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Investigation of rare and low-
frequency variants using high-
throughput sequencing with pooled 
DNA samples
Jingwen Wang1,2, Tiina Skoog1, Elisabet Einarsdottir1,3, Tea Kaartokallio4, Hannele Laivuori4,5,6, 
Anna Grauers7,8, Paul Gerdhem7, Marjo Hytönen9, Hannes Lohi9, Juha Kere1,2,3 & Hong Jiao1,2

High-throughput sequencing using pooled DNA samples can facilitate genome-wide studies on rare and 
low-frequency variants in a large population. Some major questions concerning the pooling sequencing 
strategy are whether rare and low-frequency variants can be detected reliably, and whether estimated 
minor allele frequencies (MAFs) can represent the actual values obtained from individually genotyped 
samples. In this study, we evaluated MAF estimates using three variant detection tools with two sets of 
pooled whole exome sequencing (WES) and one set of pooled whole genome sequencing (WGS) data. 
Both GATK and Freebayes displayed high sensitivity, specificity and accuracy when detecting rare or 
low-frequency variants. For the WGS study, 56% of the low-frequency variants in Illumina array have 
identical MAFs and 26% have one allele difference between sequencing and individual genotyping 
data. The MAF estimates from WGS correlated well (r = 0.94) with those from Illumina arrays. The MAFs 
from the pooled WES data also showed high concordance (r = 0.88) with those from the individual 
genotyping data. In conclusion, the MAFs estimated from pooled DNA sequencing data reflect the 
MAFs in individually genotyped samples well. The pooling strategy can thus be a rapid and cost-
effective approach for the initial screening in large-scale association studies.

In the last two decades, more than 10,000 variants associated with complex traits have been identified by 
genome-wide association studies (GWAS)1. However, most of the target sites of GWAS have been common var-
iants (risk allele frequency >​5%) with modest or weak genetic effects, usually requiring large sample sizes for 
detection at the genome-wide significant level2. On the other hand, it is possible that common diseases are par-
tially caused by rare and generally deleterious variants with a strong impact on the risk of disease in individual 
patients3. The majority of those low-frequency variants have not been investigated by single-nucleotide polymor-
phism (SNP) array-based GWAS, as the arrays primarily target common variants.

High-throughput next generation sequencing (NGS) technologies have revolutionised genetic research by 
enabling the identification of rare and low-frequency genetic variation on a massive scale4,5. In contrast to SNP 
array genotyping, next generation DNA sequencing does not rely on pre-designed probes against target sequences 
and is therefore able to detect any variant within the studied genome. Moreover, the new technology greatly 
reduces per base pair sequencing cost, provides high read coverage and depth and produces an abundance of 
sequencing reads at both the whole genome and exome wide scale. It has contributed to the mapping of a number 
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of genetic variants underlying Mendelian diseases6–8, and there is strong interest in extending the application of 
NGS to complex traits9.

Whole genome sequencing (WGS) and whole exome sequencing (WES)10,11 are becoming increasingly popu-
lar because of their wide coverage and single-base resolution. However, these techniques are still costly, laborious 
and time-consuming for most laboratories involved in population-based association studies. To capture rare 
variants related to complex diseases, the ideal approach is to sequence every individual sample in a very large 
cohort12. An alternative approach is to pool a number of individual DNA samples and sequence the pooled DNA, 
which can efficiently increase sample size and sequencing depth at a reduced cost and effort in library preparation. 
In addition to enabling the identification of rare variants in candidate genes13,14, certain pooled DNA sequencing 
studies at the whole exome scale have also reported low-frequency variants associated with complex diseases15,16.

The essential question using a pooling strategy for genetic studies focused on rare and low-frequency variants 
includes two aspects: (1) whether the variants can be detected reliably and (2) whether minor allele frequencies 
(MAFs) can be estimated accurately using pooled samples. Here, we report the evaluation of the pooling strategy 
based on WES data from studies on human idiopathic scoliosis17 and pre-eclampsia, as well as on WGS data from 
a study on canine compulsive tail-chasing behaviour. We compared the variants detected by three different tools 
(SAMtools, GATK and Freebayes) and evaluated the accuracy of MAF estimates from pooled DNA sequencing 
data by comparing them with the MAFs obtained from individual genotyping data.

Results
Pooled whole exome sequencing.  Read alignment and single nucleotide variant (SNV) detection.  The 
procedure of sequencing read analysis is illustrated in Supplementary Fig. S1. In the scoliosis study, we obtained 
307 to 412 million sequence reads in each sample pool. Of the sequence reads, 93.3% to 98.5% could be mapped 
to the human reference genome (GRCh37/hg19) (Supplementary Table S1). After removing PCR duplicates, 
the average depth of mapped reads in each pool ranged from 104x to 194x. Approximately 40–46 Mb (77–89%) 
of the SureSelect enrichment regions were covered over 30x and 29–41 Mb (56–79%) were covered over 60x, 
with 0.7–2% of regions not covered (Supplementary Table S2). In the pre-eclampsia study, WES generated 290 
to 487 million reads per pool and over 98% of the sequencing reads could be mapped to the human reference 
genome (GRCh37/hg19) (Supplementary Table S1). After removing duplicates, the average read depth of the 
enrichment regions was over 200x in all but two pools (95x in pool 1 and 169x in pool 10). Over 99% of the 
enrichment regions were covered. Except for the two pools with a high duplicate rate (pool 1 and pool 10),  
at least 46 Mb (90%) of the target regions were covered over 30x and over 42 Mb (82%) were covered over 60x 
(Supplementary Table S2).

Taking uniquely mapped reads as input, we detected single nucleotide variants (SNVs) in WES data using 
three tools, SAMtools, GATK and Freebayes, with different ploidy settings. At first, we compared the SNVs 
detected using two different GATK UnifiedGenotyper ploidy settings, assuming diploidy or ploidy of 20. 
Supplementary Fig. S2 indicates that the SNVs detected by GATK using the ploidy setting of 20 covered most 
of the SNVs identified by GATK with the default diploid setting. Accordingly, we applied a ploidy setting of 20 
when using the GATK UnifiedGenotyper programme in the subsequent detection of SNVs in the WGS and 
WES pooled data. SAMtools, GATK and Freebayes detected over 2 million SNVs in the scoliosis pools and 2.4 
to 3.2 million SNVs in the pre-eclampsia pools (Supplementary Table S3). In both WES studies, we obtained the 
largest number of SNVs (2.2 million in scoliosis and over 3.2 million in pre-eclampsia) using GATK. Compared 
with the other two tools, a higher proportion of the SNVs detected by Freebayes were singletons (SNVs in only 
one pool). Compared with GATK and Freebayes, SAMtools provided fewer rare variants, but more of the com-
mon variants. However, most of the common variants uniquely identified by SAMtools were located outside the 
Agilent SureSelect kit enrichment regions and were based on very low sequence coverage data.

Comparisons of SNVs from three variant detection tools.  When retaining the SNVs located in the Agilent 
SureSelect kit enrichment regions, the number of SNVs detected by all three tools was 77,932 in the scoliosis and 
68,227 in the pre-eclampsia studies (Fig. 1). Freebayes detected the largest number of SNVs in the enrichment 
regions. By contrast, SAMtools detected the fewest SNVs and the majority of these SNVs (99%) were also detected 
by GATK.

As the overlap of detected SNVs showed a similar pattern in both WES studies (Fig. 1), we selected the scoli-
osis study as an example to describe the variant detection performance of the three tools, investigating the SNVs 
within the enrichment regions. Both GATK and Freebayes detected more than twice as many SNVs as SAMtools 
did (Fig. 1a). The difference in the numbers of SNVs was due to novel variants that were not annotated in dbSNP, 
or rare variants with alternative allele frequency (AAF) less than 1%. In particular, 93% of the SAMtools-detected 
and 84% of the GATK-detected SNVs were already annotated in dbSNP 144, but the annotation rate dropped 
to 61% with Freebayes. When the detected SNVs were grouped by AAFs, the three tools provided a compa-
rable amount of common (AAF > 5%) SNVs, while the amount of rare (AAF < 1%) and low-frequency 
(1% ≤ AAF ≤ 5%) SNVs varied greatly among the tools (Table 1). Moreover, around half of the SNVs detected by 
Freebayes did not have alternative allele frequency information in the 1000 Genomes project database, in contrast 
to this proportion being only 10% for the SAMtools-detected SNVs (Table 1). When classifying the SNVs based 
on the number of pools they were detected in, we saw that both SAMtools and GATK detected fewer singletons 
(14–19%) than Freebayes (43%, Supplementary Fig. S3).

Because of the high detection rate of potential novel and rare SNVs by Freebayes, we further investigated the 
80,272 Freebayes-specific SNVs in the enrichment regions (Supplementary Fig. S4). Less than half of the SNVs 
were supported by at least 60x reads and over 20% were covered by less than 30x read depth. Over 90% of the 
SNVs were identified in only one scoliosis pool or did not have AAF information in the 1000 Genomes project 
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(Supplementary Fig. S4). When we set filtering for variant quality score, 96% of the Freebayes-specific SNVs 
had a quality score of less than 3, i.e. less than 50% probability of being truly polymorphic. Only 2% of them 
had over 90% probability of being polymorphic, (quality score more than 10), suggesting that the majority of 
Freebayes-specific SNVs were likely false positives.

Genotyping validation.  We selected 50 and 59 SNVs from the scoliosis and pre-eclampsia WES studies, respec-
tively, for validation by using genotyping (Supplementary Table S4). The same 100 DNA samples utilised in each 
WES study were genotyped individually using the Sequenom MassARRAY system. We successfully validated 42 
scoliosis and 44 pre-eclampsia related SNVs after excluding four monomorphic sites (one in the scoliosis and 
three in the pre-eclampsia studies). The four false positive SNVs were all annotated in dbSNP 144, but none of 
them had MAF information in the 1000 Genomes project database. In total, 95.6% of the selected SNVs were 
validated in each dataset.

All four false-positive SNVs were identified as polymorphic by GATK, and Freebayes also identified the three 
SNVs in the pre-eclampsia study as polymorphic. SAMtools had the lowest false-positive detection, identifying 
three of the variants as monomorphic, while it missed several loci that were actually polymorphic in both studies 
(Supplementary Fig. S5).

Figure 1.  Comparison of SNV detection by SAMtools, GATK (ploidy setting) and Freebayes (ploidy 
setting) in the WES studies. The blue, red and yellow circles represent the SNVs detected by GATK 
UnifiedGenotyper (ploidy setting), Freebayes (ploidy setting) and SAMtools, rescpectively. (a) The SNVs in the 
Agilent SureSelect target regions in the scoliosis study. (b) The SNVs in the Agilent SureSelect target regions in 
the pre-eclampsia study.
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Evaluation of MAF estimates.  Two strategies were applied for MAF estimates: using read depth and allele count. 
The concordance between the estimated and validated MAFs was measured with the root-mean-square deviation 
(RMSD). When using read depths for estimating MAF across all pools, most of the MAFs in the pooled samples 
were enlarged but the best-fit trend line of the SAMtools estimation was more diagonal than those of the other two 
tools. However, the MAFs estimated based on read depths with three tools varied a lot (Supplementary Table S5).  
When using allele counts for estimating MAF, both GATK and Freebayes showed similar accuracies of the esti-
mated MAFs (RMSD =​ 0.031–0.032). The MAFs estimated using allele counts with GATK from the pooled DNA 
sequencing data showed high concordance with those from the individual genotypes (Pearson correlation coeffi-
cient, r =​ 0.88) (Fig. 2) even though they were slightly overestimated in the WES data.

As the SNVs validated in the pre-eclampsia dataset included rare, low-frequency and common variants, we 
selected the 47 SNVs in the pre-eclampsia study to evaluate the GATK-estimated MAFs of all SNVs in each indi-
vidual pool, as well as the GATK-estimated MAFs of each SNV in all pools. The comparisons of MAFs based on 
each pool (Supplementary Fig. S6) revealed that SNVs in two of the pools (6 and 9) showed higher concordance 
between the estimated and validated MAFs than those in other pools. For more than half of the validated SNVs, 
the MAFs were overestimated by using WES data. The estimated MAFs of some SNVs had a larger difference 
from the actual MAFs (more than two times) in some pools (Supplementary Fig. S7).

To investigate the effect of number of sequencing reads (i.e., depth of sequencing) on variant detection and 
MAF estimation, we randomly selected 70% and 80% of the reads from pre-eclampsia pool 7 and detected SNVs 
using GATK on just the pool 7 with the selected reads. Among the three false positive SNVs that validated to be 
monomorphic, all of them were identified as variants when using randomly selected 70% and 80% of total reads. 
To evaluate the accuracy of MAFs estimated from all reads and partial reads, MAFs were calculated based on 
allele counts. We took the average MAF of 10 rounds for both 70% and 80% of reads, and further compared them 
with the genotyping result for each SNV (Supplementary Fig. S8). A closer look at the MAF comparisons showed 
that when using partial reads for MAF estimation, each of 17 SNVs had the same MAF as the one obtained from 
total reads, whereas 8 SNVs showed smaller and over 20 SNVs with larger deviation from the validation when 
compared with the results based on 100% reads. The MAFs estimated using total reads demonstrated a higher 
concordance with the validation (r =​ 0.86), compared with those estimated using partial reads (r =​ 0.84).

A low-frequency SNV (rs36051194, Fig. 3a) and a rare SNV (rs3803339, Fig. 3b) were selected to demonstrate 
the effect of the number of pools used for variant detection on the accuracy of the MAF estimates. We randomly 
selected pre-eclampsia pools to calculate the difference between estimated and validated MAF values, starting 
from one to nine pools. The largest deviation from validated MAFs appeared when using single pool or two pools 
for MAF estimates based on allele counts in both SNVs. With the increase in the number of pools, the deviation 
tended to approach zero. Using more pools for variant detection resulted in more precise estimates of MAFs.

Pooled whole genome sequencing.  Canine SNP array.  The 20 Bull Terriers in the WGS were previ-
ously genotyped as part of a study on canine compulsive tail-chasing behaviour, using Illumina Canine HD SNP 
arrays. The Canine HD array contained 172,371 markers in the canine genome. After filtering out those that failed 
quality control, 170,287 markers in the affected and 170,260 in the unaffected pool were further used for the eval-
uation of variant detection. Among those loci, 105,715 in the affected and 102,665 in the unaffected Bull Terriers 
were monomorphic. As the pooled samples contained both male and female Bull Terriers, we excluded the loci 
on sex chromosomes to reduce the complexity of MAF measurement. From the 166,813 autosomal markers left 
on the array, 1945 markers in the affected and 1972 markers in the unaffected Bull Terriers failed quality control. 

Study SAMtools GATK (ploidy = 20) Freebayes (ploidy = 20)

Idiopathic scoliosis

On enrichment regions& 79 677 171 286 219 526

Annotated in dbSNP 144 74 098 (93.0%) 143 920 (84.0%) 134 575 (61.3%)

Rare* 2 049 (2.6%) 20 414 (11.9%) 15 857 (7.2%)

Low-frequency* 5 884 (7.4%) 24 790 (14.5%) 22 625 (10.3%)

Common* 63 505 (79.7%) 71 560 (41.8%) 71 064 (32.4%)

Unknown frequency 8 239 (10.3%) 54 522 (31.8%) 109 980 (50.1%)

Pre-eclampsia

On enrichment regions& 69 500 180 607 192 716

Annotated in dbSNP 144 64 665 (93.0%) 153 740 (85.1%) 137 961 (71.6%)

Rare* 583 (0.8%) 26 859 (14.9%) 20 066 (10.4%)

Low-frequency* 2 329 (3.4%) 26 242 (14.5%) 23 576 (12.2%)

Common* 59 320 (85.3%) 72 432 (40.1%) 71 984 (37.4%)

Unknown frequency 7 268 (10.5%) 55 074 (30.5%) 77 090 (40.0%)

Bull Terrier

Total 4 736 038 7 323 018 7 612 527

Mean depth >​30×​ 4 253 121 (89.6%) 6 704 136 (91.5%) 6 756 976 (88.8%)

On Illumina array 90 190 100 678 101 082

Table 1.   Comparison of SNV detection by SAMtools, GATK, and Freebayes using multiple pools as 
simultaneous input. &The number of SNVs in the target regions captured by the Agilent SureSelect enrichment 
kit. *Rare: alternative allele frequency <​1%; Low-frequency: alternative allele frequency between 1% and 5%; 
Common: alternative allele frequency >​5%. All of the allele frequencies were retrieved from the 1000 Genome 
European population (August 2015).
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The remaining markers (164,868 in affected and 164,841 in unaffected dogs) were utilised as references for MAF 
comparison between the pooled DNA sequencing and the array genotyping.

Read alignment and SNV detection.  The initial whole genome sequencing of pooled Bull Terrier DNA samples 
contained approximately 2.0 billion reads in each pool. Later, technical replicates with different libraries contained 
1.4 billion and 1.7 billion reads in the affected and control pools, respectively. We combined two runs of sequenc-
ing and mapped the sequencing reads to the reference genome CanFam 3.1. After removing PCR duplicates, 
the mapping rates were 82–93% for total reads (Supplementary Table S1). The average depths were 133x in the 
affected samples pool and 135x in the control pool. Less than 1% of the genome was not covered at all, while over 
97% of the genome was covered with at least 30x reads and 90–92% of the genome with at least 60x reads in both 
pools (Supplementary Table S2). With a ploidy setting of 20, GATK detected approximately 7.32 million SNVs 
in total, similar to the number of SNVs detected by Freebayes (7.61 million). By contrast, there were fewer SNVs 
(4.76 million) detected by SAMtools. About 88–92% of the SNVs detected were supported by at least 30x reads 
(Table 1).

Comparison of variant detection among the three tools.  After removing the multi-allelic SNVs, the majority of 
SAMtools-generated SNVs (over 99%) were detected by GATK or Freebayes as well (Supplementary Fig. S9). The 
majority of SAMtools-specific SNVs (64%) were covered by reads less than 30x, while 75–95% of Freebayes and 
GATK-specific SNVs were covered by at least 30x reads. Approximately 30% of Freebayes-specific SNVs had over 
50% probability of being polymorphic. However, as much as 92% of the rest of Freebayes-generated SNVs had 
over 50% probability of being polymorphic.

From the WGS data, GATK and Freebayes detected similar numbers of SNVs present in the Illumina array 
(Fig. 4a), and had the largest agreement on monomorphic markers. SAMtools missed over 26,000 SNVs (20.26% 
miss rate) that were detected in the array (Supplementary Table S6), while the miss rates of GATK or Freebayes 
detection were less than 4%. Furthermore, SAMtools detected more SNVs (3%) that were monomorphic in the 
array compared with GATK and Freebayes (1.2–1.3%). Therefore, using the Illumina array genotyping data as 
reference, the specificity, precision and accuracy of SAMtools detection were comparatively low (below 90%). By 
contrast, all measurements of the performance of GATK and Freebayes detection were over 96% (Table 2).

Evaluation of MAF estimates.  Due to the high accuracy of variant detection, GATK was selected for estimating 
MAF from pooled sequencing data and for comparing MAFs between the WGS and the Illumina array data. 
When including monomorphic markers (60% of total) in both platforms, the concordance rate between the WGS 
and the arrays was 77% in two pooled samples (Supplementary Fig. S10). The Pearson correlation coefficient of 
the allele frequency of autosomal markers between the WGS and the Illumina arrays was 0.94. When the 198,162 
autosomal monomorphic markers (100,415 in affected and 97,747 in unaffected samples) detected in both plat-
forms were excluded, 56,260 SNVs (43%) had identical MAFs in both WGS and the Illumina array (Fig. 4b,c) and 
53,870 SNVs (41%) had only one allele difference by direct allele counting. The concordance rate was even higher 

Figure 2.  MAF comparison between the WES and the Sequenom genotyping. The estimated MAFs were 
estimated with GATK based on allele counts. The blue squares represent the 43 validated SNVs in the scoliosis 
study and the red dots the 47 validated SNVs in the pre-eclampsia study. The diagonal is shown with the grey 
dashed line.
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(56%) for the low-frequency variants with MAFs ≤​5% in the array (Fig. 4c). The Pearson correlation coefficient 
of MAFs of the autosomal polymorphic markers between the WGS and the Illumina array was 0.85.

Discussion
A large-scale sequencing project to discover rare and low-frequency variants that possibly contribute to disease 
is costly and time-consuming. It is advantageous to perform a pilot project that is fast and low-cost to explore 
highly interesting sequence variants that may occur among patients. This study was undertaken to test the feasi-
bility of such an approach, i.e WGS and WES using pooled DNA. With this study, we discovered that (1) rare and 
low-frequency alleles were discovered with sufficiently high probability and (2) allele frequency estimates were 
sufficiently accurate. Our results suggest that a pooling approach that can cut costs using 10-plexed DNA samples 
may be a feasible choice as a piloting study in gene mapping projects. However, particular attention needs to be 
paid to read depth and the choice of variant detection tool.

In the experiments described here, sequencing was sub-optimal in one project, requiring a second round of 
WES because of the high duplicate rate in the scoliosis pools. Even though the total raw sequencing reads were 
similar in numbers in the scoliosis and pre-eclampsia studies, the final mapped and average read depths after 

Figure 3.  Distribution and variation of total MAFs estimated using a variable number of pre-eclampsia 
pools. The X-axis represents the number of pools used for estimating MAF from the exome sequencing data 
and the Y-axis shows the MAF difference between the exome sequencing estimation and the genotyping 
validation. (a) Low-frequency SNV rs36051194. (b) Rare SNV rs3803339.
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duplicate removal differed considerably (Supplementary Table S1, S2). Re-running the sequencing with the same 
DNA library did not compensate for the loss caused by the high PCR duplicate rate. We nevertheless evaluated 
the influence of sequencing yields in order to test for the robustness of the pooling approach. As expected, fewer 

Figure 4.  SNV detection across variant detection tools and minor allele count comparison between the 
WGS and the Illumina array in the bull terrier WGS study. (a) Polymorphic and monomorphic markers in 
the affected or the unaffected pool detected with the three variant detection tools and the Illumina array. (b) The 
variants in blue are SNVs with MAF <​ 5% in the genotyping data and the variants marked in brown are SNVs 
with MAF >​ 5% in the genotyping data. (c) Percentage of allele count difference (absolute value) between two 
platforms among polymorphic loci.

Tool Sensitivity (%) Specificity (%) Precision (%) Negative Predictive Value (%) Accuracy (%)

SAMtools 91.04 88.09 79.74 95.02 89.09

GATK (ploidy =​ 20) 96.59 97.62 96.24 97.85 97.22

Freebayes (ploidy =​ 20) 96.79 97.73 96.42 97.97 97.37

Table 2.   Evaluation of variant detection tools in the Bull Terrier study.
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SNVs were detected in the WES pools with low read depth (Supplementary Table S7). However, the numbers of 
SNVs in the enrichment regions among pools were similar, with around 98.8–99.7% of total SNVs in the target 
regions. This suggests that our pooled sequencing was deep enough to discover the variants with average read 
depth at roughly 100x.

Among the three tested variant detection tools, SAMtools detected the lowest amount of SNVs, especially rare 
and low-frequency SNVs in the WES data. Moreover, in the comparisons of SNVs between WGS and Illumina 
array in the Bull Terrier study SAMtools exhibited lower sensitivity and specificity than the other two tools. 
Hence, SAMtools may not perform as well as GATK and Freebayes in rare variant detection. On the other hand, 
it worked well with detection and MAF estimates of common variants.

GATK and Freebayes detected more rare and low-frequency SNVs than SAMtools did, especially Freebayes 
identified large amount of singleton SNVs in the enrichment regions. The majority of Freebayes-specific SNVs 
were not annotated in the dbSNP database. The implausibly high proportion of unknown variants was also 
reported by another study18. Furthermore, almost all the Freebayes-specific SNVs had an extremely low variant 
detection quality, i.e. the probability of them being true polymorphic sites was very low. Consequently, quality 
filtering is critical for downstream processing of the SNVs detected with Freebayes. Even though there were a 
few false positive hits in GATK- and Freebayes-detected SNVs, both of the tools demonstrated high precision 
and accuracy in variant detection in general. Therefore, it may be advisable to identify rare and low-frequency 
variants in pooled DNA sequencing with one of these two tools. However, when using Freebayes, it is highly rec-
ommended to filter out the SNVs with low quality.

In general, the MAF estimates in pooled DNA sequencing were similar to those based on the individual gen-
otyping data in all three studies (Figs 2 and 4). In particular, the large number of SNPs in the Illumina array gave 
us an opportunity to confirm the high accuracy of variant detection and high concordance of MAF estimates on a 
genome-wide scale. In the WES studies, the MAFs of low-frequency variants (AAF between 1% and 5%) tended to 
be overestimated in pooled sequencing (Supplementary Fig. S7). One potential cause might be one of the criteria 
of filtering SNVs for experimental validation i.e. the obtained SNVs had the largest difference between estimated 
MAFs and the MAFs in large population. Selecting random SNVs would probably have yielded to better accuracy, 
as shown in the bull terrier study. The effect could also be due to sampling, i.e. our sample size might have been too 
modest. We demonstrated that randomly reducing the read numbers in one pre-eclampsia pool led to larger devi-
ation of MAF estimates in both directions in the selected pool (Supplementary Fig. S8). Moreover, the majority of 
the sites where the estimated MAFs differed considerably from the validated value tended to have lower read cover-
age, which indicated that sufficient read depth is critical for estimating allele frequency in pooled DNA sequencing.

Using the pooling layout setting in the two WES studies, we were able to detect SNVs with MAF of at least 
0.5% in the 100 samples. However, as part of the filtering, we excluded singleton variants that appeared in only 
one pooled sample because it was not possible to distinguish a real rare variant from a technical error. Therefore 
the SNVs with MAFs less than 1% in the 100 samples were not selected for validation and association analysis. 
This decision caused the loss of detection of a number of rare variants that might be associated with phenotype. 
Therefore, when dealing with very rare variant, some cautions should be taken. For example, the unequal amount 
of DNA materials in a pool could affect the accuracy of MAF estimates, and poor or unequal coverage across 
pools could also influence the total MAF estimates. Evenly distributing each pool to every lane for sequencing 
could avoid such bias. Moreover, sequencing errors and misalignments of divergent short reads were difficult to 
identify, therefore an independent validation should be arranged. In addition, pooling reads do not provide indi-
vidual haplotype information, which was needed for some gene burden tests.

In conclusion, by sequencing pooled DNA samples, we discovered a large amount of rare and low-frequency 
variants. The MAFs estimated from the pooled DNA sequencing data represented the MAFs from individual gen-
otyping data with reasonable accuracy in our study. Our results demonstrated that the pooling strategy could be 
a cost-effective method as an initial screening procedure for rare and low-frequency variant association studies.

Materials and Methods
DNA sample collection and extraction.  WES: A hundred Finnish women with pre-eclampsia were exome 
sequenced in 10 pools, each containing 10 DNA samples. Ninety of the study participants were selected from the 
Finnish Genetics of Pre-Eclampsia Consortium Cohort (FINNPEC). Ten women were from the pre-eclampsia 
family cohort used in previous linkage studies19,20. The genomic DNA was extracted from blood samples using 
a NucleoSpin Blood XL DNA extraction kit (Macherey-Nagel GmbH & Co.), a Chemagic Magnetic Separation 
Module I machine (Chemagen) or, in the case of the family samples, the phenol-chloroform method. The 100 
genomic DNA samples were divided into 10 pools according to the sub-phenotypes of patients without using bar-
codes. The 10 family samples were pooled in a single pool. One hundred severe scoliosis patients from Sweden were 
subjected to exome sequencing with the same pooling strategy. The sample collection and DNA extraction have 
been previously described17. In both exome sequencing studies, 800 ng of each sample was used for pooling and the 
concentration and purity of DNA in the samples were controlled using a Nanodrop spectrophotometer, agarose 
gel electrophoresis and Qubit fluorometer. All participants in the scoliosis and preeclampsia studies have pro-
vided a written informed consent. The study protocols have been approved by the regional ethical board in Lund 
(290/2006), regional ethical board in Stockholm (2009/1124-31/2), research ethics committee of Lund University 
(LU 363-02), Karolinska Institutet (496/02), and Coordinating Ethics Committee of the Hospital District of 
Helsinki and Uusimaa (149/E0/07). The methods were carried out in accordance with the approved guidelines.

WGS: EDTA-blood samples (~3 mL) were collected from twenty privately owned Finnish Bull Terriers. DNA 
was extracted using the semi-automated Chemagen extraction robot (PerkinElmer Chemagen Technologie 
GmbH). Sample collections and study protocols were ethically approved by the Animal Ethics Committee of State 
Provincial Office of Southern Finland, Hämeenlinna, Finland (ESAVI/6054/04.10.03/ 2012). Twenty samples,  
1 μ​g of each, were divided into two pools, 10 in each. One pool was composed of 10 Bull Terriers with compulsive 
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tail-chasing behaviour21, while the other consisted of 10 controls. The concentration and purity of DNA in the 
samples were controlled using a Nanodrop spectrophotometer, agarose gel electrophoresis and Qubit fluorometer.

Library preparation and NGS sequencing.  Library preparation and whole exome sequencing on the 
pre-eclampsia study have been previously described22. The same setting was applied to the scoliosis study as 
well17. Because of the high PCR duplication rate in the first round among the 10 pooled scoliosis DNA samples, 
technical replications were performed for whole exome sequencing with the same library in eight pools. The 
DNA libraries for the whole genome sequencing were prepared using TruSeq DNA kits (Illumina Inc.) and the 
two pooled genomic DNA sample sets were fragmented to 300 bp. The clustering was performed on a cBot cluster 
generation system using a HiSeq paired-end read cluster generation kit (Illumina Inc.). The technical replication 
was performed for each pool with a different DNA library preparation. Both whole genome and exome sequenc-
ing were performed on an Illumina HiSeq 2000. The base conversion was done using OLB v1.9 (Illumina Inc.).

NGS reads alignment.  Initial quality control of the sequencing data was performed by the sequencing ser-
vice provider (SciLifeLab Core Facility, Stockholm, Sweden). Paired-end Illumina sequence reads were aligned 
to the reference genomes with Burrows-Wheeler Aligner (BWA)23 version 0.6.1 for each pool. In the idiopathic 
scoliosis and pre-eclampsia studies, we used the National Center for Biotechnology Information (NCBI) human 
reference genome build 37 (GRCh37/hg19) as the reference genome. In the Bull Terrier study, the reference 
genome was Canis lupus familiaris genome assembly CanFam3.1. The threshold of the base quality score for read 
alignment was set to 20. SAMtools24 was used to remove PCR duplicates in each pool and evaluate read depths 
(version 0.1.18 for the WES studies and version 0.1.19 for the WGS study). Genome Analysis Toolkit (GATK)25 
version 2.7.2 was applied for local realignment and base recalibration. The reference variant supplied for recali-
bration was dbSNP 137 in WES. In the WES studies, we used BEDtools26 version 2.16.2 for randomly selecting 
70% and 80% reads in pre-eclampsia pool 7 to evaluate the influence of depth on variant detection and MAF 
estimation of the validated SNVs.

SNV detection.  We applied three tools, SAMtools mpileup function (version 0.1.19), GATK UnifiedGenotyper  
module (version 2.7.2 for the WES studies and version 3.2.2 for the WGS study), and Freebayes27 (version 0.9.21), 
to detect SNVs. All aligned reads from 10 pools in WES were simultaneously taken as input for variant detection 
tools. Uniquely mapped reads (mapping quality >​20) with base quality score >​20 were utilised for variant identi-
fication. The maximum read depth was set as 10,000x when using SAMtools and GATK. Besides the default dip-
loid setting in SAMtools and GATK UnifiedGenotyper detection, we also applied a ploidy setting of 20 in GATK 
UnifiedGenotyper and Freebayes detections since each pool contained 10 individual samples in all three studies.

Allele frequency estimation.  Two strategies were applied for allele frequency estimation: based on read 
depth or allele count. SAMtools, GATK and Freebayes counted the read depth of reference and alternative alleles 
across all pooled samples on each SNV locus when detecting the variants. In the WES studies, the total AAF for 
validated SNVs in 100 samples was estimated by calculating the percentage of reads supporting the alternative 
allele across all 10 pools. Additionally, when using GATK and Freebayes with ploidy setting for variant detection, 
we used the ratio of alternative allele counts to total allele counts (n =​ 200) from genotype prediction in all pooled 
samples as total AAF. In the Bull Terrier study, the same strategy was applied for estimating MAF: the minor allele 
counts from genotype information generated by GATK and Freebayes using ploidy setting were extracted in each 
pooled samples, then divided by total alleles in the pool (n =​ 20).

SNVs filtering for validation.  In the WES studies, candidate SNVs potentially associated with the phe-
notypes were selected for genotyping validation. The following filtering criteria were applied to select candidate 
rare and low-frequency variants: 1. Filtering out singleton SNVs in only one case pool or SNVs in more than one 
control pools; 2. Keeping rare and low-frequency functional SNVs with read depth >​10×​; 3. Filtering out the 
SNVs located in ‘unreliable genes’ according to the suspect gene lists28,29. In the scoliosis study, we further kept 
the relevant SNVs according to the Gene Ontology Consortium database30. In addition, we also selected the SNVs 
that were not present in the control pools by manual visualization in Integrative Genomics Viewer, IGV31,32. In 
the downstream filtering of the pre-eclampsia study we also included some common variants present in more 
than one pre-eclampsia pool, but in less than five scoliosis pools. Taking the scoliosis data as an external reference 
together with the population-based reference from 1000 Genomes project33 and SiSu project (www.sisuproject.fi),  
the ratio of MAFs in all pre-eclampsia samples to MAFs in the reference dataset >​1.5 was employed as the filter-
ing threshold. In addition, one nonsense variant and one SNV located in a linkage peak region identified in the 
previous studies19 were selected.

Genotyping.  The SNV validation by genotyping has been previously described in the scoliosis study17 and the 
pre-eclampsia study22. In brief, the variants selected for validation were genotyped using Sequenom MassARRAY 
system (San Diego, California, United States) on the samples included in the WES. The 20 Bull Terriers included 
in the WGS were genotyped individually at FIMM Technology Centre under routine quality control by Illumina 
GenomeStudio (FIMM Technology Centre, University of Helsinki, Helsinki, Finland) using Illumina Canine HD 
173k SNP array (San Diego, California, United States). PLINK software34 was used for analysing the genotyping 
data and for calculating MAFs.

Evaluation of variant detection with different tools.  In the WES studies, to evaluate the performance of 
different SNV detection tools, we utilised ANNOVAR35 package to annotate the detected SNVs with dbSNP 144 and 

http://www.sisuproject.fi
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the 1000 Genomes project (August 2015). The SNVs that were not annotated in dbSNP 144 were defined as poten-
tial novel SNVs. The allele frequencies of the samples with European ancestry in the 1000 Genomes project were 
used as a reference for categorising the SNVs. The SNVs with alternative allele frequencies (AAFs) less than 1% were 
classed as rare variants and those with AAFs between 1% and 5% were defined as low-frequency variants. The SNVs 
with AAFs over 5% were classified as common variants. SNVs without AF information in the 1000 Genomes project 
were defined as unknown. The shared SNVs were defined as polymorphisms with the same genotypes detected by at 
least two tools. The SNVs with more than one alternative allele were defined as multi-allelic SNVs.

In the Bull Terrier WGS study, to reduce the complexity of evaluating tool performance and estimated allele 
frequency, we filtered out the multi-allelic SNVs identified by any tool. We took the genotypes of 20 dogs from 
the Illumina array as true condition to evaluate the performance of the variant detection tools. The measurements 
used are defined as follows:

True positive (TP): the number of SNVs detected by both the WGS and the Illumina arrays; True negative 
(TN): the number of monomorphic loci that did not show SNVs in either the WGS or the Illumina array; False 
positive (FP): the number of SNVs detected by the WGS, but monomorphic in the Illumina array; False negative 
(FN): the number of SNVs detected by the Illumina array, but monomorphic in the WGS.

+
TP

TP FN
Sensitivityortruepositiverate(TPR):

(1)

+
TN

FP TN
Specificity(SPC) or true negative rate:

(2)

+
TP

TP FP
Precisionorpositivepredictivevalue(PPV):

(3)

+
TN

TN FN
Negativepredictivevalue(NPV):

(4)

+
+ + +

TP TN
TP FP TN FN

Accuracy(ACC):
(5)

Evaluation of MAF estimation.  In the WES studies, we used root-mean-square deviation (RMSD) to 
measure the difference between MAF estimated from exome sequencing and experimentally validated MAF by 
genotyping. The RMSD were calculated as below:

∑= − _
=

RMSD
n

MAF estimated MAF1 ( )
(6)i

n

i i
1

2

MAF: Experimentally validated minor allele frequency; estimated_MAF: minor allele frequency estimated 
from the exome sequencing data. In the Bull Terrier WGS study, we pooled minor allele counts of the 10 affected 
and 10 unaffected dogs according to the WGS setting and counted the minor alleles of each pooled sample in the 
array data. The allele count differences between the two platforms were calculated by directly comparing minor 
allele counts between the WGS and the Illumina arrays. Pearson correlation coefficient (r) was applied to measure 
the correlation between estimated MAF and experimentally validated MAF in all three studies.
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