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Systematic analysis of genetic 
variants in Han Chinese patients 
with sporadic Parkinson’s disease
Lamei Yuan1,2, Zhi Song2, Xiong Deng1, Wen Zheng2, Yi Guo3, Zhijian Yang1 & Hao Deng1,2

Parkinson’s disease (PD) is one of the most common neurodegenerative disorders. Accumulated 
evidence confirms that genetic factors play a considerable role in PD pathogenesis. To examine whether 
point variants or haplotypes are associated with PD development, genotyping of 35 variants in 22 PD-
related genes was performed in a well-characterized cohort of 512 Han Chinese PD patients and 512 
normal controls. Both Pearson’s χ2 test and haplotype analysis were used to evaluate whether variants 
or their haplotypes were associated with PD in this cohort. The only statistically significant differences 
in genotypic and allelic frequencies between the patients and the controls were in the DnaJ heat 
shock protein family (Hsp40) member C10 gene (DNAJC10) variant rs13414223 (P = 0.004 and 0.002, 
respectively; odds ratio = 0.652, 95% confidence interval: 0.496–0.857). No other variants or haplotypes 
exhibited any significant differences between these two groups (all corrected P > 0.05). Our findings 
indicate that the variant rs13414223 in the DNAJC10 gene, a paralog of PD-related genes DNAJC6 and 
DNAJC13, may play a protective role in PD. This suggests it may be a PD-associated gene.

Parkinson’s disease (PD, MIM 168600) is the second most common progressive age-related neurodegenerative 
disorder affecting approximately 1–2% of the population over 651,2. Autopsy studies show a selective loss of dopa-
minergic neurons in the midbrain substantia nigra, and Lewy bodies formation accompanied by alpha-synuclein 
aggregation3,4. Motor skills are primarily devastated by the preferential demise of dopaminergic neurons. A vari-
ety of non-motor symptoms were also observed in most PD patients, which may be progressive and precede 
motor deficits5–9. Bradykinesia, asymmetric rest tremor, rigidity, and postural instability are the most significant 
motor symptoms of PD8,10. Although the etiology remains both complex and elusive, PD is currently acknowl-
edged to be a multifactorial disorder related to genetic factors, aging, environmental exposures, epigenetic factors, 
and their synergistic interaction1,4,11,12. Genetic factors acting as disease-causing determinants, risk or protective 
factors, can contribute considerably to PD pathogenesis4,7,13. Over the last two decades, at least 23 genetic loci 
(PARK1 to PARK23), and 18 disease-associated genes, have been implicated in familial and sporadic PD14–17. 
Approximately 10% of PD cases report a positive family history with the vast majority of cases having undefined 
genetic causes4,7,18. A polygenic model has been proposed to explain the genetic role in PD pathogenesis13. Even 
though the exact pathogenic mechanisms remain unclear, a complex and synergistic set of mitochondrial defects, 
and cellular processes including oxidative stress, lysosomal dysfunction, and vesicle trafficking are suggested to 
have a central role in PD pathogenesis4,8,17. Disease-modifying or neuroprotective therapies, targeting specific 
pathogenesis to slow or halt progression, are urgently needed as current dopamine replacement therapies only 
provide symptomatic relief5,9,18. Accumulating evidence suggests that genetic variants may exert a risk or protec-
tive role in PD, while results from other studies are inconclusive or inconsistent, and are not replicable14,19–22. This 
study aimed to investigate genetic and allelic frequencies of point variants in a large cohort of 512 Han Chinese 
PD patients and 512 ethnicity-matched healthy controls, and to evaluate whether the variants or haplotypes are 
associated with PD development.

Results
All 35 variants in the 22 potentially PD-associated genes enrolled in this study were examined in the 512 PD 
patients and 512 healthy controls with perfectly designed primers (see Supplementary Table S1). No departure 
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from Hardy-Weinberg equilibrium for the enrolled variants was observed (all P >  0.05). No alterative geno-
types, i.e., monomorphisms, were observed in the following 21 variants: rs60003608, rs10935014, rs79953286, 
rs2227851, rs34086109, rs34322892, rs34845648, rs11538692, rs77570025, rs3752321, rs3764740, rs34594498, 
rs74942016, rs61744200, rs11570680, rs375681722, rs538881762, the recently reported p.T1367N variant in the 
teneurin transmembrane protein 4 gene (TENM4), rs35693565, rs62444122, and rs199910950. Table 1 shows gen-
otypic and allelic frequencies for variants with two or three genotypes in PD patients and controls. Associations 
between the variants and PD were assessed. After Bonferroni correction, statistically significant difference 
between the PD patients and control groups was only observed in the genotypic distribution of the DnaJ heat 
shock protein family (Hsp40) member C10 gene (DNAJC10) variant rs13414223 (χ 2 =  11.109, P =  0.004, cor-
rected P =  0.012). The patient group had significantly lower frequencies of the A allele (χ 2 =  9.523, P =  0.002, 
corrected P =  0.004, odds ratio =  0.652, 95% confidence interval: 0.496–0.857) compared to the control group. 
No statistically significant differences in genotypic or allelic frequencies between the two groups were found in 
the other 13 variants (all corrected P >  0.05, Table 1). No potential PD-association was identified (all P >  0.05, 
Table 2) for haplotypes of enrolled variants, rs6788448-rs35424709 (ATP13A4), rs1721100-rs1989754 (FGF20), 
rs33949390-rs34410987 (LRRK2), rs3758549-rs4919621 (PITX3), and rs2076485-rs7757931 (UBD).

Discussion
The present study investigated possible associations between the 35 variants and PD development in a well-defined 
cohort of Han Chinese patients with PD. As previously noted, the association between gene variants and the 
presence or severity of PD is inconclusive and inconsistent either in the same or different populations3,14,20,21.  
Three DNAJ family genes have been implicated in familial neurodegenerative disorders, including the DNAJC6 
gene in autosomal recessive PD (PARK19), the DNAJC13 gene in autosomal dominant late-onset PD (PARK21), 
and the DNAJC5 gene in autosomal dominant adult-onset neuronal ceroid lipofuscinosis22–26. This study found 
that only DNAJC10 gene variant rs13414223 was related to decreased PD risk.

The DNAJC10 gene (MIM 607987), which is mapped to chromosome 2q32.1, contains 24 exons and spans 
~64 kb, is a paralog of two known PD-related genes, DNAJC6 and DNAJC1323,25,27. It encodes a ~91 kDa endo-
plasmic reticulum (ER) co-chaperone with 793 amino acids, also known as ERdj5, or JPDI, which is a type III 
DnaJ protein. It is an ER-resident molecule composed of an N-terminal hydrophobic sequence, a type III DnaJ 
domain, four thioredoxin-like domains, and a C-terminal tetrapeptide KDEL motif mediating ER retention27,28. 
It is ubiquitously expressed, ER-localized, and particularly abundant in secretory cells. It is present in the central 
nervous system, with strong signals in the hippocampus and the granular cell layer of the cerebellar cortex, and 
moderate signals in the striatum, hypothalamus, and brain stem27. The ER-resident luminal protein, DNAJC10, 
probably acts as a DnaJ-like partner of BiP (immunoglobulin heavy chain-binding protein), and interacts with the 
ER-resident chaperone BiP through the DnaJ domain in an ATP-dependent manner, which may be up-regulated 
upon ER stress27–29. It is a member of a supramolecular ER-associated degradation complex, recognizing and 
unfolding misfolded proteins for efficient retrotranslocation29. Its reductase activity can split incorrect disulfide 
bonds in misfolded proteins and facilitate misfolded proteins solubility and ER-associated degradation through 
its physical and functional associations with the ER degradation-enhancing alpha-mannosidase-like protein and 
by modulating BiP activity29–32.

PD is a multifactorial disorder attributed to misfolded protein accumulation or aggregates, such as 
alpha-synuclein, within the ER lumen modulating ER stress and impairing mitochondrial functioning, and 
referring to neuron degeneration2,5,7. ER contributes to protein quality control and maintaining normal protein 
function33. ER stress, a salient signature of PD, leads to accumulation of ER-associated degradation substrates, 
generation of reactive oxygen species which contributes to oxidative stress and an inflammatory response, and 
mitochondrial dysfunction. It then causes neuronal cell death and is responsible for neurodegeneration34,35. 
Three DNAJC10 paralogous genes contribute to familial neurodegenerative disorders via different mechanisms. 
Impaired synaptic vesicle recycling and perturbed clathrin-mediated endocytosis related to loss-of-function 
mutations have been reported in autosomal recessive DNAJC6-PD23,24. Toxic gain-of-function and impaired 
endosomal transport were observed in autosomal dominant PD patients with the DNAJC13 mutation25. In addi-
tion, the dominant negative effect of DNAJC5 mutations leading to presynaptic dysfunction and lysosomal accu-
mulation of misfolded proteins may cause neurodegeneration26. DNAJC10 is expressed in the cortex, striatum, 
hypothalamus, and brain stem, which are sites of neuron degeneration and Lewy body deposition in PD patient 
brains9,27. ER luminal protein dnj-27, a mammalian DNAJC10 ortholog, showed a protective role against PD, 
Alzheimer and Huntington diseases in transgenic Caenorhabditis elegans models. As an age-related proteotox-
icity regulator, it exerts a protective function by altering cytoplasmic protein homeostasis and mitochondrial 
fragmentation caused by alpha-synuclein, beta-amyloid, and polyglutamine peptides36. This is consistent with the 
hypothesized association between PD and the DNAJC10 gene.

In this study, the variant rs13414223 in the DNAJC10 gene had a protective role against PD development. 
Given that this study did not cover either single nucleotide polymorphisms (SNPs) with a minor allele frequency 
of less than 5% or non-single base substitution variants, other genetic variants such as low-frequency variants, 
complex variants, non-coding variants involving in the genetic or epigenetic regulatory region, and synergistic 
or antagonistic effects should be further investigated to evaluate their roles in PD development in Han Chinese 
populations1,9,37–39.

In summary, the variant rs13414223 in the DNAJC10 gene may exert a protective role against PD in Han 
Chinese. This is the first effort, to our knowledge, to explore potential associations between a DNAJC10 gene var-
iant and PD. Further research which should include a functional study and confirmation in larger patient cohorts 
of other ethnicities is warranted. These findings may lead to a more complete comprehension of PD pathogenesis 
and result in personalized and targeted disease-modifying PD therapeutics.
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dbSNP ID Genea Genotype/Allele Patientsb Controlsb χ2 value P value OR (95% CI)

rs6788448 ATP13A4

TT 180 (0.352) 158 (0.309)

TC 237 (0.463) 269 (0.525)

CC 95 (0.185) 85 (0.166) 4.011 0.135

T 597 (0.583) 585 (0.571)

C 427 (0.417) 439 (0.429) 0.288 0.591 0.953 (0.800–1.136)

rs35424709 ATP13A4

TT 455 (0.889) 458 (0.895)

TA 57 (0.111) 54 (0.105)

AA 0 (0) 0 (0) 0.091 0.763 1.063 (0.716–1.576)

T 967 (0.944) 970 (0.947)

A 57 (0.056) 54 (0.053) 0.086 0.770 1.059 (0.722–1.553)

rs6350 SLC6A3

CC 498 (0.973) 494 (0.965)

CT 14 (0.027) 18 (0.035)

TT 0 (0) 0 (0) 0.516 0.472 0.772 (0.380–1.568)

C 1010 (0.986) 1006 (0.982)

T 14 (0.014) 18 (0.018) 0.508 0.476 0.775 (0.383–1.566)

rs13414223 DNAJC10

CC 420 (0.820) 376 (0.734)

CA 86 (0.168) 129 (0.252)

AA 6 (0.012) 7 (0.014) 11.109 0.004

C 926 (0.904) 881 (0.860)

A 98 (0.096) 143 (0.140) 9.523 0.002 0.652 (0.496–0.857)

rs1721100 FGF20

GG 127 (0.248) 132 (0.258)

GC 262 (0.512) 260 (0.508)

CC 123 (0.240) 120 (0.234) 0.141 0.932

G 516 (0.504) 524 (0.512)

C 508 (0.496) 500 (0.488) 0.125 0.724 0.969 (0.815–1.153)

rs1989754 FGF20

CC 129 (0.252) 126 (0.246)

CG 262 (0.512) 263 (0.514)

GG 121 (0.236) 123 (0.240) 0.054 0.974

C 520 (0.508) 515 (0.503)

G 504 (0.492) 509 (0.497) 0.049 0.825 1.020 (0.858–1.213)

rs2924835 LRRK1

GG 189 (0.369) 215 (0.420)

GA 245 (0.479) 238 (0.465)

AA 78 (0.152) 59 (0.115) 4.410 0.110

G 623 (0.608) 668 (0.652)

A 401 (0.392) 356 (0.348) 4.244 0.039 1.208 (1.009–1.446)

rs33949390 LRRK2

GG 485 (0.947) 496 (0.969)

GC 27 (0.053) 16 (0.031)

CC 0 (0) 0 (0) 2.937 0.087 1.726 (0.918–3.243)

G 997 (0.974) 1008 (0.984)

C 27 (0.026) 16 (0.016) 2.874 0.090 1.706 (0.914–3.186)

rs34410987 LRRK2

CC 503 (0.982) 510 (0.996)

CT 9 (0.018) 2 (0.004)

TT 0 (0) 0 (0) 4.503 0.034 0.219 (0.047–1.019)

C 1015 (0.991) 1022 (0.998)

T 9 (0.009) 2 (0.002) 4.479 0.034 0.221 (0.048–1.024)

rs3758549 PITX3

CC 370 (0.723) 346 (0.676)

CT 130 (0.254) 145 (0.283)

TT 12 (0.023) 21 (0.041) 4.077 0.130

C 870 (0.850) 837 (0.817)

T 154 (0.150) 187 (0.183) 3.832 0.050 0.792 (0.627–1.000)

rs4919621 PITX3

TT 295 (0.576) 303 (0.592)

TA 181 (0.354) 189 (0.369)

AA 36 (0.070) 20 (0.039) 4.851 0.088

T 771 (0.753) 795 (0.776)

A 253 (0.247) 229 (0.224) 1.563 0.211 1.139 (0.929–1.398)

rs2254562 SYNJ1 TT 197 (0.385) 202 (0.394)

Continued
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Methods
Study participants and clinical evaluation. In this study, a total of 1,024 unrelated Han Chinese indi-
viduals from mainland China were enrolled between December 2007 and August 2015. The participants included 
512 patients with sporadic PD and 512 matched normal controls (male/female: 308/204) considering age, gender, 
race, and geographic origin. Patients were recruited through the Department of Neurology, the Third Xiangya 
Hospital of Central South University, Changsha, China. PD diagnoses were clinically made by two independent 
neurologists according to a published diagnostic basis. Secondary parkinsonism caused by other known reasons 
was eliminated8,40. The ages of patients and controls were 65.8 ±  10.3 years and 65.9 ±  10.5 years, respectively. 
In patients, the age at symptom onset was 62.4 ±  7.8 years. Some of the recruited PD cases had been previ-
ously screened for mutations in the PD-associated genes that were suspected of causing their symptoms. Of the 
patients, 25.39% (130/512) and 66.21% (339/512) had no mutation in the VPS35, retromer complex component 
gene (VPS35) or the F-box protein 48 gene (FBXO48) respectively. Another, 74.80% (383/512) were negative for 
mutations in either the S100 calcium binding protein B gene (S100B) or the RAB39B, member RAS oncogene 
family gene (RAB39B). Of those tested, 59.77% (306/512) and 97.66% (500/512) were negative for point muta-
tions (p.A502V and p.R1205H) in the eukaryotic translation initiation factor 4 gamma 1 gene (EIF4G1), and 
variants (rs10788972 and rs12046178) in the transcription elongation factor A N-terminal and central domain 
containing 2 gene (TCEANC2). All patients were genotyped for seven SNPs to explore any association between 
variants and PD risk. These included three variants (rs3212366, rs33932559, and rs34090186) in the melanocor-
tin 1 receptor gene (MC1R), two variants (rs75932628 and rs2234253) in the triggering receptor expressed on 
myeloid cells 2 gene (TREM2), and two variants (rs1801131 and rs1801133) in the methylenetetrahydrofolate 
reductase gene (MTHFR)3,14,40–42. Normal control subjects were healthy volunteers and denied either a personal 
or a family history of PD in consanguineous relatives. They were free of other related neurological disorders when 
examined12,14. The study was approved by the Institutional Review Board of the Third Xiangya Hospital, Central 
South University, which follows the Declaration of Helsinki guidelines. Written informed consent was obtained 
from all subjects from whom peripheral venous blood was drawn to extract genomic DNA. The methods were 
carried out in accordance with the approved guidelines.

Selection of variants. The following criteria were used to select the variants enrolled in this study: pre-
viously reported variants that confer a PD risk in some populations, and variants meeting certain conditions 
for the potential PD candidate genes, which include known PD-causing genes, reported PD-related genes, and 
their paralogs. Point variants in candidate genes have minor allele frequencies higher than 5%, particularly in 
Asian or Han Chinese populations. Variants are referred to by their reference SNP ID numbers (rs#) as recorded 
in the database of SNPs (http://www.ncbi.nlm.nih.gov/SNP/)43. Prediction results using bioinformatics analysis 
programs, Sorting Intolerant from Tolerant (http://sift.jcvi.org/), Polymorphism Phenotyping version 2 (http://
genetics.bwh.harvard.edu/pph2/), or MutationTaster (http://www.mutationtaster.org/), support the potential del-
eterious or disease-causing effect of variants44–46.

DNA extraction and variant genotyping. Genomic DNA was isolated from peripheral blood using 
standard protocols for genetic analysis40. Variants genotyping was done using matrix-assisted laser desorption/
ionization time-of-flight mass spectrometry by Bioyong Technologies (Beijing, China) following manufactur-
ers’ instructions14,47. Locus-specific amplifying primers, and single-base extending primers, were designed using 
Sequenom Assay Design 3.1 software, and were synthesized and diluted as required. Primer quality was assayed 
using a mass spectrometric system42,48. Locus-specific amplification by multiplex PCR, and purification of PCR 
products, were conducted as previously described14,47,49. MassARRAY Typer 4.0 software (Sequenom) was used to 

dbSNP ID Genea Genotype/Allele Patientsb Controlsb χ2 value P value OR (95% CI)

TC 243 (0.474) 238 (0.465)

CC 72 (0.141) 72 (0.141) 0.115 0.944

T 637 (0.622) 642 (0.627)

C 387 (0.378) 382 (0.373) 0.052 0.820 1.021 (0.854–1.221)

rs2076485 UBD

TT 320 (0.625) 316 (0.617)

TC 156 (0.305) 176 (0.344)

CC 36 (0.070) 20 (0.039) 5.801 0.055

T 796 (0.777) 808 (0.789)

C 228 (0.223) 216 (0.211) 0.414 0.520 0.933 (0.756–1.152)

rs7757931 UBD

CC 436 (0.852) 423 (0.826)

CA 74 (0.144) 82 (0.160)

AA 2 (0.004) 7 (0.014) 3.385 0.184

C 946 (0.924) 928 (0.906)

A 78 (0.076) 96 (0.094) 2.035 0.154 0.797 (0.583–1.089)

Table 1.  Genotypic and allelic distributions of variants in the PD-related genes in PD patients and controls. 
Bold values are statistically significant after the Bonferroni correction. CI: confidence interval; dbSNP: database of 
single nucleotide polymorphisms; OR: odds ratio; PD: Parkinson’s disease. aGene symbol is approved by HUGO 
Gene Nomenclature Committee. bGenotypic or allelic frequencies are shown in parentheses.

http://www.ncbi.nlm.nih.gov/SNP/
http://sift.jcvi.org/
http://genetics.bwh.harvard.edu/pph2/
http://genetics.bwh.harvard.edu/pph2/
http://www.mutationtaster.org/
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analyze spectrometric results and generate the genotype data of each variant50. All the procedures were performed 
by investigators blinded to sample status, i.e., from case or control subjects. Duplicate samples, positive and nega-
tive controls, were included to confirm genotyping accuracy. Direct sequencing of the amplicons containing these 
variants in 8% of randomly selected samples was carried out as quality controls to test the reliability51,52.

Statistical analysis. Statistical analysis was performed using Predictive Analytics Software Statistics 18 
(SPSS, Chicago, IL, USA). Hardy-Weinberg equilibrium was evaluated to test for the presence of deviation from 
normal heterogeneity14,42. Pearson’s χ 2 test was used to analyze genotype and allele distribution. Haplotype con-
struction and genetic association analysis were performed using SHEsis Online Version (http://analysis.bio-x.cn) 
following the instructions53,54. P values, odds ratios, and 95% confidence intervals were estimated for statistical 
results. All statistical tests were two-sided, and P-value standing for statistical significance was set at lower than 
0.05, as described in previous studies14,48.
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