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Impact of Degree Heterogeneity 
on Attack Vulnerability of 
Interdependent Networks
Shiwen Sun1,2, Yafang Wu1,2, Yilin Ma1,2, Li Wang1,2, Zhongke Gao3 & Chengyi Xia1,2

The study of interdependent networks has become a new research focus in recent years. We focus on 
one fundamental property of interdependent networks: vulnerability. Previous studies mainly focused 
on the impact of topological properties upon interdependent networks under random attacks, the 
effect of degree heterogeneity on structural vulnerability of interdependent networks under intentional 
attacks, however, is still unexplored. In order to deeply understand the role of degree distribution and 
in particular degree heterogeneity, we construct an interdependent system model which consists of 
two networks whose extent of degree heterogeneity can be controlled simultaneously by a tuning 
parameter. Meanwhile, a new quantity, which can better measure the performance of interdependent 
networks after attack, is proposed. Numerical simulation results demonstrate that degree 
heterogeneity can significantly increase the vulnerability of both single and interdependent networks. 
Moreover, it is found that interdependent links between two networks make the entire system much 
more fragile to attacks. Enhancing coupling strength between networks can greatly increase the 
fragility of both networks against targeted attacks, which is most evident under the case of max-max 
assortative coupling. Current results can help to deepen the understanding of structural complexity of 
complex real-world systems.

Complex network is an important tool used to describe and analyze the structure and dynamical behaviors of 
complex systems1–3. Since real-world complex systems are becoming increasingly dependent on one another, the 
study of interdependent networks has become another new active topic in network science4,5. Modern critical 
infrastructures are representative examples of interdependent systems, such as water supply, power stations, fuel 
supply, transportation, communication, etc. For example, considering the interdependence between power grids 
and communication networks, power grids need communication networks to transmit control signals and com-
munication networks need power grids to provide power supply. The investigation of interdependent networks 
has led to new discoveries that cannot be explained using a single-network framework6–14.

We focus on one fundamental property of interdependent networks: attack vulnerability. Albert et al.15 raised 
the study of complex networks under attacks, they found the “robust yet fragile” generic property of scale-free 
networks: scale-free networks display an unexpected degree of robustness to random failures, however, these 
networks are extremely vulnerable to intentional attacks. Their research has triggered numerous theoretical and 
experimental works in this topic16–25. However, most previous studies mainly focused on single, isolated net-
works. Based on percolation theory, recently, Buldyrev et al. proposed a general framework to investigate the 
attack resilience of a system composed of two networks whose nodes are mutually dependent26,27. In this model, 
attack on nodes is simulated by random node removal from one network. Due to the existence of interdependent 
links, an initial failure of only a small fraction of nodes in one network can lead to an iterative cascade of failures 
that cause both networks to become fragmented. Moreover, interdependent systems can react to random failures 
in a manner that is totally different from single networks, i.e., an interdependent system can exhibit a first-order 
(discontinuous) phase transition instead of the second-order (continuous) phase transition which is typical for 
single networks16,18.
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In reality, the topological features should be taken into account for a complete description of the networks. 
Thus it is of great importance to explore the effects of the structural properties of networks on attack vulnera-
bility of interdependent systems. Several recent papers focused on the influence of clustering28–31. Huang et al.28  
established a fully interdependent system of two networks with tunable clustering and found that clustering 
significantly increases the vulnerability. The impact of clustering on partially interdependent systems is also 
investigated29 and the percolation behaviors of clustered networks with partial support-dependence relations 
are analyzed based on the percolation theory30. Clustering coefficient is found to have a significant impact on 
robustness of the system particularly with strong coupling strength, however weak coupling strength can induce 
little influence31. The degree distribution is one of the most fundamental and important properties of complex 
networks. For example, single network with a broader degree distribution can be more robust to random failures, 
however, for interdependent networks, the broader the distribution is, the more vulnerable the networks become 
to random failures32,33. Zhou et al.34 found that the internal node correlations in each of the two interdependent 
networks significantly changes the critical density of failures that triggers the total disruption of the two-network 
system. In particular, the assortativity, i.e., the likelihood of nodes with similar degree to be connected within a 
single network, decreases the robustness of the entire system35,36. Additionally, Yuan et al.37 study the effect of 
the breadth of the degree distributions on network robustness by comparing two different attacking strategies: 
localized attack and random attack.

In this study, we continually focus on the effect of degree distribution on attack vulnerability of single and 
interdependent networks. An typical evolving network model, named extended Barabási-Albert model (eBA)38, 
is employed as network component of an interdependent system. eBA model is one of the variants of BA model39 
with a parameter p(p ∈  [0, 1]). By varying p, the heterogeneity of degree distributions of corresponding networks 
can be controlled. Considering that in real-world coupled systems not every node in one network depends on 
another network, thus a parameter named coupling strength q, defined here as the fraction of network nodes that 
are dependent on the other network, is introduced in the interdependent network model. Furthermore, other 
than random interdependency between networks, coupling preference is also taken into consideration on the 
performance of interdependent systems. Additionally, previous studies mainly focused on the impact of degree 
distribution on interdependent networks under random attacks, while we extend the study to the case of the more 
realistic attacking strategy, targeted attack on high-degree nodes.

Results
Vulnerability of single networks. Firstly, numerical simulations are performed to investigate the effect 
of degree heterogeneity on single complex networks. The responses of single eBA networks under targeted node 
removal are exhibited in Fig. 1. All the initial networks (N =  10,000 and 〈 k〉  =  6) are constructed by eBA model 
with m =  3. Each point is averaged over 10 independent realizations.

The relative size S of the giant connected component is usually used to probe the functional integrity of net-
works after attack. S is defined to be S =  N′ /N where N′  and N denotes the number of nodes in the largest con-
nected component and that in the initial network, respectively. Obviously, the larger S is, the more nodes remain 
in the largest component, which indicates the system is more robust under attacks. Figure 1(a) shows the relative 
size S of the giant connected components of single eBA networks with different parameter p after a fraction f of 
nodes removed from the networks. S decreases from S =  1 as f increases. At critical point f =  fc, S ≈  0, indicating 
that the network breaks into tiny isolated clusters. It can be observed from Fig. 1(a) that eBA networks with higher 
values of p are more vulnerable resisting targeted attack on high-degree nodes.

Also, considering the efficiency loss caused by the removal of nodes and links, efficiency loss el of the residual 
network after attack monotonically increases with f (Fig. 1(b)). Different changes of el with f can demonstrate the 
transitional behaviors of the vulnerability of eBA networks with different p against attacks. As observing from 
Fig. 1(b), removing the same percent of high-degree nodes from the networks will bring more efficiency loss 
on networks with higher values of p. The results demonstrate that targeted attack can bring more damage to the 
networks which are more heterogenous in connectivity.

In order to describe the fragment process of networks after attack in more detail, Ns, the number of isolated 
components breaking off from the main body, and 〈 s〉 , the average size of these isolated components, can be 
examined. For eBA networks with different parameter p, Fig. 1(c) shows the the changes of Ns as functions of f.  
As more nodes are removed from the networks, more and more nodes breaking off from the giant connected com-
ponents, thus, Ns increases with f. It can be observed that with the same value of f, Ns of networks with higher val-
ues of p are larger. For example, when f =  0.25, Ns ≈  250 for eBA network with p =  0.0, while Ns increases with p,  
and for network with p =  1.0, Ns is increased to Ns ≈  2600.

Meanwhile, as shown in Fig. 1(d), there exits a critical threshold value fc at which 〈 s〉  reaches its maximum 
value and the phase transition occurs according to the percolation theory2,16–18. During network fragmentation 
process, for small f, single nodes break off from the main body, so 〈 s〉  ≈  1. With the increase of f, the size of the 
fragments that fall off the main body increases, thus 〈 s〉  increases. At f =  fc, the giant component breaks into small 
pieces quickly S ≈  0, and the size of fragments 〈 s〉  peaks. As the continue removal of nodes f >  fc, isolated compo-
nents breaks apart continually resulting to a decreasing 〈 s〉 . As shown in Fig. 1(d), as p is increased, fc becomes 
smaller, which indicates that corresponding network become more fragile. For example, when p =  0.0, fc ≈  0.44, 
however, fc is observed to be about 0.26 when p =  1.0. Moreover, 〈 s〉  increases more drastically with increasing p.

To conclude, the numerical results in Fig. 1 show that, under intentional attacks, the fragility of the eBA 
networks also show a transition between that of the scale-free network (p =  1.0) and of the exponential network 
(p =  0.0). Moreover, heterogenous networks, that is, networks with higher values of p, are found to be more fragile 
resisting targeted attack on high-degree nodes.
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Vulnerability of fully interdependent networks. Next, we explore the influence of both degree het-
erogeneity and interdependency on the fully interdependent eBA networks, which corresponds to the case of 
coupling strength q =  1.0. According to the interdependent system model mentioned above, an interdependent 
system are constructed firstly in the numerical simulation. Two different networks, network A and network B, 
are separately constructed according to eBA model with parameters m =  3 and N =  2000. Meanwhile, the degree 
heterogeneity of each network can be controlled by parameter p, as p is changed from 0 to 1, the extent of degree 
heterogeneity of each network is enhanced greatly.

Additionally, different types of interdependency links are taken into account in the construction of interde-
pendent networks. As for random coupling, after the construction of two networks A and B, randomly choose a 
node in network A and a node in network B and set up an interdependent link between them, repeat this process 
until N interdependent links are added. Meanwhile, two kinds of coupling preference are also investigated. The 
first one, which is referred to as assortative coupling, means sorting nodes in network A and B in the descending 
order of node degree and connecting the nodes in A and B one by one. The other one, referred to as disassortative 
coupling, means sorting nodes in network A(B) in the descending(ascending) order of node degree and connect-
ing them one by one.

Figure 2 show the responses of fully interdependent eBA networks under targeted attacks on high-degree 
nodes with random (Fig. 2(a)), assortative (Fig. 2(b)) and disassortative (Fig. 2(c)) coupling, respectively. 
Considering the impact of degree heterogeneity of interdependent networks, as shown in Fig. 2, with all the three 
kinds of coupling, efficiency loss el of networks increases more rapidly with higher value of p, which demonstrates 
that corresponding networks are more vulnerable to attacks in targeted ways. Note that, this behavior is consistent 
with that of isolated eBA networks (Fig. 1).

Previous study has found that due to the existence of dependency links, a system composed of two interde-
pendent networks is much more fragile than each network in isolation26,27. For isolated eBA networks, curves 
in Fig. 1(b) show the efficiency losses with increasing f. At the critical values fc the communication efficiency 
is totally lost (i.e., el ≈  100%) and the whole network collapses. It can be clearly observed that as parameter p is 
changed from 0 to 1, fc ∈  [0.26, 0.44]. However, in Fig. 2(a), the responses of interdependent networks are differ-
ent, that is, fc ≈  0.32 when p =  0.0 and fc ≈  0.17 when p =  1.0. The decrease of fc indicates that dependency links 
between networks make both networks become more vulnerable with respect to attacks on nodes.

Coupling preference can also greatly affect the properties and behaviours of complex interdependent networks. 
Rather than random coupling (Fig. 2(a)), attack vulnerabilities of networks with assortative and disassortative 

Figure 1. Vulnerability of single eba networks with different p after a fraction f of nodes removed from 
the networks. (a) The relative size S of the giant connected component; (b) Efficiency loss (el); (c) Number of 
isolated connected components (Ns); (d) Average size of isolated connected components (〈 s〉 ). All the networks 
are with N =  10000 and 〈 k〉  =  6. Each point is averaged over 10 independent realizations.
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coupling are presented in Fig. 2(b,c) respectively. Assortative coupling can bring more efficiency loss caused by 
the same number of removed nodes compared with disassortative coupling. For example, at f =  0.1, for networks 
with p =  1.0, the efficiency loss is 60% in Fig. 2(b), however, for the same network with disassortative coupling 
(Fig. 2(c)), at f =  0.1, the efficiency loss is deceased to 50%. Moreover, compared with disassortative coupling, the 
values of fc are observed to be smaller than those of networks with the same parameters of m, N and p under assor-
tative coupling. For example, when p =  0.0, fc ≈  0.32 for assortative coupling (see Fig. 2(b)) but fc ≈  0.41 under 
the case of disassortative coupling (see Fig. 2(c)). All the simulation results strongly demonstrate that assortative 
coupling makes interdependent networks more vulnerable compared with disassortative coupling.

Vulnerability of partially interdependent networks. As for partially interdependent networks, a 
parameter q(0.0 ≤  q ≤  1.0) is employed to control the coupling strength between two networks. Moreover, dif-
ferent coupling types are considered separately including random, max-max, min-min, max-min and min-max 
coupling.

The critical values fc of removed nodes from the networks, at which the efficiency loss is almost 100%, is used 
as an important quantity to measure the vulnerability of corresponding systems. Obviously, the smaller the value 
of fc is, the more vulnerable the network is, and vice visa.

In order to explore the influence of both degree heterogeneity and interdependency, numerical simulations 
are performed to examine the responses of partially interdependent networks. Figure 3 presents the values of fc 
as functions of coupling strength q and parameter p of interdependent networks with different coupling types: 
random coupling (Fig. 3(a)), max-max coupling (Fig. 3(b)), min-min coupling (Fig. 3(c)), max-min coupling 
(Fig. 3(d)), min-max coupling (Fig. 3(e)). All the networks are with N =  2000 and 〈 k〉  =  6. Each point is averaged 
over 10 independent realizations.

From Fig. 3, when p is fixed, that is, the two interdependent networks are with the same extent of degree het-
erogeneity, with the increase of coupling strength q, fc is observed to decrease. The most evident decrease of fc can 
be observed under the case of max-max coupling (Fig. 3(b)). Since a smaller value of fc indicates that correspond-
ing network become more vulnerable against node attacks, the results demonstrate that strong interdependency 
between networks induces more vulnerability. Thus, due to the existence of dependency links, a system composed 
of two interdependent networks is much more fragile than each network in isolation no matter what kind of 
coupling preference is.

Figure 2. Vulnerability of interdependent eba networks with different p after a fraction f of nodes removed 
from the networks with coupling strength q = 1.0. Different coupling types are considered separately: (a) random 
coupling; (b) assortative coupling; (c) disassortative coupling. All the networks are with N =  2000 and 〈 k〉  =  6. Each 
point is averaged over 10 independent realizations. The legends in (b,c) are the same as those of (a).
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Additionally, with fixed q, fc is observed to decrease as p is increased, thus confirming that for partially inter-
dependent networks, when networks become more heterogenous in connectivity, they are also more vulnerable 
to resist node attacks. The vulnerability is basically rooted in the network’s connectivity. For heterogenous net-
works (p =  1.0), the connectivity is ensured by a few high-degree nodes, whose removal drastically alters the 
network’s topology and decrease the ability of the remaining nodes to communicate with each other. While in 
homogeneous network (p =  0.0), most nodes have approximately the same number of connections and contribute 
equally to the integrity of the topology. Due to the absence of nodes with large connections 

k k( ), targeted 
removal of hub nodes does not affect the structure of remaining nodes as drastically as in heterogenous 
networks.

The most vulnerable case occurs under the case of p =  1.0, q =  1.0 with max-max coupling (see Fig. 3(b)). 
When targeted attack is initiated in one network, the max-max coupling makes node failures quickly propagate 
between high-degree nodes of each networks, thus leading to rapid collapse of both networks. Nevertheless, 
the interdependent system with two networks coupled in a min-min mode are more robust than max-max and 
min-max coupling in particular for strong coupling strength q (see Fig. 3(e)). Since with min-min coupling 
low-degree nodes in network A and B are connected to each other, the failure of low-degree nodes in network 

Figure 3. The critical values fc as a function of the coupling strength q and model parameter p. Different 
coupling types are considered separately: (a) random coupling; (b) max-max coupling; (c) min-min coupling; 
(d) max-min coupling; (e) min-max coupling. All the networks are with N =  2000 and 〈 k〉  =  6. Each point is 
averaged over 10 independent realizations.
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A can only affect low-degree nodes in network B, having little effects on high-degree nodes in B. While, in 
max-max and min-max coupling, the failures of low-degree nodes in network A can lead to the failures of all the 
high-degree nodes in B, thus, making cascading failures propagate more quickly between two networks.

Discussion
The attack vulnerability of networks can be greatly influenced by their degree distributions and in particular 
by degree heterogeneity. In order to deeply understand the role of degree heterogeneity upon interdependent 
networks, An typical evolving network model, named extended Barabási-Albert model, is employed as network 
component of an interdependent system. eBA model can generate networks displaying a transition from expo-
nential to power-law form with respect to degree distributions. Also a parameter named coupling strength q, 
defined as the fraction of network nodes that are dependent on the other network, is introduced in the interde-
pendent network model. Furthermore, other than random interdependency between networks, coupling prefer-
ence is also taken into consideration on the performance of interdependent systems. In order to better describe 
the responses of interdependent networks after node removal, a new quantity concerning the communication 
efficiency is introduced.

Numerical simulation results demonstrate that degree heterogeneity can significantly increase the vulner-
ability of both single and interdependent networks. Networks with heterogenous degree distribution are more 
vulnerable against targeted attacks on high-degree nodes, and this result also holds for interdependent networks. 
Moreover, it is found that interdependent links between two networks make the entire system much more fragile 
to attacks. Enhancing coupling strength between networks can greatly increase the fragility of both networks 
against targeted attacks, which is most evident under the case of max-max assortative coupling. These results can 
improve the deep understanding of structural complexity of complex real-world systems, also give some insight 
to the guidance of designing resilient infrastructures.

Methods
Constructing Extended Barabási-Albert Networks. Network growth and preferential attachment(PA) 
are argued to the emergence of the power-law degree distribution (i.e., γ−~p k k( ) ) in Barabási-Albert(BA) scale-free 
networks39. Extended BA model(eBA)38 is one of the variants of BA model by introducing a parameter p(p ∈  [0, 1]). 
By varying p, the heterogeneity of degree distributions of corresponding networks can be controlled.

The iterative algorithm of eBA model is outlined as follows. Starting from m0 fully connected nodes, at each 
step t, a new node is added to the network with m(m ≤  m0) edges that link to m different nodes already existing in 
the network. The m links are attached in two different ways: i) with probability p, the PA rule is used, that is, the 
new node is connected to an existing node i according to the probability Π i =  ki/∑ jkj; ii) with probability (1 −  p), 
the new node is connected to a randomly chosen node.

The cumulative degree distributions, defined as = ∑ ′> ′
+∞P k p k( ) ( )k k , of eBA networks are shown in Fig. 4. It can 

be observed that the probability p in eBA model has great effect on the network’s degree distributions. Here, two 
special cases exist. If p =  1.0, the model reduces to the standard BA network with a degree distribution following a 
power-law form (see panel (a) in Fig. 4). On the other hand, if p =  0.0, the preferential attachment mechanism does 
not take effect and the model results in a network with a degree distribution following an exponential form: 

−~p k e( ) k m/  (see panel (b) in Fig. 4). In addition, noticeably, as p is changed from 0 to 1, corresponding networks 
display transitional behaviors from exponential to power-law form with respect to degree distributions.

In order to further study the effects of p on degree heterogeneity, two important indicators, σk
2 and kmax of the 

resultant networks are examined. kmax means the maximal value of the node degree in the whole network. σk
2 is 

Figure 4. Cumulative degree distribution P(k) of eBA evolving networks with N = 10,000 and 〈k〉 = 4 
for different parameter p. In panel (a) (log-log scale), P(k) follows a power-law form, which corresponds 
to one special case of eBA networks (p =  1.0). Panel (b) (in semi-log scale) presents the other special case of 
eBA networks (p =  0.0), whose degree distribution follows a exponential form. A higher value of p makes 
corresponding network more heterogeneous in connectivity.



www.nature.com/scientificreports/

7Scientific RepoRts | 6:32983 | DOI: 10.1038/srep32983

defined to be the variance of node degree sequence, i.e., σ = −k kk
2 2 2 . Figure 5 shows the dependencies of  

σk
2 and kmax on p. For 0 ≤  p ≤  1, as p increases, σk

2 is observed to increase monotonously, implying the increase of 
degree heterogeneity (see Fig. 5(a)). Meanwhile, with increasing p, kmax also becomes larger (see Fig. 5(b)). The 
increase of kmax with increasing p indicates the emergence of hub nodes, which have much more connections than 
the others. These results verify that a higher value of p makes corresponding eBA network more heterogeneous in 
connectivity.

Establishing Interdependent Network System. Following the framework established by Buldyrev et al.26,  
A partially interdependent system composed of two networks is proposed. Let network A and B be eBA networks 
with the same size NA =  NB =  N and the same average node degree 〈 kA〉  =  〈 kB〉  =  〈 k〉 . Also, A and B are with the 
same parameter p, i.e. pA =  pB =  p. Apparently, as p is changed from 0 to 1, the extent of heterogeneity of degree 
distributions of each network is changed greatly, i.e. a higher p makes corresponding network become more 
heterogeneous concerning degree distribution. Note that only one-to-one and symmetric interdependency is 
considered, which means that node ai in network A only depends on one node bj in B and vice visa. For partially 
coupling, only a fraction q of nodes in network A and B depends on each other. 0 ≤  q ≤  1 and q =  1 corresponds 
to the case of fully coupling.

A simple example of an interdependent system consisting of two networks A and B is shown in Fig. 6(a). 
Nodes in network A are represented by blue circles ({ai|1 ≤  i ≤  6}) and nodes in network B are represented by red 
squares ({bj|1 ≤  j ≤  6}). The intra-links in each network are represented as solid lines and the interdependent links 
between networks are represented as dashed lines. Figure 6(b–e) illustrate the iterative process of a cascade of fail-
ures induced by an initial attack on a single node a5 in network A. When a5 fails, all the intra-links (a3-a5),(a4-a5) 
and (a6-a5) in network A fail (Fig. 6(b)). This disconnects nodes a4 and a6 from the largest connected component 
of network A and therefore a4 and a6 fail. Due to the interdependency between nodes a4 and b4, the failure of a4 
triggers the failures of b4 and all its direct links (b3-b4) and (b4-b5) (Fig. 6(c)), which makes node b3 disconnected 
from the largest connected component of network B, hence b3 fails. The failure of b3 leads to the failures of the 
interdependent link (a3-b3), node a3 and two links (a1-a3), (a2-a3) (Fig. 6(d)). This procedure will not stop until no 
further node elimination occurs. The system eventually stabilises with the largest connected component (a1, a2) 
in network A and (b1, b2, b5, b6) in network B (Fig. 6(e)).

Furthermore, other than random interdependency between networks, coupling preference is also taken into 
consideration in our study:

•	 Random coupling. Randomly choose a node in network A and a node in network B and set up an interde-
pendent link between them, Repeat this process until N*q interdependent links are added.

•	 Assortative coupling. Two different kinds of assortative coupling, referred to as max-max and min-min cou-
pling, respectively, are considered. Sort nodes in network A and B in the descending order of node degree, 
as for max-max coupling, connect the fraction q of nodes with the highest degree in A and the fraction q of 
nodes with the highest degree in B; while for min-min coupling, the fraction q of nodes with the lowest degree 
in A and the fraction q of nodes with the lowest degree in B are connected.

•	 Disassortative coupling. Also, Two different kinds of disassortative coupling, max-min (the fraction q of 
nodes with the highest degree in A connect the fraction q of nodes with the lowest degree in B) and min-max 
(the fraction q of nodes with the lowest degree in A connect the fraction q of nodes with the highest degree 
in B), are considered.

Figure 5. The dependencies of σk
2 and kmax on parameter p of eBA networks with N = 10,000 and 〈 k〉  = 4.
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A New Vulnerability Measure - efficiency loss(el). When nodes are gradually damaged due to random 
failures or targeted attacks, a network may be split into several unconnected components. Thus, the vulnerability 
of networks is mainly measured by the connectivity integrity of the networks. Several measures are commonly 
used including the relative size S of the giant connected component, the number of isolated connected compo-
nents Ns, the average size 〈 s〉  of connected components except the largest one, and the critical fraction fc of nodes 
attacked at which the whole network collapses completely.

However, in realistic cases, these measures may overlooks situations in which the networks suffer from a big 
damage but they are not completely collapsing. Moreover, other than the study on the connectivity integrity, other 
properties of the residual nodes and links after attack should also be explored. Thus, in our study, a new quantity, 
aiming at measuring the communication efficiency of the residual network after attack, is introduced, which is 
used as an important vulnerability measure of interdependent networks.

Communication efficiency is one of the important quantities to measure how efficiently the information is 
exchanged over the whole network21,40. Suppose that information is exchanged between every pair of nodes and 
transmitted along the shortest path connecting them, communication efficiency εij is assumed to be inversely 
proportional to the shortest distance: εij =  1/lij, here, lij denotes the length of shortest path between nodes i and j.  
Thus, global communication efficiency ε of network G is defined as the average of εij over all pair of nodes, i.e., 
ε =  ∑ i≠jεij /(N(N −  1)), where N is the total number of nodes in the network.

Once ε(G) is defined as a measure of performance of network G, the damage caused by the removal of some 
components(node and/or edges) can be naturally evaluated by the a new measure, efficiency loss(el), which is 
defined as

ε ε

ε
=

−
el

G G
G

( ) ( )
( )

,
(1)

f0

0

where ε(G0) is the efficiency of the initial network before any attack and ε(Gf) is the final efficiency that is reached 
by the network due to the breakdown. Apparently, under the same level of damage, a larger value of el means that 
corresponding network is more vulnerable resisting attacks.
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