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Spatiotopic updating facilitates 
perception immediately after 
saccades
Jasper H. Fabius1,*, Alessio Fracasso1,2,3,* & Stefan Van der Stigchel1

As the neural representation of visual information is initially coded in retinotopic coordinates, 
eye movements (saccades) pose a major problem for visual stability. If no visual information were 
maintained across saccades, retinotopic representations would have to be rebuilt after each saccade. It 
is currently strongly debated what kind of information (if any at all) is accumulated across saccades, and 
when this information becomes available after a saccade. Here, we use a motion illusion to examine the 
accumulation of visual information across saccades. In this illusion, an annulus with a random texture 
slowly rotates, and is then replaced with a second texture (motion transient). With increasing rotation 
durations, observers consistently perceive the transient as large rotational jumps in the direction 
opposite to rotation direction (backward jumps). We first show that accumulated motion information 
is updated spatiotopically across saccades. Then, we show that this accumulated information is readily 
available after a saccade, immediately biasing postsaccadic perception. The current findings suggest 
that presaccadic information is used to facilitate postsaccadic perception and are in support of a forward 
model of transsaccadic perception, aiming at anticipating the consequences of eye movements and 
operating within the narrow perisaccadic time window.

When inspecting the world, visual information travels from the retina to the visual cortex in a retinotopic ref-
erence frame. Yet, the eyes are continuously moving, creating large shifts in retinal images and thereby posing 
a serious problem for visual stability. Are perceptual representations updated across saccades, in a spatiotopic 
reference frame, or do they start anew upon each fixation? This question has gained increasing interest since the 
presentation of neurophysiological evidence of perisaccadic shifts of receptive fields, suggesting that information 
is exchanged between neurons around the time of saccades1–3.

As illustrated by the phenomenon of change blindness, not the entire visual scene is updated across saccades4. 
It has been argued that only the behaviourally relevant features at saccade endpoint are updated spatiotopically5,6. 
This presaccadic acquisition of visual features at the saccade target can then be used to predict the perceptual 
consequences of the eye movement at the fovea7–9, compatible with forward models where sensory processing is 
influenced by the predicted consequences of upcoming, self-generated movements10–12. Recently, several behav-
ioural studies have indeed provided evidence for spatiotopic updating of feature information such as orientation, 
colour, shape and motion13–18.

However, others studies did not find transfer of visual features from a retinotopic into a spatiotopic representation19–22,  
prompting the hypothesis that not feature information, but only spatial information can be updated spatiotopi-
cally using ‘attentional pointers’23. This hypothesis has primarily been investigated using cueing effects, showing 
that a cue presented before a saccade is effective soon after a saccade in spatiotopic coordinates24–26. Whether this 
also holds for trans-saccadic integration remains unknown, as there are currently no studies addressing the time 
course of spatiotopic updating of perceptual representations after a saccade.

Here, we address the issue of spatiotopic visual stability by taking advantage of a recently described motion 
illusion – High Phi27 – to measure the rapid induction of a motion percept. Using this illusion, the current exper-
iments address whether and when presaccadic visual features influences postsaccadic perception. In the High 
Phi illusion, an annulus with a random texture (inducer) rotates slowly clockwise or counter-clockwise, and is 
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then replaced with several different textures (transient). With increasing inducer durations, participants report 
the transient more and more as large rotational jumps in the direction opposite to inducer direction (backward 
jumps). Importantly, the successive different textures, that trigger the illusory jump, are presented transiently, 
allowing for direct manipulation of perception onset. By manipulating the reference frame of the inducer with 
respect to the transient we were able to compare the benefit of spatiotopic representations on the speed of building 
a perceptual representation after a saccade. The data of two experiments are compellingly in favour of rapid spati-
otopic interpretations of visual information after eye movement offset. This supports the hypothesis of a percep-
tual system where object representations can be updated spatiotopically across saccades, taking into account both 
object features and position. Thereby, this system enables fast spatiotopic interpretations of visual information 
immediately after saccade offset.

Results
Reference frame of the High Phi illusion (Experiment 1). The fast temporal characteristics of the 
High Phi illusion make it an ideal tool to investigate the rapid building of a perceptual representation. However, 
when investigating transsaccadic perception, this is only useful when the accumulated motion information can 
be updated spatiotopically. Previous investigations into spatiotopic accumulation of motion information have 
yielded mixed results with some studies showing spatiotopic13,16 and others showing strictly retinotopic rep-
resentations of motion19,22. Moreover, some of the spatiotopic effects have been accounted for by more general 
decision biases, irrespective of either the spatiotopic or retinotopic location of the stimulus21. Therefore, we exam-
ined the reference frame in which the High Phi illusion can be induced in Experiment 1. We adapted the illusion 
into a transsaccadic paradigm with four different trial types (Fig. 1). In our display, subjects were always presented 
with two annuli with different textures, thus enabling manipulation of the reference frame in which the inducer 
and the transient were presented.

In 12 naïve human subjects we tested the effects of an inducer on perceived jump direction when the inducer 
and the transient were (A) fully, (B) only spatiotopically, (C) only retinotopically or (D) not matched (we refer to 
the latter type as Long Range trials). Beside this spatial manipulation, we also varied the inducer duration in order 
to investigate the temporal development of the illusion.

In Full Match and Long Range trials (Fig. 1A,D), subjects remained fixation, enabling full control over the 
duration of the inducer which was set to either 0, 33.3 or 1066.7 ms (presented at a 60 Hz refresh rate). We were 
primarily interested in the 33.3 or 1066.7 ms conditions, but included the 0 to keep the number of trials in fixation 
and saccade blocks balanced (see Methods: Data preprocessing). In Spatiotopic and Retinotopic trials (Fig. 1B,C), 

Figure 1. Trial sequences in Experiment 1. The small eye and red dotted line depict gaze position. White 
arrows on the annuli depict rotations of that particular annulus. All trials started with a period of fixation with 
two static annuli on screen. (A,D) In the fixation trials (Full Match and Long Range) the static annuli were 
followed by a rotation of one the two annuli (Inducer, 33.3 or 1066.7 ms). The annulus around fixation rotated in 
case of the Full Match trials, or in the periphery, in case of the Long Range trials, and was then succeeded by the 
presentation of series of 4 different textures (Transient). (B) In the Spatiotopic trials, the peripheral ring started 
rotating while the eyes remained fixated (Presaccadic inducer). Here, the position of the Presaccadic inducer 
was spatiotopically matched to the position of the Transient. After an auditory cue, a saccade was initiated to 
the peripheral, rotating annulus. After the saccade, the annulus rotated around fixation (Inducer), and was 
then replaced by the Transient. (C) In Retinotopic trials, the position of the Presaccadic inducer was initially 
around fixation, and therefore retinotopically matched to the position of the Transient. After an auditory cue, a 
saccade was executed and the Inducer was no longer retinotopically matched. Then, the Transient was presented 
centrally. In all trial types, the Transient would always be presented around the current fixation point. Subjects 
responded whether they perceived a clockwise or counter clockwise rotational jump, by pressing the right or the 
left arrow key on a standard keyboard. Note that the Inducer durations as described in this figure correspond to 
the inducer durations reported in Table 1 (Methods) and Fig. 2 that were analysed.
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inducers rotated both before and after subjects made a saccade. The duration of the postsaccadic inducer was of 
main interest to our analysis, as we wanted to investigate whether the presaccadic inducer affected the strength of 
the postsaccadic inducer. During the experiment, postsaccadic inducer duration was probed gaze-contingently 
with 16.7, 33.3 or 50.0 ms, randomly drawn from a uniform distribution. A posteriori, we determined the actual 
postsaccadic inducer duration with respect to saccade offset, as set by the native Eyelink saccade detection algo-
rithm. In all trial types, the transient was presented immediately after the inducer, and subjects reported whether 
they perceived a clockwise or counter clockwise jump. These responses were coded with respect to the preceding 
inducer rotation direction. Forward jumps were coded as 1, backward jumps as − 1. All trials that met our inclu-
sion criteria (see Methods: Data preprocessing) were analysed using a linear logit mixed effects model28,29. The 
reported coefficients are in logits and relative to the baseline level in the model, comprising the Full Match trials 
with 33.3 ms of inducer.

Baseline High Phi effect. In Full Match trials, subjects fixated a single fixation point, and the positions of the 
inducer and the transient were fully matched, i.e. both spatio- and retinotopically. Hence, this condition, was very 
similar to the original paradigm of Wexler and colleagues27, with the addition of a second static annulus in the 
periphery. As depicted by the dark blue bars in Fig. 2, subjects perceived more backward than forward jumps after 
an inducer as brief as 33.3 ms (β  =  − 0.44, z =  4.63, p <  0.001), and this bias grew even stronger after 1066.7 ms 
(β  =  − 1.95, z =  12.54, p <  0.001). Subjects tended to perceive the changing textures (transient) as backward jumps 
when it was preceded by an inducer of sufficient duration.

Retinotopic reference frame. As was to be expected from motion aftereffect studies19,22, there was a significant 
bias in perceived jump direction when the inducer was only retinotopically matched to the transient that was pre-
sented 33.3 ms after saccade offset (β  =  − 0.39, z =  2.35, p =  0.019, as compared to the Full Match 33.3 ms condi-
tion; Fig. 2, brown bars). However, this retinotopic effect wears off over time (post-hoc comparison between 33.3 
and 1066.7 ms in the Retinotopic trials; β  =  0.34, z =  2.16, p =  0.03), most likely because the inducer and the tran-
sient are no longer retinotopically matched after the saccade. Indeed, in a control experiment (see Supplementary 
Figure S1) we showed that the bias in the Retinotopic condition is as strong as in the Spatiotopic condition when 
the inducer motion is transferred along with the saccade (see Supplementary Figure S2).

Spatiotopic reference frame. Interestingly, beside a retinotopic effect, a spatiotopic effect was observed (Fig. 2, 
orange bars). Shortly after saccade offset, subjects reported more backward jumps than in the Full Match condi-
tion, i.e. when the postsaccadic inducer duration lasted only 33.3 ms (β  =  − 0.69, z =  4.76, p <  0.001). This bias, 

Figure 2. Perceived jump direction in Experiment 1 (error bars represent bootstrapped 95%-confidence 
intervals of the model estimates). Negative values represent backward jumps, positive values forward jumps 
(N =  12). In case of the Spatiotopic and Retinotopic trials, inducer duration refers to postsaccadic inducer 
duration (see Fig. 1 and Table 1). We observed a strong High Phi illusion with Full match trials (dark blue 
bar at 1066.7 ms of inducer duration). Moreover, the High Phi illusion could be stored retinotopically across 
saccades, similar to motion after effects (brown bar at 33.3 ms of inducer duration). The retinotopic effect faded 
out at 1066.7 ms of inducer duration, because after saccade execution the Inducer was no longer retinotopically 
matched with the Transient (see Fig. 1 for description of the trial sequence). Interestingly, the accumulated 
motion information can also be updated spatiotopically (orange bar at 33.3 ms of inducer duration). The 
spatiotopic effect was larger than what was observed in Full match trials (dark blue bar at 33.3 ms of inducer 
duration) and could not be explained as a long range or decisional bias, since the effect was larger than in the 
Long Range condition (light blue bar at 33.3 ms of inducer duration).
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like the Full Match condition grew stronger over time (post hoc comparison between 33.3 and 1066.7 ms in the 
Spatiotopic trials; β  =  1.24, z =  5.25, p <  0.001), but the difference between a short and long inducer was not as 
large as in the Full Match trials (β  =  0.71, z =  2.51, p =  0.012). In other words, even though the inducer rotated 
for 933.3 ms (on average) in the periphery before saccade onset, in Spatiotopic trials the average perceived jump 
direction after 33.3 ms was not as consistently backward as in the Full Match after 1066.7 ms.

Long range induction of High Phi. To control for potential long range effects in the High Phi illusion, or a deci-
sional bias of a peripheral inducer on the perceived jump direction of a centrally presented transient, we exam-
ined the effect of a peripheral inducer per se, that is, without a saccade towards it. In the Long Range condition 
after 33.3 ms, a bias for backward jumps was observed, not significantly different from the bias observed after 
33.3 ms of inducer in the Full Match condition (β  =  0.10, z =  0.901, p =  0.368; Fig. 2, light blue bars). In contrast 
to the Full Match condition, this bias did not change with longer inducer duration (post hoc comparison between 
33.3 and 1066.7 ms in the Long Range trials; β  =  − 0.18, z =  1.68, p =  0.096). We re-ran the mixed effects model 
with the Spatiotopic trials as a reference level to test whether the observed long range effect is statistically different 
from the observed Spatiotopic effect after 33.3 ms of inducer. This model confirms that the long range effect after 
33.3 ms is smaller than in the Spatiotopic condition after 33.3 ms (post-hoc β  =  0.79, z =  5.45, p <  0.001). The 
absence of a strong long range effect is indicative for a spatially selective effect of the inducer on the perceived 
jump direction. The transient and the inducer have to be matched in at least a retinotopic or – and critically – a 
spatiotopic reference frame in order to effectively induce perceived backward jumps. Together, the results from 
the Long Range and Spatiotopic condition suggest that a peripherally presented inducer can effectively induce the 
High Phi illusion but only when the inducer becomes spatially aligned with the transient.

Time course of spatiotopic facilitation (Experiment 2). In Experiment 1, we showed that the High Phi 
illusion can be stored retinotopically across saccades, similar to motion after effects. In addition, the accumulated 
motion information can also be updated spatiotopically. The spatiotopic effect is present shortly after saccade 
offset. In Experiment 2, we addressed whether this observed spatiotopic effect is related to a faster development of 
the illusion, with respect to the Full Match trials (i.e. an increased effect of inducer duration in Spatiotopic trials) 
or to a general tendency to observe the transient as backward jumps immediately from the beginning of fixation 
(i.e. a change in offset in Spatiotopic trials).

The spatiotopic effect in Experiment 1 seemed to be different from a long range or decisional bias, since the 
observed spatiotopic effect was larger than the long range effect. However, in the Spatiotopic condition, after sac-
cade offset, the postsaccadic inducer and the transient position were fully matched, whereas in the Long Range 
condition the inducer and the transient were never matched. Hence, we tested the long range effect more con-
servatively in Experiment 2 (see Methods, Saccade Mimic trials), to further control for a long range explanation 
of the spatiotopic effect21.

12 different naïve subjects were tested on four different trial types (Fig. 3), with a higher temporal resolu-
tion with respect to inducer duration. Similar to Experiment 1, there were Full Match and Spatiotopic trials 
(Fig. 3A,B). Inducer duration was set to 16.7, 33.3 or 50 ms (presented at a 60 Hz refresh rate). In Full Match trials, 
the inducer could also rotate for 800 ms, in order to obtain a measure of the potency of the High Phi illusion at 
its strongest. In addition to the Full Match and Spatiotopic trials, we included Saccade Cost trials to investigate 
the potential cost of a saccade preceding the transient on the proportion of reported backward jumps (Fig. 3C). 
In these trials, subjects fixated within a static annulus, and made a saccade towards the peripheral annulus, that 
had also remained static. The inducer started rotating only after the saccade had ended. Hence, the retinal input 
was essentially similar to the Full Match trials, with the exception that a saccade was made before inducer pres-
entation. The fourth trial type, Saccade Mimic controlled conservatively for long range effects (Fig. 3D). In these 
trials, a peripheral inducer rotated for 700 ms (± 150, uniformly distributed), resembling the peripheral inducer 
duration in Spatiotopic trials, followed by an additional 200 ms (± 100, uniformly distributed), approximately 
simulating the saccadic latency and saccadic duration in Spatiotopic trials. Then, the peripheral inducer stopped 
rotating and the central inducer rotated for 16.7, 33.3 or 50 ms, followed by the transient. As in Experiment 1, we 
analysed the perceived jump direction as a function of trial type and inducer duration with a linear logit mixed 
effects model.

Temporal development of High Phi (after saccades). The baseline for the development of the High Phi illusion is 
the effect of 16.7 ms of inducer in the Full Match condition. The rapid induction of the illusion is illustrated by the 
observed slope in the Full Match condition, along inducer duration (β  =  − 0.65, z =  11.18, p <  0.001; Fig. 4, light 
blue line). However, in the same condition, 16.7 ms of inducer was not sufficient to induce a bias for backward 
jumps (β  =  0.02, z =  0.15, p =  0.882). After 800 ms of inducer in the Full Match condition, the average response 
was − 0.89 (± 0.03 s.e.m.) very similar to what was observed in Experiment 1 after 1066.7 of inducer in the Full 
Match condition (− 0.83 ±  0.04 s.e.m.). After a saccade this initial bias was similarly absent (difference between 
Full Match and Saccade Cost at 16.7 ms of inducer: β  =  0.02, z =  0.15, p =  0.878; Fig. 4 yellow line). However, the 
illusion developed more slowly over time (effect of inducer duration in Saccade Cost, as compared to the effect 
of inducer duration in Full Match trials: β  =  0.27, z =  3.01, p =  0.003), though significantly (post-hoc β  =  − 0.27, 
z =  3.01, p =  0.003).

Note that both in the Full Match trials (Exp. 1 and Exp. 2) as well as in the Saccade Cost trials, the direc-
tion of the perceived jumps is slightly different from the results obtained by Wexler and colleagues (2013). With 
short inducer durations (16.7 or 33.3 ms) their subjects reported primarily forward jumps, whereas here subjects 
already had a slight bias to report backward jumps when a transient followed a short inducer. A potential expla-
nation for this difference might be found in the duration of the transient (Wexler, personal communication). In 
their study, the transient comprised a single change in texture, here, four different textures were used. We used 
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more textures because the perceived jump tends to increase with more different textures27. However, the transient 
duration might have also affected the direction of the perceived jump. Yet, given the internal consistency and 
replication of the High Phi effect in the current study (see Control Analyses and Fig. 5b), we believe the results of 
the Full Match condition can serve as a valid baseline for the Spatiotopic condition.

Temporal development after a saccade with spatiotopic preview. In contrast to the Saccade Cost condition, when 
a presaccadic Spatiotopic preview of the inducer was provided, the illusion was induced more strongly than in 
the Full Match condition (Fig. 4, orange line), even when the transient was presented after only 16.7 ms of the 
post-saccadic inducer (β  =  − 1.33, z =  10.78, p <  0.001). The development of the illusion (slope) was not signif-
icantly different in the Spatiotopic condition, with respect to the slope in the Full Match condition (interaction 
β  =  0.14, z =  1.24, p =  0.215).

Long range induction of High Phi. The Saccade Mimic condition was included to provide the most conservative 
control for the observed spatiotopic effect. In this condition a peripheral inducer rotated for at least 550 ms, and 
was then succeeded by a central inducer of 16.7, 33.3 or 50 ms. In these trials, there was a larger bias than in the 
Full Match condition after 16.7 ms inducer (β  =  − 0.37, z =  3.74, p <  0.001; Fig. 4 dark blue line), but the slope was 
similar to the slope in the Full Match trials (β  =  0.10, z =  1.17, p =  0.242). We re-ran the model with the Saccade 
Mimic trials as a reference level to further investigate the long range effects. First, this shows that the initial bias 
is not only stronger than in the Full Match trials, but is actually also statistically different from zero after even 
16.7 ms of central inducer (post-hoc β  =  − 0.35, z =  2.79, p =  0.005). Second, crucially, the initial bias observed 
after 16.7 ms of inducer in the Saccade Mimic condition was smaller than in the Spatiotopic condition (post-hoc 
β  =  0.96, z =  7.74, p <  0.001).

Control analyses. Decision bias induced by familiarity with the illusion. Beside the aforementioned long 
range effects, we warranted some additional caution in interpreting the Spatiotopic effect. We suspected that, 
given the strength of the visual illusion, subjects might have hypothesized that long inducers were always followed 
by backward jumps. If this were true and subjects were able to identify the inducer direction in the Spatiotopic 
conditions, they might have based their response on that hypothesis. To control for this effect, we ran another lin-
ear mixed effects model (for each experiment separately), where we added a random slope of Trial number within 
each subject. Trial number corresponded to the actual trial number that was used in the experiment. With like-
lihood ratio tests, we compared these new models to the original models, where Trial number was not included. 
Neither in Experiment 1, nor in Experiment 2 did Trial number increase the fit of the models (Exp. 1 χ 2(2) =  4.03,  
p =  0.133; Exp. 2 χ 2(2) =  4.73, p =  0.094). Therefore, we conclude that the observed Spatiotopic effect is not likely 
to be attributable to decision biases related to familiarity with the High Phi illusion.

Figure 3. Trial sequences in Experiment 2. The small eye and red dotted line depict gaze position. White 
arrows on the annuli depict rotations of that particular annulus. Like in Experiment 1, all trials started with 
a period of fixation with two static annuli on screen. (A) In Full Match trials, subjects remained at fixation 
with the static annuli for as long as the presaccadic inducer time in Spatiotopic and Saccade Cost trials. After 
this period of fixation, the Inducer rotated for 16.7, 33.3 or 50.0 ms. In addition, in Full Match trials, the 
inducer could also rotate for 800 ms. Then, the Transient was presented. (B) Spatiotopic trials were similar to 
the Spatiotopic trials in Experiment 1. (C) In Saccade Cost trials subjects remained fixation and the annuli 
remained static up until saccade offset. A saccade was executed after an auditory cue. Upon saccade landing, the 
annulus around fixation started rotating (Inducer), succeed by the Transient. (D) In Saccade Mimic trials, the 
retinal input of Spatiotopic trials was mimicked, without the execution of a saccade. The Presaccadic inducer 
phase consisted of a peripheral rotating annulus and a central static annulus. Then, the peripheral annulus 
stopped rotating and the central annulus rotated for 16.7, 33.3 or 50.0 ms. In all trial types, the Transient would 
always be presented around the current fixation point.
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Gaze position. In both experiments, subjects were required to make a saccade in two conditions, whereas in the 
other two conditions they could remain stable fixation over the entire course of the trial.

First, we analysed the average horizontal gaze positions during the transient across the different conditions. 
Overall, there was more variability in the conditions with saccades than in the conditions without (Fig. 5A, and 
see Supplementary Material). Next, we analysed the precision of fixation during transient presentation (variance 
in gaze coordinates during transient) and fixation error (between inducer presentation and transient presenta-
tion). When precision and error were included as random effects in our mixed effects models, inferences on the 
fixed effects did not change (see Supplementary Table S1). The variability in fixation precision and error does 
therefore not account for the observed differences in perceived jump direction across the different conditions.

Robustness of spatiotopic effect. Figure 5B shows the average perceived jump direction after 33.3 ms of inducer 
in Experiment 1 and Experiment 2. As can be clearly seen, the Spatiotopic benefit was present in both experi-
ments, even though two different samples of subjects were used. An additional linear mixed effects analysis with 
Experiment and Condition as fixed effects and Subject as a random effect was ran to test this. In both samples, 
there was a bias in the Full Match condition after 33.3 ms of inducer motion (β  =  − 0.45, z =  2.98, p =  0.003), and 
the bias was stronger in the Spatiotopic condition in both experiments, compared to the Full Match condition 
(β  =  − 0.69, z =  4.63, p <  0.001). The Spatiotopic was stronger in Experiment 2 than in Experiment 1 (β  =  − 0.64, 
z =  − 2.55, p =  0.011). However, the interaction between experimental condition (Spatiotopic and Full Match) 
and Experiment number was not significantly different (β  =  0.37, z =  1.81, p =  0.07). Together, these results show 

Figure 4. Perceived jump directions in Experiment 2. Positive values represent forward jumps, negative 
values backward jumps. Lines depict linear interpolation between the estimates of the linear logit mixed 
effects model. Shaded region represents the bootstrapped 95%-confidence intervals of the model estimates. 
Bootstrapped averages are depicted by the small dots (N =  12). We observed the rapid induction of the illusion, 
as illustrated by the slope in the Full Match condition (light blue), similar to the Saccade mimic condition 
(dark blue). In the Saccade Cost condition, the illusion developed more slowly over time (light orange). In the 
Spatiotopic condition, the illusion was induced more strongly than in the Full Match condition, even when the 
transient was presented after only a single frame of the post-saccadic inducer (dark orange line). Similarly, in 
the Spatiotopic condition, the illusion was induced more strongly than in the Saccade Mimic condition (dark 
blue line), even when the transient was presented after only 16.7 ms of the post-saccadic inducer.
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that the trans-saccadic High Phi paradigm as developed in this study yields robust and consistent results across 
observers.

Discussion
We investigated whether and when presaccadic visual information is integrated with postsaccadic information. 
Using the fast temporal dynamics of the High Phi illusion, we demonstrated that presaccadically acquired infor-
mation influences perception immediately after a saccade. We excluded potential long range explanations of this 
spatiotopic facilitation with several control conditions. Our data support the hypothesis of a perceptual system 
that uses predictions based on presaccadic information to efficiently process postsaccadic information8,12. These 
predicted consequences are commonly thought to enable the cancellation of self-generated changes from external 
changes in visual input, as observed in saccadic suppression of intrasaccadic displacement paradigms5,30–33. In 
addition to this cancellation property, our data suggest that the same prediction might also facilitate postsaccadic 
perception under circumstances where nothing changed externally during the saccade. By actively integrating 
the prediction (based upon prior presaccadic information) with the postsaccadic information, perception can be 
accurately biased towards presaccadic input. When the world remained stable across a saccade, this could poten-
tially increase sensory sampling efficiency.

The investigation of the time course of transsaccadic integration has thus far mainly focussed on the 
pre-saccadic acquisition of feature information6,14,15,17,18. One study showed that presaccadic information is 
integrated with information that is available upon fixation onset, by measuring participant critical spacing on 
crowding stimuli34. Here, we extend this finding by providing direct empirical evidence that the presaccadically 
acquired features facilitate postsaccadic perception immediately after saccade offset. This time course is compat-
ible with several reports of early spatiotopic attentional effects briefly after saccade offset25,35,36. Our data are in 
favour of a visual system that seems to anticipate the consequences of an upcoming saccade in order to readily 
process postsaccadic visual information using that same prediction7,9,37.

It should be noted that in the current study we did not manipulate or highly restrict the time in which the sys-
tem could build a spatiotopic prediction before saccade onset. Instead, we allowed subjects to view the peripheral 
rotating inducer for at least 596 ms (945 ms on average). Interestingly, previous studies suggested that construct-
ing a spatiotopic prediction of visual information might actually take approximately 400 ms38,39. Here, we did not 
attempt to investigate the presaccadic build-up of spatiotopic representations. Potentially, saccadic suppression 
of motion stimuli might reduce the strength of a peripheral inducer when it is only visible shortly before saccade 
onset, since motion signals are strongly suppressed during saccades40. On the other hand, rotational motion is 
used to induce the High Phi illusion, effectively providing motion energy in all directions. This might minimize 
suppression, because it has been shown that sensitivity for displacements during saccades is primarily reduced on 
the axis parallel to the saccade, but not so much in orthogonal directions41,42. Hence, the paradigm presented here 
could be a good candidate to investigate the suggested slowly developing spatiotopic representations39.

Apart from the time course of integration, it is currently also debated exactly which features are updated spa-
tiotopically across saccades. In Experiment 1 we showed that the accumulated motion information can be stored 
both in a retinotopic and in a spatiotopic reference frame. The storing of motion information in a retinotopic 
reference frame is a common finding19,22. However, spatiotopic updating of accumulated motion information is 
controversial. On a behavioural level, one study showing spatiotopic motion integration16 has been criticized to 
lack a strict long range control condition that accounted for the presumed spatiotopic effects21. Here, we carefully 
controlled for these potential long range effects, and show that despite the presence of a small long range bias, this 
cannot fully account for the observed spatiotopic updating of accumulated motion information.

Figure 5. Control analyses. (A) Ellipses inside annuli represent the area where fixation was during transient 
presentation on 95% of the trials. Left and Right annuli represent Experiment 1and 2, respectively. The spread 
of fixation coordinates during transient presentation was larger for trials where subjects made a saccade prior 
to transient presentation (brown/orange/light orange ellipses). (B) Comparison in average perceived jump 
direction in Experiment 1 (N =  12) and Experiment 2 (N =  12) after 33.3 ms of (postsaccadic) inducer. The 
effect of a spatiotopic inducer on average perceived jump direction was stronger in Experiment 2 than in 
Experiment 1, yet the difference between the bias in the Full Match condition and the Spatiotopic condition was 
not statistically different between Experiments, even though two different samples were tested.
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Additionally, spatiotopic updating of motion information has previously been investigated using motion 
after effects19,22. The results of those studies suggested that motion cannot be updated spatiotopically, but is 
strictly represented retinotopically. The retinotopic conditions in Experiment 1 and the control experiment (see 
Supplementary Information) show that inducer motion energy in the High Phi phenomenon can be similarly 
accumulated in a retinotopic reference frame across saccades. When the inducer is not rotating retinotopically 
after the saccade, the effectiveness of the inducer wears off. This might suggest a common mechanism underlying 
the High Phi phenomenon and motion after effects. However, our findings are in conflict with the conclusion 
that updating of feature information is restricted to a retinotopic reference frame. Unfortunately, the exact mech-
anism underlying the High Phi phenomenon remains unknown, so there is no direct explanation why the High 
Phi illusion can be induced spatiotopically, whereas traditional motion after effects cannot. Hypothetically, High 
Phi and traditional motion after effects might represent separate phenomena of motion processing. Wexler and 
colleagues27 mention two important differences between the High Phi illusion and traditional motion after effects. 
First, the amplitude of the perceived jump tends to be equivalent to, or slightly exceeding Dmax, whereas the classi-
cal motion after effect tends to have the same amplitude and speed as the inducer27. Second, the inducer duration 
can be very brief for the High Phi illusion, whereas in traditional motion after effects, inducers tend to be effective 
after longer inducer durations (e.g. ± 400 ms for rapid motion after effects)43.

How the effects observed here can be explained at the level of neural systems remains a question for future 
studies. Spatiotopicity of (population) receptive fields in motion sensitive area MT has been suggested44,45 but 
debated46. More in general, the neural mechanisms of transsaccadic integration are still largely controversial. 
Classical findings of shifting receptive field around the time of saccades have recently been re-investigated. It was 
originally interpreted that the visual neurons anticipated the consequences of an upcoming saccade by shifting 
their receptive fields in the direction of the saccade1. However, recently it was shown that the receptive fields 
actually converge towards the saccade target, instead of linearly shifting in the direction of the saccade47. Yet, 
even more recently, several studies showed at least two different types of shifts in receptive fields: anticipatory vs. 
memory-based48–50. Unfortunately, the link between these neurophysiological findings and the observed behav-
ioural effects in transsaccadic integration still remain unknown (for latest reviews see Higgins and Rayner51 or 
Marino and Mazer52). We believe the fast temporal dynamics and the robustness of the effects across subjects 
show that the current paradigm might provide a valuable tool to further investigate the link between perisaccadic 
neurophysiology and perception.

To conclude, the current experiments show two main findings. First, accumulated motion information can be 
updated spatiotopically. Second, presaccadically acquired information influences perception immediately upon 
saccade landing. The fast, or even instant effect of spatiotopically updated information on postsaccadic perception 
supports the hypothesis that at least the processing of the saccade target is preceded by a forward model aiming 
at anticipating the consequences of the eye movement10,11,32,53, where the postsaccadic retinal input is predicted 
based upon the presaccadic retinal input and the characteristics of the upcoming eye movement8,54.

Methods
Subjects. 24 subjects (age 18–29, 4 male) with normal or corrected-to-normal vision participated after giv-
ing written informed consent. All were naïve to the High Phi illusion and the purpose of the study. 12 subjects 
participated in Experiment 1, 12 in Experiment 2. This study was approved by the local ethical committee of the 
Faculty of Social Sciences of Utrecht University. The approved methods were carried out in accordance with the 
Declaration of Helsinki.

Setup. Subjects were seated in a darkened room with their heads resting on a chinrest. They were seated 
70 cm in front of an LG 24 MB65PM LCD-IPS monitor with a spatial resolution of 1280 ×  800 and a refresh rate 
of 60 Hz. All stimuli were created and presented using Matlab (The MathWorks Inc., Natick MA, 2012) and the 
Psychophysics Toolbox 3.055,56. Eye movements were recorded with an Eyelink 1000 (SR Research Ltd. Ottawa 
ON; sampling rate of 1000 Hz). The Eyelink was calibrated using the native 9-point calibration routine.

Stimuli. Subject were presented two annuli with different random textures. One annulus was 7.5° visual angle 
(VA) to the left of screen centre, the other 7.5° VA to the right. The inner radius of the annuli was 3° VA, the outer 
6° VA. In the centre of each annulus was a small fixation point (black, diameter 0.4° VA). The textures of the 
annuli were random black and white pixels, low pass filtered with circular averaging (bandwidth 1.24 cycles per 
degree VA). To induce the illusion, the annuli rotated at 20°/sec (Inducer). After the inducer, the texture of the 
annulus was rapidly replaced by a succession of 4 different, random textures (Transient).

Procedure Experiment 1. All trials started with a single fixation point combined with the Eyelink 1000 drift 
check (Fig. 1). A trial started when gaze was closer than 2° to the fixation point and the subject pressed the space-
bar. Then, the two annuli appeared, remaining static for 1000 ms (± 200 ms, uniformly distributed). In Full match 
and Long range trials subjects were required to maintain fixation over the entire trial, whereas in Spatiotopic and 
Retinotopic trials subjects made a saccade. Fixation and saccade trials were presented in separate, interleafed 
blocks. All trials were flagged invalid and repeated at the end of a block when subjects blinked or when gaze devi-
ated more than 3° VA from fixation during the presentation of the (presaccadic) inducer.

Full match. During the presentation of the static annuli, the imminence of the inducer was cued by an auditory 
beep (261.62 Hz, 50 ms). This beep was not strictly necessary for the task, but was included to keep saccade and fix-
ation trials as similar as possible. Inducer onset was delayed with respect to this cue by 300 ms (± 200 ms, uniformly 
distributed). The inducer rotated for 0, 33.3 1066.7 (60 trials per inducer duration) before transient onset (Fig. 1A). 
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We were primarily interested in the 33.3 and 1066.7 ms conditions, but included the 0 to keep the number of trials 
in fixation and saccade blocks balanced (see Data Preprocessing).

Spatiotopic match. After 1000 ms (± 200) of static annuli, the peripheral annulus started rotating for 700 ms (Fig. 1B).  
An auditory cue (440 Hz, 50 ms) instructed subjects to make a saccade to the fixation point at the centre of the 
peripheral inducer (required saccade amplitude: 15° VA). When gaze was detected within a rectangular area 
around the peripheral fixation point (width ×  height: 1° ×  4° VA), the inducer kept rotating for an additional 16.7, 
33.3 or 50 ms (120 trials) or 1066.7 ms (60 trials) before the transient was presented. We included these 3 possible 
inducer rotations to obtain a reasonable amount of data points for each participant, when a posteriori computing 
the postsaccadic inducer duration with respect to saccade offset (see Data Preprocessing).

Retinotopic match. In retinotopic trials, the presaccadic inducer rotated for 700 ms around fixation, followed 
by an auditory cue (440 Hz, 50 ms) that instructed the subject to make a saccade to the centre of the peripheral 
static annulus (Fig. 1C). Postsaccadically, the inducer (now peripheral) kept rotating for an additional 16.7, 33.3 
or 50 ms (120 trials) or 1066.7 ms (60 trials) before the transient was presented. Then, the transient was presented 
around fixation. Thus, after the saccade the inducer and the transient were not matched.

Long range. An auditory beep (261.62 Hz, 50 ms) cued the inducer that would be presented 300 (± 200) ms later 
(Fig. 1C). The inducer rotated peripherally for 0, 33.3 or 1066.7 ms and was followed by a transient around fixation.

Procedure Experiment 2. Full match. These trials were similar to the Full match trials in Experiment 
1 (Fig. 3A). However, inducer durations were set to 16.7, 33.3 and 50 ms (60 trials per inducer duration). 
Additionally, the inducer could rotate for 800 ms to verify the effectiveness of the illusion in each subject (60 trials).

Spatiotopic match. Procedurally similar to the spatiotopic trials in Experiment 1 with two changes (Fig. 3B). 
However, we only tested postsaccadic inducer duration of 16.7, 33.3 and 50 ms, randomly drawn from a uniform 
distribution (180 trials), not 1066.7 ms as in Experiment 1.

Saccade cost. These trials were identical to Spatiotopic trials, with the exception that there was no presaccadic 
inducer (Fig. 3C).

Saccade mimic. After the static annuli, a peripheral inducer rotated for 700 ms (± 150, uniformly distributed), 
followed by an auditory beep (Fig. 3D). The peripheral inducer kept rotating for an additional 200 ms (± 100 ms), 
matching the saccadic latencies from Experiment 1. Then, the peripheral annulus stopped rotating and the central 
annulus rotated for 16.7, 33.3 or 50 ms (60 trials per inducer duration), followed by the transient.

Screening. In order to verify that subjects could reliably report jump directions, each subject completed a 
screening task prior to the actual experiment. Here, trials were similar to the Full match trials, with the exception 
that the transient was substituted by an actual clockwise or counter clockwise rotational jump of 15°. Subjects 
received feedback on their response: fixation point turned green for correct responses, or red for incorrect 
responses. All participants performed well above chance on this task (average proportion correct: 0.95, range: 
0.75–1.0).

Data pre-processing. Saccade detection. Saccades were detected offline using the Eyelink velocity-based 
algorithm, with a velocity threshold of 35°/s and an acceleration threshold of 9500°/s2. Trials were only included 
when saccade onset was > 100 ms, and the amplitude was > 8° VA.

Postsaccadic inducer duration. To compute the number of rotational steps of the postsaccadic inducer in 
frames with respect to saccade offset, we subtracted the time of saccade offset from the time of transient onset. 
Differences in the interval [16, 32] were considered as a single step, [33, 49] as two steps and [50, 65] as three 
steps. This calculation was used in order to analyse identical inducer durations in Saccade and Fixation trials. 
Additionally, in the Saccade Cost condition, we only included trials where the onset of the postsaccadic inducer 
started within 100 ms upon saccade offset. The median number of trials per subject, per trial type and per inducer 
duration in frames (and milliseconds) in Experiment 1 and Experiment 2 are summarized in Table 1. Only trials 
that included a saccade are represented in the table. The fixation conditions contained at least 46 trials per subject 
per trial type (60 on average).

Experiment Condition Inducer duration in frames (ms)

1 (16.7) 2 (33.3) 3 (50) 64 (1066.7)

1 Spatiotopic — 30.5 (16–38) — 27 (12–43)

Retinotopic — 33 (26–42) — 27.5 (15–42)

2 Spatiotopic 45.5 (15–67) 49 (34–64) 35.5 (13–56) —

Saccade cost 26.5 (11–55) 44.5 (30–57) 39 (19–60) —

Table 1.  Median number of trials per inducer duration in the Saccade conditions, with the minimum and 
maximum number trials across subjects in parentheses.
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Data analysis. Given the imbalance in trial numbers across conditions and subjects we analysed the data 
using linear logit mixed effects models28,29. In these models we included Condition and Inducer duration as fixed 
effects. Subjects were modelled as random offsets. Responses were − 1 for backward jumps, and 1 for forward 
jumps. In Experiment 1, condition and inducer duration were modelled as factors, not numerically. Thus, the 
expected average response of subject j in condition i is given by

=
+

−
β β− + +

p
e

2
1

1ij X S( )i j0

where, βi are the coefficients (with one coefficient for each row in the design matrix, and β 0 is the coefficient in the 
Full Match condition after 33.3 ms of inducer), X is the full factorial design matrix of Trial type (4 levels), Delay (2 
levels) and their interaction S is the subject-specific coefficient.

In Experiment 1, we did not include 0 ms of inducer because responses are coded with respect to inducer 
direction. Hence, with no inducer there is no inducer direction to code the responses to.

For the analysis of Experiment 2, a similar model was used. However, here Inducer duration was modelled 
numerically, from 0 to 2, where 0 represents the baseline of 16.7 ms of inducer.
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