and compress the holograms of the 2 objects with N1 =​ 10 and δ =​ 0.1. The numerical reconstructed 
images of the de-compressed holograms are derived and shown in Fig. 6(c,d). The number of scanned rows, the 
compression ratios, and the fidelity of the reconstructed images as compared with the original ones shown in 
Fig. 6(a,b) are listed in Table 3. We have observed that the number of scanned rows have been reduced by about 
3.6 times for both objects, resulting in a speed up of the hologram acquisition time by similar factor. For both 
cases, compression ratio of over 100 times are attained. Apart from slight blurriness, the reconstructed images 
of the compressed holograms are similar to those of the original holograms, and a high correlation score and 
peak-signal-to-noise (PSNR) of over 0.92 and 29 dB, respectively, are noted.

Conclusion
In this paper, we have presented a method for increasing the speed of hologram acquisition in an optical scanning 
holography system, as well as compressing the holographic data. Our proposed method has 4 major advantages. 
First, the time taken to scan a hologram is reduced by over 3.5 times. Second, a compression ratio of over 2 orders 
of magnitude is acheved. Third, our proposed method can be applied to different OSH systems without prior 
knowledge on their optical settings, rendering the proposed technique being robust. Fourth, the quality of the 
reconstructed images of the compressed holograms are favorable, exhibiting a high correlation score of over 0.92 
as compared with the ones obtained from the original holograms.
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