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Investigation of mechanism: spoof 
SPPs on periodically textured metal 
surface with pyramidal grooves
Lili Tian1, Jianlong Liu1, Keya Zhou1, Yang Gao2 & Shutian Liu1

In microwave and terahertz frequency band, a textured metal surface can support spoof surface 
plasmon polaritons (SSPPs). In this paper, we explore a SSPPs waveguide composed of a metal 
block with pyramidal grooves. Under the deep subwavelength condition, theoretical formulas for 
calculation of dispersion relations are derived based on the modal expansion method (MEM). Using 
the obtained formulas, a general analysis is given about the properties of the SSPPs in the waveguides 
with upright and downward pyramidal grooves. It is demonstrated that the SSPPs waveguides with 
upright pyramidal grooves give better field-confinement. Numerical simulations are used to check 
the theoretical analysis and show good agreement with the analytical results. In addition, the group 
velocity of the SSPPs propagating along the waveguide is explored and two structures are designed to 
show how to trap the SSPPs on the metal surface. The calculation methodology provided in this paper 
can also be used to deal with the SSPPs waveguides with irregular grooves.

In optical frequency band, a smooth dielectric-metal interface can sustain surface plasmon polaritons (SPPs), 
which can propagate along the surface with high field-confinement. In microwave and terahertz frequency range, 
the metal behaves like a perfect electrical conductor (PEC) and SPPs cannot be confined on a smooth metal sur-
face. However, a textured dielectric-metal interface can bound another kind of surface electromagnetic waves, 
which are called spoof SPPs (SSPPs)1–3. The dispersion and electromagnetic distributions of SSPPs are similar to 
those of the conventional SPPs. It offers fascinating possibility of controlling terahertz wave and microwave with 
high field-confinement on metal surface. Like its analogues in optical frequency range, the properties of SSPPs 
in microwave or terahertz band are also sensitive to the geometric shape of the metal surface3–8, which makes it 
possible to realize novel functional devices by modulating the structure geometry. In the past ten years, the dis-
persion, excitation and propagation of the SSPPs have been investigated extensively3,5–9. Due to their intriguing 
properties and the potential applications in many areas10–13, SSPPs have become one of the hotspots in recent 
researches.

A metal block drilled with one-dimensional periodic grooves on the surface is one representative among 
various SSPPs waveguides3,5,6. It has been demonstrated that the properties of the SSPPs supported by this kind 
of waveguide is insensitive to the waveguide thickness, which provides great flexibility and practicability in fab-
rication14–17. In previous studies, SSPPs waveguides with rectangular grooves are the first to be realized due to its 
geometric simplicity. Afterwards, waveguides with trapezoidal, V-shaped, slanted rectangular and half-moon 
grooves have been proposed and studied both in theory and experiment. It has been shown that the shape of the 
groove has apparent influence on the field-confinement of SSPPs6,18–20. However, to our knowledge, there still 
lacks a unified theoretical description about what kinds of SSPPs waveguide will give a better field-confinement. 
In this paper, we propose a general model and formulas to calculate the dispersion relation of the SSPPs wave-
guide with pyramidal grooves. Rectangular groove is just one special case. Based on this model, the propagation 
constant and the field-confinement properties can be deduced readily. Such method can be extended to SSPPs 
waveguides with irregular grooves.

Results
Waveguides with periodic pyramidal grooves. Figure 1(a) shows the sketch of the waveguide corru-
gated with periodic pyramidal grooves. In this paper, we only consider the two-dimensional case where the  
waveguide is infinite in y direction. Figure 1(b) is the front view of a unit cell of the waveguide. The period 

1Harbin Institute of Technology, Department of Physics, Harbin, 150001, China. 2Heilongjiang University, College 
of Electronic Engineering, Heilongjiang, 150080, China. Correspondence and requests for materials should be 
addressed to S.L. (email: stliu@hit.edu.cn)

received: 29 April 2016

Accepted: 01 August 2016

Published: 25 August 2016

OPEN

mailto:stliu@hit.edu.cn


www.nature.com/scientificreports/

2Scientific RepoRts | 6:32008 | DOI: 10.1038/srep32008

constant is d. Each pyramidal groove can be divided into a group of slim rectangular grooves which are stacked 
sequentially. The number of the rectangular grooves is denoted by N (N =  4 in Fig. 1(a)). Correspondingly, the 
groove widths and depths are set as ai and hi (i =  1, 2, 3, … , N), respectively. In this paper, we regard the pyramidal 
groove to be upright or downward if its width increases or decreases gradually from top to bottom. If they are 
equal to each other, the pyramidal groove becomes a rectangular groove. These three types of pyramidal grooves 
are displayed in Fig. 1(b–d), respectively. The SSPPs waveguide with rectangular grooves has been studied exten-
sively3,5,21,22. Under the deep subwavelength condition λ0 ≫  d >  a (λ0 is the wavelength in free space, a is the 
groove width), the dispersion relation of the SSPPs is expressed as β − =k k a k h d/ tan( )/2

0
2

0 0
3,5,22. As shown 

in Fig. 1(b–d), such waveguide is just a special case of the waveguides with pyramidal grooves. In the following 
parts, we will give a more general analysis on the dispersion relations of the SSPPs for all these types of wave-
guides. Our derivation is under the PEC approximation.

Dispersion relation for the SSPPs waveguide when N = 2. First, we consider the case that the pyram-
idal groove is composed of two rectangular grooves, as depicted in Fig. 1(e). For the upright and downward 
pyramidal groove, the rectangular groove widths satisfy a1 <  a2 and a1 >  a2, respectively. It is convenient to divide 
the space into four regions (labeled as I, II, III and IV, respectively). The electromagnetic field of the SSPPs prop-
agating along x direction satisfies =

��
ˆH yHy and = +

��
ˆ ˆE xE zEx z. According to the MEM, the magnetic-field com-

ponent Hy in regions I, II, III and IV can be written as
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where βn =  2π n/d (|β| ≤  π /d) are the propagation constants and β= −q kn n
(1) 2

0
2  are wave vectors in z direction. 

n are integers and denote the diffraction orders. ψ x( )m
k( )  (k =  2, 3) correspond to the eigen-functions along 

x-direction within the rectangular grooves in regions II and III, given by
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Figure 1. (a) The sketch of the SSPPs waveguide with periodic pyramidal grooves that consist of N rectangular 
grooves. (b–d) Front views of a unit cell of the waveguides with upright pyramidal grooves (b), rectangular 
grooves (c) and downward pyramidal grooves (d). (e) The waveguide sketch when N =  2.
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The electric field component in the four regions can be obtained straight forwardly through =
∂
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Ex ik
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follows,
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Both Hy and Ex must satisfy the boundary condition of electromagnetic fields. Noting that Hy are not contin-
uous at the bottoms of the grooves, we obtain an equation set composed of five equations by applying the con-
tinuity condition at the interface z =  0, − h1 and − (h1 +  h2). The condition that makes the equations set solvable 
can yield the dispersion relation for the waveguide. The dispersion formulas we obtain are of very complicated 
forms and they are different for the waveguides with a1 <  a2 and a1 >  a2. Like the waveguide with rectangular 
grooves3,22,24, we use the deep subwavelength condition λ0 ≫  d >  ak−1 to simplify the formulas, under which the 
high-order modes of electromagnetic expansions in the three regions can be neglected. In this case, the dispersion 
relations have the same form for the cases of a1 <  a2 and a1 >  a2, which is written as
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Obviously, when a1 =  a2, equation (4) is simplified to
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and when a2 =  0, it reduces further to
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Equations (5) and (6) are dispersion relations for waveguides with rectangular grooves whose depths are h1 +  h2 
or h1, respectively.

From equation (4), we can see that the propagation constants β of the SSPPs sustained by the waveguide 
with pyramidal grooves are decided by the groove widths (a1, a2) and depths (h1, h2). When the groove depth h 
(h =  h1 +  h2) is small, only a fundamental SSPPs mode can exist. If the groove is deep enough, high-order SSPPs 
modes will appear. Each SSPPs mode corresponds to a frequency band that does not overlap with the others. For 
the fundamental mode, we can deduce from equation (4) that β increases with the increasing of a2 and decreasing 
of a1. As a consequence, the waveguide with upright pyramidal grooves has a larger propagation constant β than 
that of the downward pyramidal grooves with reversed widths. The values of β for the case of rectangular grooves 
(a1 =  a2) will fall in between the other two types. From equation (1), it can be deduced that larger propagation 
constant β means higher field-confinement in z direction. Namely, waveguides with upright pyramidal grooves 
has better field-confinement than those with downward pyramidal grooves. As the case becomes different and 
complicated when considering high-order modes, we will focus our discussions on the fundamental mode in this 
paper.

To confirm the theoretical analysis above, we give some examples and compare with the simulated results. In 
all designs, the period d is set to be 1 mm. The depth of the pyramidal groove is fixed at h =  h1 +  h2 =  10d to guar-
antee the deep subwavelength condition23,24. For convenience, we assume h1 =  h2. Five sets of (a1, a2), (0.4 mm, 
0.8 mm), (0.4 mm, 0.6 mm), (0.4 mm, 0.4 mm), (0.4 mm, 0.6 mm) and (0.4 mm, 0.8 mm), are taken for groove 
widths. The simulated dispersion relations are calculated using finite integration method. To make it more prac-
tical, we set the waveguide thickness to be 20d instead of infinity in the simulation. It has been demonstrated that 
the dispersion relations hardly change when the thickness is larger than 20d16. In Fig. 2(a), the black line is the 
light line, which represents the dispersion relation of light in the free space. The curves and symbols correspond 
to the analytical and simulated results, respectively. It can be seen that our analytical solutions are in good agree-
ment with the simulated results. And the dispersion curves for a1 <  a2 are always lower than those for a1 >  a2, 
which is consistent with our theoretical analysis.

Figure 2(b–d) depict the simulated Ex distributions of SSPPs on three different waveguides whose (a1, a2) are 
(0.4 mm, 0.6 mm), (0.4 mm, 0.4 mm) and (0.6 mm, 0.4 mm), respectively. The three Ex distributions are evaluated 
at 6.38 GHz, 6.84 GHz and 6.90 GHz. The corresponding propagation constants are π /d, 0.176π /d and 0.118π /d,  
respectively. The propagation constant remarkably increases when the mouth of the groove shrinks. The field 
distributions in Fig. 2(b–d) also demonstrate the fact that the waveguides with upright pyramidal grooves exhibit 
better field confinement.
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Dispersion relation for the SSPPs waveguide when N > 2. For the SSPPs waveguides drilled with 
pyramidal grooves that have more than two layers, the dispersion relation of the SSPPs can also be obtained by 
using the MEM. The direct derivation could be very complicated. In this paper, we utilize an analogy method. 
Comparing equations (4) and (6), we find that equation (4) can be obtained by replacing k htan( )0 1  in equation (6) 
with

+

−

k h k h

k h k h

tan( ) tan( )

tan( )tan( ) (7)

a
a
a
a

0 1 0 2

0 1 0 2

1

2
1

2

It indicates that the two-layer groove is equivalent to a single-layer groove whose width is a1 and its depth h1,2 
satisfies
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Based on this thought, the theoretical formulas for the waveguides with N =  2 can be extended to those with 
N >  2. First, we use an equivalent rectangular groove to replace the Nth and (N− 1)th layers. The width and depth 
of the equivalent groove are −aN 2 and −hN N1,  which satisfies
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Then the (N −  2)th layer and the equivalent layer could be replaced by a new equivalent groove whose width and 
depth are denoted as −aN 2 and − −hN N N2, 1,  that satisfy

=
+

−− −
− −

− −

−

−

−

−

k h
k h k h

k h tan k h
tan( )

tan( ) tan( )

tan( ) ( ) (10)
N N N

a
a N N N
a
a N N N

0 2, 1,
0 2 0 1,

0 2 0 1,

N

N
N

N

2

1
2

1

Figure 2. (a) Dispersion curves of SSPPs sustained by waveguides with pyramidal grooves that consist of two 
rectangular grooves. The curves and symbols represent analytical and simulated results, respectively. (b–d) The 
corresponding Ex distributions of the SSPPs on the xz planes. (b) a1 =  0.4 mm, a2 =  0.6 mm, f =  6.38 GHz, β =  π 
/d. (c) a1 =  a2 =  0.4 mm, f =  6.84 GHz, β =  0.176π /d. (d) a1 =  0.6 mm, a2 =  0.4 mm, f =  6.90 GHz, β =  0.118π /d.
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and so forth. Finally, the pyramidal groove with N layers could be equivalent to a single-layer rectangular groove. 
By this way, we can obtain the analytical dispersion relations for the waveguides with pyramidal grooves.

Likewise, we use the simulated results to verify such analogy. The period is still fixed at d =  1 mm. The groove 
depth of each rectangle groove layer is equal to the others, i. e., h1 =  h2 =  …  =  hN =  h/N (h =  10d). For the wave-
guide with upright pyramidal grooves, the width of the top rectangular groove is set as 0.1 mm. The widths of 
the rectangular grooves below increase evenly with a step of 0.1 mm. The waveguide with downward pyrami-
dal grooves is just the opposite. Figure. 3(a) shows the analytical and simulated results when N =  3 and N =  8. 
It is easy to identify that the analytical results match the simulated results well, which validates our analogy. 
Still, the field-confinement of the waveguide with upright pyramidal grooves is better than that with downward 
pyramidal grooves. Additionally, as the number of the layers increases, the field-confinement of the waveguide 
with upright pyramidal grooves gets better, while the field-confinement of its counterpart becomes weaker. 
The field-confinement properties for the different types of grooves can be easily understood if we equate the 
multi-layered groove to a single straight groove. The equivalent depth for the upright pyramidal groove is obvi-
ously larger than its counterpart. The deeper rectangular grooves correspond to higher field-confinement. 
Therefore, the waveguide with upright pyramidal grooves is of the highest field-confinement.

All the waveguides discussed above have the same groove depth that decuples the period. In this case, the ana-
lytical and simulated results for the fundamental modes are in complete agreement. However, as groove depths 
of the waveguides decrease, the eigen-frequency will increase and the error brought by the deep subwavelength 
approximation will grow. In fig. 3(b), dispersion relations for five waveguides with upright pyramidal grooves that 
have 6 layers are given to show how the deviation changes with the groove depths. Their structure parameters are 
set as the waveguides discussed above except the groove depths. Figure 3(b) shows the analytical and simulated 
results when the groove depth takes 10d, 5d, 3d, 1.5d and 0.8d. It can be seen that the analytical results move 
away from the simulated results gradually as the groove depths decrease. Fortunately, the differences between the 
analytical and simulated results are always within an acceptable range even when the depth is smaller than the 
period. It suggests that our theoretical formulas can be used to describe the characteristics of the waveguide with 
a proper precision.

Figure 4 depicts the dispersion relations of two waveguides with irregular pyramidal grooves that have 6 lay-
ers. The waveguide corresponds to the red curve is of a1,3,5 =  0.2 mm and a2,4,6 =  0.4 mm. The other has the widths 
a1,3,5 =  0.4 mm and a2,4,6 =  0.2 mm. The period cells of the two waveguides are shown in the insets. We can see 
that the analytical results are consistent with the simulated results. It indicates that our theoretical formulas are 
applicable to waveguides with multi-layer rectangular grooves whose widths do not change evenly. To verify the 
application of our formulas to high-order SSPPs modes, we also illustrate the dispersion curves for the 1st and 2nd 
modes in Fig. 4. They are denoted by the dash and dash dot curves, respectively. It can be easily observed that our 
formulas are applied to the high-order modes. As the frequency increases, the difference between the analytical 
and simulated results grows. This is because the error brought by the deep subwavelength approximation becomes 
larger.

Dispersion relations for waveguides with trapezoidal and slanted grooves. For the waveguide 
where the width of the grooves changes continuously from top to bottom, it is hard to get a single formula for 
the dispersion relation. An alternate method is to divide the groove into stacked slim rectangular layers and then 
calculate the dispersion relation using the analogy methods provided above. Two examples are given to check the 
validity of the proposed method.

The first one is a SSPPs waveguide with upright trapezoidal grooves18,19 whose top and bottom widths are 
at =  0.2 mm and bt =  0.8 mm, respectively. The second one is textured with slanted grooves6 whose width takes 
as =  0.2 mm. The orientation angle is denoted with θ, which takes 10° here. Both waveguides have a period con-
stant d =  1 mm and the groove depths are ht =  10d and hs =  5d, respectively. First, we use numerical simulation 
to get the dispersion relations of the SSPPs modes. The simulated results are denoted by symbols in Fig. 5. Then, 

Figure 3. (a) The dispersion curves of SSPPs supported by the waveguides with pyramidal grooves that have N 
(N >  2) layers. (b) Dispersion relations for the waveguides with upright pyramidal grooves which have 6 layers 
as the groove depth varies. The groove depth varies from 10d to 0.8d. The curves and symbols correspond to 
analytical and simulated results, respectively.
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we use the analogy method to get the analytical results. We divide the trapezoidal and slanted groove into N 
slim rectangular layers, as shown in the insets of Fig. 5(a,b). For the trapezoidal grooves, each layer has the same 
groove depth ht/N. The width of the top rectangular groove is at. The widths below increase evenly with a step of 
(bt−at)/N. For the slanted groove, the width and depth of the N th rectangular groove are 0.5as/cosθ  and 0.5assinθ , 
respectively. The rectangular layers above have the same width and depth, which are obtained through

θ
θ

θ−
−
−

a h a
Ncos

tan
1

sin (11)
s s s

and

θ θ−
−

h a
N

cos sin
1 (12)

s s

respectively. The dispersion relations for the equivalent waveguides are calculated using the theoretical formu-
las. The curves in Fig. 5 depict our analytical results as N takes 4, 8 and 16. It can be seen that the analytical 
results approach to the simulation results gradually as the layer number increases. Specially, when N =  16, the two 
results are nearly the same. It indicates that the dispersion relations for the waveguides with continuously changed 
grooves can be described by stacked layered grooves and can be calculated using the analogy method. This also 
explains why the dispersion curves of the waveguides with rectangular grooves lie between those with upright and 
downward trapezoidal grooves18,19.

A new method to trap SSPPs. When SSPPs propagate along the waveguide drilled with grooves, their 
group velocity vg, given by vg =  dω/dβ (ω is the angular frequency), is less than the speed of light. As illustrated 
in Fig. 2(a), each dispersion curve has an asymptotic frequency, at which the group velocity becomes zero. The 

Figure 4. The dispersion curves of SSPPs in the waveguide with irregular pyramidal grooves that have 
6 layers. The solid, dash and dash dot curves denote the fundamental, the 1st and the 2nd order SSPPs modes, 
respectively. The curves and symbols correspond to analytical and simulated results, respectively. Insets: The 
period unit of the waveguide with irregular pyramidal grooves.

Figure 5. (a) Dispersion relations of the waveguide with trapezoidal grooves and their equivalent waveguides. 
(b) Dispersion relations of the waveguide with slanted grooves and their equivalent waveguides. The symbols 
represent the simulated results for the waveguide with trapezoidal and slanted grooves. The curves denote the 
analytical results for the equivalent waveguides.
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asymptotic frequency varies with the parameters of grooves. This feature can be utilized to realize SSPPs trapping 
on the metal surface.

The group velocity derived from the equation (4) is written as
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We still set d =  1 mm, h =  10d and h1 =  h2. We consider two cases here. In the first case, a1 is fixed at 0.4 mm. 
We calculate the group velocity vg as a2 increases from 0.1 mm using equation (13). The results are displayed in 
Fig. 6(a). We can see that there has an asymptotic width for each frequency. When a2 approaches to the asymptotic 
width, vg tends to zero. The higher frequency corresponds to a smaller asymptotic width. In the second case, we 
fix a2 at 0.4 mm and calculate vg as a1 decreases from 0.9 mm using equation (13). The results shown in Fig. 6(b) 
indicate that the higher frequency corresponds to larger asymptotic width, which is opposite to the first case.

Utilizing the changing of the group velocity with groove widths, we design two waveguides to trap SSPPs, as 
shown in Fig. 7. Both of the two waveguides have 33 periods. Their period constant and groove depth are the 
same as above. The thicknesses of the waveguides take 20d. The right waveguide has fixed a1 =  0.4 mm, while its 
a2 increases evenly from 0.1 mm to 0.9 mm. The left one has constant a2 =  0.4 mm, while its a1 decreases evenly 
from 0.9 mm to 0.1 mm. We use the finite integration method to simulate the propagation of SSPPs. A plane wave 

Figure 6. (a) c/vg changing with a2 when a1 =  0.4 mm. (b) c/vg changing with a1 when a2 =  0.4 mm.

Figure 7. The simulated field distributions of the slow-wave structures at (a) f =  6 GHz and (b) f =  7.5 GHz. 
Insets: The one-dimensional |E| distributions along x direction 0.01 mm above the waveguide surface.
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propagating in x direction serves as the wave source. Figure 7(a,b) show the simulated electric field (|E|) at 6 GHz 
and 7.5 GHz, respectively. The insets depict the one-dimensional |E| distributions along x direction 0.01 mm 
above the waveguide surface. It is easy to identify that the light is trapped at the groove where the group velocity 
approaches zero, which is consistent with the results in Fig. 6.

Discussion
We have studied the waveguides corrugated with pyramidal grooves and provided a general method to calculate 
the dispersion relations for the waveguides with various types of grooves. According to the theoretical formulas 
we obtained, the width and depth of the rectangular groove in each layer can determine the dispersion relations. 
This explains why the groove shapes can influence the field-confinement of the SSPPs. Even though our theoreti-
cal formulas are derived for the waveguide with pyramidal grooves, it can be applied to waveguides with irregular 
grooves since a groove in any shape can be divided into slim layers. In addition, the formulas are also applied to 
high-order SSPPs modes.

It is worth to note that these conclusions above are based on the deep subwavelength approximation. For 
waveguides that do not satisfy the condition λ0 ≫  d, the dispersion relations obtained by our theoretical formulas 
have some deviation with the exact results. Fortunately, the deviation is within an acceptable range. The approxi-
mate dispersion relation formulas can always be used to explore the characteristics of the waveguide.

Another issue is that the metal is assumed as a PEC in the analysis for simplicity. Practically, we have to 
take into account the finite conductivity of the waveguide. In this case, the propagation constant of SSPPs 
becomes a complex value. Its real and imaginary parts represent propagation and loss, respectively. It has been 
demonstrated that the real part is close to that under the PEC approximation5, while the loss grows as the 
field-confinement increases25. In many cases, this part of loss is tolerable comparing with the superiority of the 
high field-confinement. The SSPPs can still propagate a long distance along the metal waveguide15,16. Thus, the 
PEC approximation has been widely used in theoretical analysis and numerical simulation.

For the waveguide drilled with rectangular grooves, the dispersion relations, especially the asymptotic fre-
quencies, are not sensitive to the groove width. Therefore, the rainbow-trapping effect in waveguides is always 
realized by changing the groove depths in previous literatures26–29. Our research results demonstrate that the 
dispersion relation of the SSPPs for the waveguide with pyramidal grooves can be modulated by the widths of 
grooves. It offers a new method to realize rainbow-trapping.

Methods
Model expansion method (MEM). The MEM is a numerical method to solve the Maxwell’s equations. It is 
widely used to deal with the transmission and scattering problems of the electromagnetic waves in the waveguides 
and photonic crystals. The main idea of the MEM is as follows. First, we use the Maxwell’s equations to find a set 
of complete functions in each region of the scattering structure. Then we use the superposition of these functions 
to meet the corresponding boundary conditions of scattering field and establish the coupling equations. Finally, 
we solve the coupled equations to get the expansion coefficient of each region, which represent the information 
related to scattering. In this paper, we use the MEM for modes analysis and do not solve the expansion coefficient 
of each region. The dispersion formulas of the propagation modes can be obtained through the condition that 
makes the continuity condition at work.

Analogy method. Analogy is a process of transferring information or meaning from a particular subject to 
another. In a narrower sense, analogy is an inference from one particular to another particular, which is opposed 
to deduction, induction and abduction. In this paper, we use the analogy method to get the dispersion formulas 
for the waveguide with pyramidal grooves that consist of multi-layer rectangular grooves. This method avoids 
complicated formulas derivation.

Simulation. The simulated dispersion relations and field distributions of the SSPPs are obtained with the 
finite integration method. In the simulation, for dispersion relations, the metal was treated as a perfect electric 
conductor (PEC) and only a period cell is used. In the periodic direction, the “periodic” boundary condition is 
used. While in the other directions, we use the “electric” boundary conditions. Eigen-mode Solver is used for 
solving. In the simulation for field distributions, we use the boundary condition of “open (add space)” and the 
Time Domain Solver.
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