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A New Strategy for Analyzing 
Time-Series Data Using Dynamic 
Networks: Identifying Prospective 
Biomarkers of Hepatocellular 
Carcinoma
Xin Huang1,*, Jun Zeng2,*, Lina Zhou2, Chunxiu Hu2, Peiyuan Yin2 & Xiaohui Lin1

Time-series metabolomics studies can provide insight into the dynamics of disease development 
and facilitate the discovery of prospective biomarkers. To improve the performance of early risk 
identification, a new strategy for analyzing time-series data based on dynamic networks (ATSD-DN) in a 
systematic time dimension is proposed. In ATSD-DN, the non-overlapping ratio was applied to measure 
the changes in feature ratios during the process of disease development and to construct dynamic 
networks. Dynamic concentration analysis and network topological structure analysis were performed 
to extract early warning information. This strategy was applied to the study of time-series lipidomics 
data from a stepwise hepatocarcinogenesis rat model. A ratio of lyso-phosphatidylcholine (LPC) 18:1/
free fatty acid (FFA) 20:5 was identified as the potential biomarker for hepatocellular carcinoma (HCC). 
It can be used to classify HCC and non-HCC rats, and the area under the curve values in the discovery 
and external validation sets were 0.980 and 0.972, respectively. This strategy was also compared with 
a weighted relative difference accumulation algorithm (wRDA), multivariate empirical Bayes statistics 
(MEBA) and support vector machine-recursive feature elimination (SVM-RFE). The better performance 
of ATSD-DN suggests its potential for a more complete presentation of time-series changes and 
effective extraction of early warning information.

Metabolomics is an important branch of systems biology that studies the changes in holistic endogenous metab-
olites in response to physiological and pathological disturbances1,2. In the study of disease, metabolomics has 
shown great potential for exploring the mechanisms of diseases and discovering metabolic biomarkers3–7. Given 
that the process of metabolism changes dynamically, monitoring the dynamic responses of metabolites during 
disease development has attracted increasing interest in recent years.

Dynamic metabolomics studies based on time-series data could possibly provide insight into the interfa-
cial stage between normal states and diseases and further facilitate the screening of biomarkers for early diag-
nosis. However, optional data processing methods for complex metabolomics time-series data are limited. 
Metabolomics time-series data are tri-dimensional with a small number of samples, a large amount of features 
and limited time points8,9. These characteristics bring difficulties to statistical analysis. Thus, the development of 
efficient methods to analyze metabolomics time-series data is urgently needed.

To extract effective information from dynamic data, some two-way analysis methods have been used in previ-
ous studies, such as principal component analysis (PCA)10, partial least squares discriminant analysis (PLS-DA)11 
and support vector machine-recursive feature elimination (SVM-RFE). However, some important information 
may be missed due to a lack of information regarding the dynamic properties of these methods12, and they simply 
treat the time course data as a bi-dimensional problem instead of using time-related variation explicitly. This 
shortcoming has been recognized, and some improved algorithms were proposed to extract more information 
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from time-series data in metabolomics studies. Smilde et al.13 combined analysis of variance (ANOVA) and 
simultaneous component analysis to study the variation caused by different factors such as time, doses or combi-
nations, and then proposed ANOVA-simultaneous component analysis (ASCA) method to deal with time course 
problems. Nueda gave a time-series feature selection technique by calculating the leverage and the squared pre-
diction error based on the ASCA model14. Tai et al. proposed multivariate empirical Bayes statistical time-series 
analysis (MEBA) method to rank the features by calculating the Hotelling’s T2 15. Berk et al.8 used smoothing 
splines mixed effects (SME) and an associated statistic functional test to detect the features with differences 
between groups. Subsequently, some data analysis platforms also have been established16,17 to facilitate the study 
of time-series data. In our previous work18, we also proposed a weighted relative difference accumulation algo-
rithm (wRDA) in which an adapted weight was assigned to every time point for extracting early information 
regarding complicated diseases. These dynamic methods worked successfully in metabolomics, however, all of 
them only considered individual metabolites without taking feature association into consideration.

Biological processes are intricate and the relationships among features (such as genes, metabolites and  
proteins)19–22 are complicated and evolve with dynamic physiological processes. Thus, analyzing data from the 
perspective of networks could provide more information to understand the associations among features and 
discover important markers. Fang et al.23 calculated the information gain (IG) of a ratio between two genes to 
construct a network. The genes with the largest degrees were regarded as the important factors related to lung 
cancer. Netzer et al.24 also constructed a ratio network to select the nodes as biomarkers. If the ratio indicated a 
statistically significant difference between the classes (e.g., control and obesity groups), then there was an edge 
between the two corresponding features. Zuo et al.25 used a low order partial correlation that could reduce spuri-
ous edges to infer the network. It is worth noting that most network methods were applied to find key information 
in static-omics data that discriminated between the different groups, rather than the tracking of features with 
dynamic differential changes.

In this study, a novel strategy for analyzing time-series data based on dynamic networks (ATSD-DN) in a 
systematic time dimension was developed. The non-overlapping ratio (NOR) was introduced to quantify the 
changes in feature ratios with the process of disease development, and provide a novel basis for network con-
struction. Given that the ratio of two metabolites can be assumed to be the result of pathway reactions in which 
one metabolite is converted into another via single or multiple reaction pathways26, ATSD-DN constructed the 
networks based on the NOR changes of feature ratios along time points, which would facilitate the reflection of 
physiological or pathological changes. Dynamic concentration analysis and topological structure analysis were 
performed to analyze the networks and extract early warning information for the disease.

Hepatocellular carcinoma (HCC) is one of the most lethal malignancies27, and liver cirrhosis is the major 
precancerous lesion in the majority of HCC cases28. However, until now, early detection of HCC has been a great 
challenge, especially for the discrimination of precancerous cirrhosis and small malignant HCCs29,30. Developing 
new effective methods for the discovery of new biomarkers for early warning of HCC is urgently needed. Due to 
similarities with histological and genetic features of patients, a diethylnitrosamine (DEN)-induced HCC model 
can be used to imitate the process of stepwise hepatocarcinogenesis31–33. Considering the important role of the 
liver in ensuring the homeostasis of lipids11,34, delineating the changes in lipid metabolism would be useful to pro-
vide unique insight into early hepatocarcinogenesis and identify novel diagnostic targets. Therefore, ATSD-DN 
was applied to the time-series lipid data from a rat HCC model induced by DEN administration to define the 
potential lipid biomarkers for early diagnosis of HCC and validate the performance of ATSD-DN.

Results
The workflow of the ATSD-DN strategy is given in Fig. 1. After filtering the non-informative features by static 
analysis, ATSD-DN constructed the networks. ATSD-DN provides two techniques: dynamic concentration anal-
ysis and topological structure analysis, each of the two network analysis techniques was performed independently 
to define the informative feature ratios. The PCA score plots based on the feature ratios defined by each network 
analysis technique alone were used to show the performance of each technique. Finally, the common feature 
ratios defined by both two techniques were selected and the corresponding performance analysis was also given.

The construction of dynamic networks.  Time-series lipidomics data were analyzed to depict changes in lipid 
metabolism regarding the process of stepwise hepatocarcinogenesis. A histological examination confirmed that the 
DEN-induced hepatocarcinogenesis model was successfully produced in this study. The serial progression of hepato-
carcinogenesis was divided into three stages: week 8 (hepatitis (H) stage, T1), weeks 10–14 (cirrhosis (CIR) stage, T2–T4) 
and weeks 16–20 (HCC stage, T5–T7). The last week of each stage (i.e., T1, T4 and T7) was the typical time point of the 
corresponding liver disease stage, while the first weeks of the latter two stages (i.e., T2 and T5) were the interfacial points.

In three sub-problems of classification (H vs. CIR, H vs. HCC and CIR vs. HCC), 38 individual features were 
selected from the first process of noise filtering (i.e., static analysis) at typical time points by SVM-RFE35 (Table 
S1). The multivariate unsupervised PCA analyses were performed to show the discrimination between HCC 
(T5–T7) and non-HCC (T1–T4) samples (i.e., hepatitis and cirrhosis samples). The first two principal components 
captured 65.1% and 71.1% of the total variation from the PCA models based on original all features and these 38 
individual features, respectively (Figure S2A,B).

Subsequently, a total of 703 feature ratios were developed based on these 38 individual lipids. For each feature 
ratio, if the NOR value at two adjacent time points was greater than or equal to 0.85, the corresponding two individ-
ual lipids were linked with a red edge. If the NOR was less than or equal to −0.85, the edge was green. As only two 
time points were considered in each network construction and each time point had exactly the same samples, the 
sample probability pt was 0.5. Figure 2 shows the six networks along the 7 time points. In particular, each network can 
illustrate the changes in feature ratios at two continuous time points, instead of quantification at a single time point.



www.nature.com/scientificreports/

3Scientific Reports | 6:32448 | DOI: 10.1038/srep32448

Dynamic concentration and topological structure analyses.  These NOR-based dynamic networks 
were firstly analyzed from the perspective of dynamic concentration. In Fig. 2, the color of the edges in each 
network DN-i indicates the change trend in the effective range for each feature ratio with increased (red) or 
decreased (green) results at two adjacent time points. To trace the continuous changes of the most important 
interfacial stage between pre-cancer CIR and early HCC, networks DN-4 (T4–T5) and DN-5 (T5–T6) representing 
the cases in which liver disease developed from pre-cancer cirrhosis to HCC and continued to deteriorate were 
first emphasized. Therefore, 44 edges with the same color in networks DN-4 and DN-5 were picked, and the cor-
responding ratios were retained to construct feature subset 1. The edges with the same colors in DN-4 and DN-5 
represent continuous changes in the dynamics of the circulating metabolites from T4 to T6. The PCA analysis was 
then performed based on the 44 feature ratios to show the discrimination between HCC (T5–T7) and non-HCC 
(T1–T4) samples. The score plot shows that the non-HCC and HCC samples could be separated well. A better 
performance of the PCA model was obtained that 95.6% of the total variation could be explained (Fig. 3A).

In Fig. 2, the dynamics of circulating metabolites could also be analyzed from the perspective of topological 
structure of networks. In ATSD-DN, the edges between two features represent the dynamics of circulating metab-
olites over time26. Therefore, the network with the most edges among the 6 networks may represent the largest 
difference in the dynamics of circulating metabolites, which implies physiological or pathological abnormalities. 
The network with the most edges could be a key stage along the time course and the key point for a particular 
biological process. The top nodes with the largest degrees in the network would be the key factors signaling the 
onset of the key stage. For this topological structure analysis, it can be observed that the edge number of network 
DN-4 (T4–T5) (Fig. 2G) was the largest among the 6 networks that agreed with the development of HCC validated 
by the histological examination, indicating activated metabolic disturbance in the interfacial stage between CIR 
and HCC. Then, the top node with the largest degree (i.e., the number of edges) was chosen. Two nodes (free fatty 
acid (FFA) 20:5 and triacylglycerol (TAG) 56:9) were observed with the same largest degree in network DN-4. It 
is worth noting that FFA 20:5 was also the top one with the most accumulated degree in 6 networks (Table S2), 
indicating the continuous metabolic disturbance over time. As a result, 33 ratios associated with FFA 20:5 in 
network DN-4 was retained for subsequent analysis. The separation between non-HCC and HCC stages can also 
be obviously represented in the PCA score plot based on these 33 feature ratios with 96.9% of the total variation 
explained (Fig. 3B).

Definition and external validation of prospective biomarkers.  In the discovery set, the common 
15 ratios were selected by both dynamic concentration and topological structure analyses (Table S3). In the PCA 
score plot based on these 15 ratios, the HCC samples could be clearly discriminated from non-HCC subjects with 
the highest percentage of the total variation explained (i.e., 99.1%; Fig. 3C).

For univariate evaluation, 4 of the 15 ratios showed significant difference between the model and age-matched 
control groups at the HCC stage (t-test, p < 0.05) and between T4 and any time point at the HCC stage (paired 
t-test, p < 0.05) simultaneously. Detailed information of these 4 ratio candidates (lyso-phosphatidylcholine (LPC) 
16:0/FFA 20:5, LPC 18:1/FFA 20:5, phosphatidylcholine (PC) 34:2/FFA 20:5 and LPC 20:3-isomer2/FFA 20:5) is 
given in Table 1, and the metabolic trajectories of them are presented in Fig. 3D–G. In the model group, their 

Figure 1.  The workflow of ATSD-DN. 



www.nature.com/scientificreports/

4Scientific Reports | 6:32448 | DOI: 10.1038/srep32448

levels changed slightly at the pre-HCC stage and appeared to increase significantly in the early stage of HCC (T5). 
A significant difference between the model and age-matched control groups was also observed at the HCC stage 
(T5–T7). To further illustrate the ability of the 4 feature ratios to discriminate HCC and non-HCC samples, the 
receiver operating characteristic (ROC) curve was analyzed based on the results for the area under the curve 
(AUC) and the sensitivity and specificity at the best cut-off points (Table 2). The AUC values of these 4 feature 
ratios were 0.940–0.980 in the discovery set.

To validate the performances of the 4 biomarker candidates, 36 sera from another 6 model rats with 6 mon-
itoring time points (i.e., T1–T6) were analyzed. These 6 rats were sacrificed for histological examination with 
the validation of HCC at week 18 (T6). In this external validation set, the AUC values of these 4 candidates were 
0.934–0.983 for the discrimination of T1–T4 (pre-HCC stage) and T5–T6 (HCC stage), confirming the potential 
of these 4 ratio biomarkers for HCC diagnosis. Considering the similar metabolic characteristics of these 4 can-
didates and clinical practicability, the feature ratio of LPC 18:1/FFA 20:5 was found to be the potential biomarker 
with the best AUC value for discrimination. The chromatograms and MS/MS data for LPC 18:1 and FFA 20:5 are 
provided in Figure S4.

Comparison with previous methods.  To further evaluate the performance of ATSD-DN, this novel 
approach was compared with two time-series methods wRDA and MEBA, and a popular two-way technique 
SVM-RFE. The features with the top AUC values in the discrimination of HCC and non-HCC were retained from 
each method. Phosphatidylinositol (PI) 36:3 was selected by both wRDA and MEBA and TAG 56:8 was selected 
by SVM-RFE.

In the discovery set, 95.2% of HCC and 96.4% of non-HCC samples could be correctly diagnosed at the best 
cutoff value based on the results of ATSD-DN (i.e., LPC 18:1/FFA 20:5; Table 2). The AUC value of LPC 18:1/FFA 
20:5 was 0.980, which was better than 0.898 of PI 36:3 defined by both wRDA and MEBA and 0.852 of TAG 56:8 
defined by SVM-RFE (Fig. 4A–C). Similar comparison results in the validation set are also presented in Fig. 4D–F 
(the corresponding AUC values were 0.972, 0.833 and 0.833, respectively). The better performance of ATSD-DN 
may suggest its potential for a more complete presentation of time-series changes.

Discussion
HCC is one of the most prevalent malignancies with a high mortality rate27. Early diagnosis could greatly improve 
the survival rate36. However, unapparent early symptoms and individual differences bring difficulties to early dis-
crimination and seasonable treatment of HCC. Although ultrasonography and some typical tumor markers (e.g., 
α-fetoprotein) have been applied for clinical diagnosis and achieved some successes, they are far from ideal, with 
high false negative rates29,30. Developing new efficient methods such as discovering new biomarkers for the early 
screening of high risk populations is challenging and urgent. Dynamic metabolomics studies based on time-series 
data can trace the interfacial stage between pre-cancer cirrhosis and HCC and then facilitate the screening of 
biomarkers for early diagnosis.

Figure 2.  Networks along the time points. (A–F) are the dynamic network (DN-i) based on Ti and Ti+1  
(DN-i, 1 ≤ i ≤ 6), indicating the dynamic changes in feature ratios during the process of disease progression.  
(G) shows the edge number of each network DN-i in (A–F).
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To identify the early warning signals of disease deterioration, a new strategy for analyzing time-series data 
based on dynamic networks in a systematic time dimension was proposed and applied in a prospective cohort 
study using a diethylnitrosamine (DEN)-induced rat hepatocarcinogenesis model. In this study, noise and 
irrelevant features were first removed based on the pre-screen. Then, the feature ratio of each of two individual 
metabolites was developed. The change in the effective range for each feature ratio at two adjacent time points 
was depicted by the NOR value, which provided the novel basis for network construction. Then, these dynamic 
networks were used to trace and define the feature ratios with continuous differential changes from two different 
methods.

In this time-series dataset, to trace the continuous changes of the interfacial stage between CIR and HCC, 
the networks DN-4 and DN-5 inferred by T4, T5 and T6 representing the cases in which liver disease developed 
from pre-cancer cirrhosis to HCC and continued to deteriorate were first emphasized. In Fig. 2, these NOR-based 
dynamic networks were firstly analyzed from the perspective of dynamic concentration. The edges with the same 
colors in DN-4 and DN-5 represent continuous changes in the dynamics of the circulating metabolites from T4 

Figure 3.  The results of the dynamic concentration analysis and topological structure analysis. (A,B) are 
PCA score plots based on the results of dynamic concentration and topological structure analyses, respectively. 
(C) is PCA score plot based on 15 feature ratios selected by both dynamic concentration and topological structure 
analyses (Table S3). Non-HCC (black ▲), HCC (red ○). (D–G) are the metabolic trajectories (mean ± S.E) of LPC 
18:1/FFA 20:5, LPC 16:0/FFA 20:5, PC 34:2/FFA 20:5 and LPC 20:3-isomer2/FFA 20:5 in the discovery set. The 
black *indicates statistical significance between the control group and model group. The red & indicates statistical 
significance between the typical CIR (T4, week 14) and anytime points at the HCC stage (T5 − T7, weeks 16–20). 
*and &:p < 0.05, **and &&:p < 0.01. LPC, lyso-phosphatidylcholine; PC, phosphatidylcholine; FFA, free fatty acids.

Lipids 1 
(Numerator) Mode m/z

m/z 
error 

(ppm) tR (min)
Lipids 2 

(Denominator) Mode m/z

m/z 
error 

(ppm) tR (min)

p value

C16 vs. 
M16

C18 vs. 
M18

C20 vs. 
M20

M14 vs. 
M16

M14 vs. 
M18

M14 vs. 
M20

LPC 16:0 Pos 496.3398 3 1.71

FFA 20:5 Neg 301.2173 −2.8 1.51

7.25E-03 6.91E-04 4.57E-02 1.59E-02 3.01E-03 7.84E-03

PC 34:2 Pos 758.5695 4 6.84 1.45E-03 7.43E-04 4.28E-03 4.17E-02 1.13E-02 2.43E-02

LPC 18:1 Pos 522.3554 3.6 1.81 6.39E-04 3.68E-04 1.52E-02 9.05E-03 4.09E-03 1.29E-02

LPC 
20:3-isomer2 Pos 546.3554 −0.1 1.67 1.81E-02 4.52E-04 4.15E-02 7.96E-03 4.35E-03 1.96E-02

Table 1.   Prospective ratio biomarkers selected by ATSD-DN. These lipids were identified based on the 
accurate m/z, retention behavior and MS/MS fragmentation pattern.
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to T6, which were picked to facilitate the discrimination between the pre-HCC and HCC stages. Moreover, it is 
known that there usually exists a key point in disease development that warns the deterioration of the disease. 
The discovery of this key point and related key information are of great importance to study the disease. In 
Fig. 2, another perspective of topological structure analysis for these NOR-based dynamic networks showed that 
network DN-4 (T4–T5) was the key transition along 7 time points based on the comparison of edge numbers. 
The discovery demonstrates the validity of the approach that agreed with the development of HCC validated 
by the histological examination, indicating the activated metabolic disturbance in the interfacial stage between 
pre-cancer cirrhosis (T4) and early HCC (T5).

In the discovery set, four feature ratios, LPC 18:1/FFA 20:5, LPC 20:3-isomer2/FFA 20:5, LPC 16:0/FFA 20:5 
and PC 34:2/FFA 20:5, were defined by both dynamic concentration analysis and topological structure analysis, 
and validated with significant differences between the model and age-matched control groups at the HCC stage 
(t-test, p < 0.05) and between T4 and any time point at the HCC stage (paired t-test, p < 0.05). ROC analysis 
indicated the great potential of these four feature ratios for HCC discrimination (AUC = 0.980 for LPC 18:1/
FFA 20:5, 0.976 for LPC 20:3-isomer2/FFA 20:5, 0.968 for LPC 16:0/FFA 20:5 and 0.940 for PC 34:2/FFA 20:5). 
Furthermore, another batch of sera from the external validation set confirmed the effectiveness of the 4 ratio 
biomarkers for HCC diagnosis (AUC = 0.972 for LPC 18:1/FFA 20:5, 0.934 for LPC 20:3-isomer2/FFA 20:5, 0.983 
LPC 16:0/FFA 20:5 and 0.951 for PC 34:2/FFA 20:5). The feature ratio of LPC 18:1/FFA 20:5 was selected as the 
potential biomarker for further applications.

Monoglycerophospholipid LPC 18:1 can be formed via the hydrolysis of phosphatidylcholine (PC), which has 
an important role in cell signaling. FFA 20:5 (i.e., eicosapentaenoic acid) has been previously reported to improve 
steatohepatitis and inhibit the development of HCC34,37. The decrease in FFA 20:5 may indicate the risk of HCC. 
In this study, the combination of these two lipids using the biomarker pattern of the LPC 18:1/FFA 20:5 ratio was 
employed to improve the diagnostic performance. This ratio biomarker pattern would facilitate the magnifica-
tion of metabolic differences for discrimination. Moreover, compared with traditional individual features or the 
combination of metabolites from a single pathway, this combination pattern reflects the imbalance of the lipid 
network from different perspectives of physiology, which would be more informative and robust for HCC risk 
assessment38. Further validation is still needed with a larger cohort of specimens.

To evaluate the efficacy of this new strategy, ATSD-DN was further compared with previous methods (wRDA, 
MEBA and SVM-RFE). As shown in Fig. 4, the ratio biomarker from ATSD-DN fulfills the best discrimination 
of HCC and non-HCC samples with the best AUC values in both discovery and validation sets. Based on the 
comparison results, the better performance of ATSD-DN suggests its great potential for the extraction of early 
warning information. The advantages of ATSD-DN are as follows: i) this novel strategy is better for the more 
complete presentation of time-series changes. Rather than screening differentially expressed variables at isolated 
time points, as in two-way analysis methods, ATSD-DN can be used to trace and define feature ratios with con-
tinuous differential changes in a systematic time dimension. ii) The introduction of NOR based on the repeated 
time series measure facilitates the quantification of changes at two continuous time points and provides a novel 
basis for network construction. Thus, each network in ATSD-DN presents changes in feature ratios at two contin-
uous time points, which could better reflect the physiological and pathological changes. iii) ATSD-DN analyzes 
data from the perspective of networks which could possibly provide the insight into the complicated interplay of 
multiple molecules and be better to explore the development of diseases. Two ways of dynamic concentration and 
topological structure analyses can be flexibly selected to define the early warning information. iv) ATSD-DN is a 
data-driven learning method in which few parameters need to be set by the researchers.

It should be noticed that ATSD-DN traces the effective range of a feature ratio along the time points to exam-
ine the changes in the feature relationships, and time series repeated measures has been considered in the con-
struction of network. Different from other time-series methods such as ASCA which explores the contributions 
of different factors or multi-factors, ATSD-DN aims to analyze the networks and extract early warning infor-
mation for the disease by dynamic concentration analysis and topological structure analysis. In the analysis of 
metabolomics data, ATSD-DN focuses on the relationship of features to extract the early warning information, 
and it may ignore some metabolites which associate with the disease but have little relationship with others. 
Besides, it should be noticed that the present study based on the lipidomics analysis may drop some metabolites 
which their associate metabolites cannot be detected by the MS. The novel strategy which can combine the feature 
associations and independent features together should be further developed.

Feature ratio Date set AUC S.E

Hotelling: 95%

Sensitivity SpecitivityLower Upper

LPC 18:1/FFA 20:5
Discovery set 0.980 0.019 0.941 1.000 0.952 0.964

Validation set 0.972 0.023 0.926 1.000 1.000 0.833

LPC 16:0/FFA 20:5
Discovery set 0.968 0.032 0.905 1.000 0.952 1.000

Validation set 0.983 0.017 0.950 1.000 1.000 0.875

PC 34:2/FFA 20:5
Discovery set 0.940 0.030 0.881 1.000 0.952 0.750

Validation set 0.951 0.032 0.889 1.000 1.000 0.833

LPC 20:3–isomer2/ FFA 20:5
Discovery set 0.976 0.017 0.942 1.000 0.905 0.964

Validation set 0.934 0.044 0.849 1.000 0.833 0.958

Table 2.   The results of ROC analysis. ROC, receiver operating characteristic curve; AUC, area under the curve.
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In summary, ATSD-DN analyzes the time-series data from the perspective of networks to define the early 
warning biomarkers of complicated diseases. The application of ATSD-DN to the rat HCC metabolomics data 
demonstrated that it is an effective method for identifying potential metabolic biomarkers for early diagnosis. To 
improve the performance of early risk identification, more construction methods for dynamical networks can be 
employed in further studies.

Methods
To study the development of a disease and identify the early warning signals, both control and model samples 
were collected. Let C denote the control group, M denote the model group and Ti denote a time point, 1 ≤ i ≤ N, 
where N is the number of time points. Usually, as time goes on, the model samples may suggest different stages of 
the disease. Let Ns denote the number of the different disease stages along N time points.

ATSD-DN defines the prospective information of the disease deterioration based on the dynamic analysis 
of the networks along the time course. However, not all the features in the metabolic spectrum are involved in 
the network analysis. Non-informative features are filtered out by static analysis before network construction. 
ATSD-DN provides two independent techniques to identify the features of interest from the networks. Figure 1 
shows the procedure for ATSD-DN.

Static analysis.  It is known that noise and irrelevant features are two factors affecting the efficient analysis 
of metabolomics data. Given that the model samples experience Ns different biological stages, the features con-
taining little discriminative information from each two-stage segment are noise or unrelated to the problem and 
should be removed. Thus, ATSD-DN separates the problem into Ns(Ns − 1)/2 binary sub-problems and selects 
the features with discriminative information for each sub-problem to construct the networks for further analysis.

Network construction.  Let F = {f1, f2, …, fm} be the feature set and m be the number of the features. Then, fit 
(1 ≤ i ≤ m, 1 ≤ t ≤ N) indicates feature fi at time point Tt. Let feature ratio rijt = fit/fjt, 1 ≤ i < j ≤ m. A change in rijt 
at the adjacent time points could reflect a change in the biological procedure. Thus, ATSD-DN traces the effective 
range of a feature ratio along the time points to examine the changes in the feature relationships. The effective 
range of rijt is defined as follows39:

γσ γσ= 

 =

 − − + − 


− +E r er er u p u p( ) , (1 ) , (1 ) (1)ijt ijt ijt ijt t ijt ijt t ijt

where −erijt and +erijt  are the floor and the ceiling of the effective range of rijt. pt is the sample probability at time point 
Tt in the corresponding network construction. For the effective range containing least two-thirds of the samples, 

Figure 4.  Comparison among ATSD-DN, SVM-RFE, wRDA and MEBA. (A,C) are ROC curves based on the 
analysis of ATSD-DN and SVM-RFE in the discovery set, while (D,F) are the corresponding ROC curves in the 
validation set. (B) is the ROC curve from wRDA and MEBA with the same screening result in the discovery set, 
and (E) is the corresponding ROC curve in the validation set.
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γ is calculated as 1.732 according to Chebyshev Inequality39. The variables uijt and σijt are the mean and standard 
deviation of rijt, and the definitions are as follows:

∑ ∑= =
= =

u r n f f n/ ( / )/
(2)ijt

d

n

ijt
d

d

n

it
d

jt
d

1 1

∑σ = − −
=

r u n( ) /( 1)
(3)

ijt
d

n

ijt
d

ijt
1

2

where n is the number of the repeated time-series measures, rijt
d  is the value of feature ratio rijt at sample (or 

time-series) d (d = 1, 2, …, n), fit
d is the value of feature fi at time point Tt on sample (or time-series) d (d = 1, 2, …, 

n). For a change in the effective range of a feature ratio between two time points, there exist three cases (Figure S3). 
In the third case, the effective range of the feature ratio at one time point is included in the effective range at 
another time point (Figure S3C). This is far from ideal to illustrate the changes in the assumed pathway reactions 
related to the disease development. Therefore, only the first two cases (Figure S3A,B) are examined in ATSD-DN. 
Additionally, the changes in the effective range of the feature ratio at the adjacent time points Tt and Tt+1 
(1 ≤ t < N) are depicted by the non-overlapping ratio (NOR), which is defined as follows:

= −r L L L LNOR( ) ( )/ max{ , } (4)ijt t t t t1 2 1 2

where Lt1 =  +
+erij t( 1) −  −erijt and Lt2 =  +erijt  −  +

−erij t( 1). If |NOR(rijt)| is large, it indicates that the feature ratio rijt from 
time Tt to time Tt+1 changes greatly, suggesting the continuous metabolic disturbance for the assumed reaction 
between individual feature fi and fj. Thus, a network DN-t could be built based on Tt and Tt+1. The network is 
presented using the rational visualization method of hive plots which is accessed at http://www.hiveplot.net/. Let 
the features be the vertices of DN-t. For every pair of features fi and fj, if |NOR(rijt)| ≥ τ, then there is an edge 
between fi and fj in DN-t. NOR could also tell the direction of the feature ratio change. NOR(rijt) > 0 represents the 
feature ratio rijt increasing along two adjacent time points, and NOR(rijt) < 0 represents rijt decreasing. For sim-
plicity, if NOR(rijt) ≥ τ, the edge between fi and fj in DN-t is colored red, and if NOR(rijt) ≤ −τ, the edge is colored 
green. If the edge between the two individual features stays red (or green) in consecutive networks, it implies that 
the feature ratio of these two individual features increases (or decreases) continually along the time points.

Network analysis.  To define the prospective information for a complex disease, ATSD-DN analyzes the 
networks from two perspectives: dynamic concentration analysis and topological structure analysis.

Dynamic concentration analysis.  Dynamic concentration analysis investigates the changes in the feature ratios 
during the course of disease development. As a biological process is always in motion, some signals must exist 
before a specific time point in a complex disease, such as a malignant tumor. To identify the signals, ATSD-DN 
focuses on certain time points (without loss of generality, it is assumed to be Ne (0 < Ne < N) time points) before 
the typical time point Ts (1 < s ≤ N) of the disease. If the effective range of the ratio between the features along Ne 
time points continues to change in the same direction (such as continuous increasing or decreasing), it indicates 
a continuous metabolic disturbance. Therefore, to identify the early warning signal for the specific time point of 
disease, the networks DN-i (s − Ne ≤ i < s − 1) are examined, and the edges that remain the same color in DN-i 
are selected. The corresponding ratios are selected as the signals of the specific time point of the disease and con-
stitute feature subset 1.

Topological structure analysis.  The topological structures of the N-1 networks along N time points can also 
indicate the biological changes over time. If the edge number of DN-t (1 ≤ t < N) is large, it implies that many 
pathway reactions experience large changes in the reaction rate and the organism experiences a relatively drastic 
biological change. Thus, DN-t (1 ≤ t < N) with the most edges could be a key stage along the time course and may 
be the key point for a particular biological process. The nodes with the largest degrees in the network would be 
the key factors signaling the onset of the key stage. Thus, in topological structure analysis, ATSD-DN analyzes the 
edge numbers of N-1 networks along N time points and focuses on the one (DN-t, 1 ≤ t < N) that has the most 
edges. It ranks the nodes in DN-t according to their degrees in a descending order, and the top k ≥ 1 nodes are 
selected and the feature ratios corresponding to the edges associated with the k nodes are selected to constitute 
feature subset 2.

Each of the two network analysis techniques has its own merits for extracting early warning information. 
Therefore, they can be used flexibly to analyze the time-series data and to define the potential biomarkers inde-
pendently. It is also possible to use them simultaneously to get the feature subset by union or intersection of 
feature subset 1 and feature subset 2.

The application of ATSD-DN to metabolomics data from a rat HCC model.  ATSD-DN was applied 
to the time-series data to define the potential biomarkers for early diagnosis of HCC. The data include a discovery 
set and a validation set. ATSD-DN was performed on the discovery set to identify prospective information. The 
validation set was used to test the results of ATSD-DN on the discovery set.

Time-series data source.  In this study, time-series data were obtained from the animal model with DEN-induced 
stepwise hepatocarcinogenesis. This animal experiment was conducted at the experimental animal center of 

http://www.hiveplot.net/
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Dalian Medical University (Dalian, China), in compliance with national guidelines for the care and use of labora-
tory animals. The study protocol was reviewed and approved by the institutional reviewer board of Dalian Medical 
University, Dalian, China. And the experiment was carried out in accordance with the approved guidelines.

This rat model has been described detailedly in our previous report11,40. Briefly, a total of 55 male 
Sprague-Dawley (S.D.) rats were enrolled in the present study at the age of 42 days (i.e., week 0). Then, after two 
weeks of adaptation, all rats were randomly divided into control (n = 10) and model (n = 45) groups, adminis-
trated with saline and DEN at 70 mg/kg body weight respectively via intraperitoneal injection. The injection 
was performed once a week between week 2 and week 11, and 14 rats from the model group died during the 
administration.

Histological examination was performed to monitor the progress of stepwise hepatocarcinogenesis based on 
the sacrifice of model rats, until all of the surviving animals (n = 10 for control and n = 7 for model groups) were 
finally sacrificed in week 20. Collected liver tissues were fixed in 10% buffered formalin and embedded in paraffin 
for histological examination, which confirmed that the DEN-induced hepatocarcinogenesis model was success-
fully produced in the present study.

The collection of time-series sera set was conducted from week 8 to week 20 once every 2 weeks (i.e., 7 moni-
toring time points). The discovery data included 10 rats from the control group and 7 rats from the model group. 
A total of 119 time-series sera were then collected from all 7 monitoring time points once every two weeks from 
week 8 to week 20. Thus, the number of the time points for the discovery set was 7; i.e., N = 7. In the model group, 
the first time point T1 was week 8 (M8) and the 7th time point T7 was week 20 (M20). Similarly, C8 and C20 were 
week 8 and week 20 in the control group.

Furthermore, 36 sera from another 6 model rats were used for validation. These 6 rats were sacrificed for 
histological examination with the affirmance of HCC at week 18. Therefore, their sera were collected from 6 
monitoring time points (i.e., T1–T6).

Profiling of lipids by LC-MS analysis.  Time-series serum samples were analyzed to perform a non-targeted 
lipidomics study using an ACQUITY ultra-performance liquid chromatography (UPLC) system (Waters, USA) 
coupled with a tripleTOF™ 5600 plus mass spectrometer (AB Sciex, USA). Details regarding lipidomics analysis 
including serum preparation and instrument methods are provided in the Supplemental Information.

Data analysis.  Based on the accurate m/z, retention behavior and MS/MS fragmentation pattern, lipid species 
were first identified with LipidView and PeakView software (AB Sciex, USA). Then, the quantitative information 
for detected lipids was extracted using MultiQuan software (AB Sciex, USA) with a mass width of ± 0.01 Da and 
retention time width of ± 0.15 min. Before statistical analysis, the relative abundance of all lipids was calculated 
by normalizing to the area of corresponding internal standards. Finally, a time-series dataset was exported to the 
ATSD-DN strategy.

Seven time points include three different stages of liver disease (Ns = 3): hepatitis, cirrhosis and hepatocellular 
carcinoma. The features containing little discriminative information for every two-stage segment were removed. 
SVM-RFE was first applied on three binary sub-problems (H vs. CIR, H vs. HCC, CIR vs. HCC). Five-fold 
cross-validation was run fifty times for each sub-problem. In SVM-RFE, the kernel function and penalty fac-
tor were set as the liner kernel function and 1, respectively. The implementation of SVM was performed with 
LIBSVM (available at http://www.csie.ntu.edu.tw/~cjlin/libsvm). MEBA was from http://www.metaboanalyst.ca/
faces/Secure/upload/TimeUploadView.xhtml. All the algorithms were written in C++.

The selected feature subsets of the three sub-problems were united and used to infer the networks with 
τ = 0.85. T7 is the typical HCC stage and T4 is the typical CIR stage. It is known that HCC usually develops from 
CIR. Thus, Ne = 3 time points before typical HCC (Ts = 7) were studied to define the early warning information 
of for HCC by means of dynamic concentration analysis. Thus, DN-4 and DN-5 were inferred by these three time 
points. The feature ratios corresponding to the edges whose colors stay the same in DN-4 and DN-5 were selected 
to constitute feature subset 1.

The edge numbers of the 6 networks along the 7 time points were analyzed. The network that had the greatest 
number of edges was selected. Its nodes were ranked according to their degrees in descending order, and the top 
ranked node was selected. The ratios corresponding to the edges linked with the top ranked node were selected 
to constitute feature subset 2.

The compared methods.  wRDA.  The mean value and standard deviation were used to measure the dif-
ferences for a feature between the control and model groups18. An adapted weight was assigned to each time 
point for extracting early information on complicated diseases. Subsequently, a false discovery rate (FDR)41 was 
used to evaluate the selected feature subset. The lower the FDR, the better the selected features. In this study, the 
weights of non-HCC and HCC stages were 0.1 and 0.2, respectively. The top 30 features with the largest scores 
with FDR = 0% were constructed as the final feature subset.

MEBA.  A time-course analysis method based on multivariate empirical Bayes statistical which could evaluate 
the importance of the features by the Hotelling’s T2 15. The top 30 features with the largest Hotelling’s T2 were 
constructed as the final feature subset.

SVM-RFE.  This method has been widely applied to select discriminative features from the high-dimensional 
metabolomics data35,42–46. It removes the least important features iteratively. In each iteration, the weight of each 
feature in the current feature subset is re-measured based on the contribution to the hyper-plane, and r% features 

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.metaboanalyst.ca/faces/Secure/upload/TimeUploadView.xhtml
http://www.metaboanalyst.ca/faces/Secure/upload/TimeUploadView.xhtml
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with the smallest weights are removed. This process is repeated until the current feature subset is empty. The fea-
ture subset with the largest accuracy rate in the iteration is kept as the selected features subset.
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