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A new avenue for obtaining insight 
into the functional characteristics 
of long noncoding RNAs associated 
with estrogen receptor signaling
Liangcai Wu1,2,*, Qianqian Xu3,*, Haohai Zhang1,*, Ming Li2, Chengpei Zhu1, Minjie Jiang2, 
Xinting Sang1, Yi Zhao1,2,†, Qiang Sun3,† & Haitao Zhao1,†

Estrogen receptor signalling plays important regulatory roles in multiple mammalian physiological 
processes. Dysregulation of estrogen receptor (ER) expression and/or its associated signalling pathway 
is strongly associated with the development, progression, transition, and endocrine-resistance of 
breast cancer. Non-coding transcripts are essential regulators of almost every level of gene regulation. 
However, few long non-coding transcripts (lncRNAs) associated with the estrogen receptor signalling 
pathway have been well-described. We used array-based methods to identify 33 estrogen receptor 
agitation-related (ERAR) lncRNAs. A coding–non-coding gene co-expression network analysis 
suggested that 15 ERAR lncRNAs were associated with mitosis, DNA damage, and DNA repair. Kaplan–
Meier analysis indicated that five ERAR lncRNAs selected using the Random Forest-Recursive Feature 
Elimination algorithm were significantly correlated with endocrine resistance-free survival and distant 
metastasis-free survival as well as disease free survival. Our results suggest that ERAR lncRNAs may 
serve as novel biomarkers for guiding breast cancer treatment and prognosis. Furthermore, our findings 
reveal a new avenue by which estrogen receptor signalling can be further explored.

Breast cancer remains a major health issue among middle-aged and older women worldwide. The majority of 
breast cancer patients are diagnosed with estrogen receptor-positive (ER+​) breast cancer. Since Jensen et al.1 
first established a link between estrogen receptors and breast cancer in 1971, clinical and experimental evidence 
has confirmed that abnormal regulation of ER signalling is closely associated with breast cancer. For example, 
excessive exposure to estradiol (E2) and 27-hydroxycholesterol (a primary metabolite of cholesterol) can mediate 
breast cancer cell proliferation2,3. Conversely, blocking unduly activated ER signalling can significantly improve 
disease-free survival of ER+​ breast cancer patients4–6. Therefore, these observations highlight the importance of 
the ER signalling pathway in most types of breast cancer.

Emerging studies reveal that non-coding RNAs, such as long non-coding RNAs (lncRNAs), can serve as crit-
ical modulators of breast cancer development and progression. For example, HOTAIR—an antisense transcript 
from the HOXC locus—is up-regulated in breast cancer and is significantly associated with cancer metastasis and 
poor patient prognosis. The HOTAIR promoter region contains estrogen response elements, enabling estrogen 
receptor co-regulators such as CBP/p300 and MLL1 to bind the promoter of HOTAIR and activate its tran-
scription7. H19 is another well-known lncRNA that is significantly over-expressed in both ER+​ breast cancers 
and E2-treated breast cancer cell lines8,9. Therefore, lncRNAs associated with ER signalling may serve important 
regulatory roles in most types of breast cancer. However, few lncRNAs associated with ER signalling have been 
well-characterized10,11.
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A gene co-expression network can be modelled as an undirected graph in which each node represents a 
gene, while each edge represents the co-expression relationship between a gene pair12. A co-expression relation-
ship between a gene pair is established only when the two genes in the pair show similar expression patterns, 
their expression levels rise and fall together across samples, and the correlation coefficient reaches a statistical 
cut-off value. Bute et al. first employed this strategy for functional genomic clustering in 200013. Since then, this 
co-expression method has been widely employed to predict the functions of unknown molecules, including both 
protein-coding and non-coding genes12,14–17. This methodology provides an avenue for exploring the functional 
role of lncRNA genes.

We used an array-based method to explore ER-targeted lncRNAs and their potential functional roles. First, 
we identified ER-targeted lncRNAs in MCF-7 cells cultured with E2 and the full ER antagonist compound 
ICI-182,780. Based on the expression profiles of protein-coding genes and lncRNAs, we then constructed an 
array-based coding–non-coding gene co-expression (CNC) network to explore the potential functions of 
the estrogen receptor agitation-related (ERAR) lncRNAs identified. Finally, we conducted a survival analysis 
and found that the expression profiles of some ERAR lncRNAs were significantly correlated with endocrine 
resistance-free survival and distant metastasis-free survival of ER+​ breast cancer patients.

Results
Estrogen receptor alpha agitation-related (ERAR) lncRNA genes.  The MCF-7 cell line has been 
widely used to study estrogen signalling. Presently, raw gene expression data of MCF-7 cells cultured with eth-
anol, E2, or E2 +​ ICI-182,780 (ICI) respectively were obtained from the Gene Expression Omnibus database. A 
new chip-description-file provided by ncFANs version 216 was used to calculate gene expression profiles, through 
which the expression profiling of 2,812 lncRNAs and 17,282 protein-coding genes was accomplished simultane-
ously. Next, we used the limma package in R to identify genes with significant differential expression between 
E2- and ethanol-treated groups (E2 vs. ethanol), and the E2+​ ICI- and E2-treated groups (E2+​ ICI vs. E2). Only 
genes showing a >​ 2-fold change with Benjamini-Hochberg adjusted P-value <​ 0.01 were classified as significantly 
differentially expressed. As ICI functions as a full ER antagonist and can completely reverse E2 agitation activity 
on ER, only genes that were agitated E2 and reversed by ER antagonist ICI were regarded as ERAR genes. (Fig. 1). 
We identified 33 ERAR lncRNAs and 473 ERAR coding genes. Gene ontology biological process (GOBP) enrich-
ment analysis of these ERAR protein-coding genes revealed significant associations with the mitotic cell cycle, 
DNA replication, and DNA repair.

Characterization of ERAR lncRNA genes.  We next characterized the 33 ERAR lncRNA genes identi-
fied. Firstly, we queried each of the ERAR lncRNA genes in the NONCODE v4 and refseq database for detailed 
information. Among the 33 ERAR lncRNA genes are 24 long intergenic non-coding RNA genes and six anti-
sense lncRNA genes (Table S4). For example, EP300-AS1 and PTPRG-AS1 are two up-regulated ERAR lncRNA 
genes identified in the E2-treated group. In breast cancer, the overlapping protein encoding genes in the opposite 
sense of EP300-AS1 and PTPRG-AS1 act as an oncogene and a tumour suppressor, respectively18–20. Notably, 
PTPRG-AS1, the antisense lncRNA of PTPRG, has three isoforms (Fig. 2a), and its expression is closely associ-
ated with tumour grade and clinical outcome15 for breast cancer. EP300-AS1 is a 1,405 bp gene with three exons 
whose paired protein-coding gene is EP300. EP300 acts as a critical regulator of cell division and the cell cycle. 
EP300 is significantly overexpressed in breast cancer tissue and serves as an independent biomarker of poor 
prognosis for breast cancer patients. Consistently, inhibition of p300 can suppress the growth and invasion of 
breast cancer18,21.

Approximately 17.5% of miRNAs are located within lncRNAs, and these miRNAs possess a distinct processing 
mechanism22. We extracted the sequences of identified ERAR lncRNAs from the NONCODE v4 database. These 
sequences were examined using the UCSC genome browser and BLAST to identify the sequences of miRNAs 
located within ERAR lncRNA genes. For instance, the sequences of miR-29b2 and miR-29c are located within 
the lncRNA C1orf132 (Fig. 2b). MiR-29b is the major member of the miR-29 family and acts as a critical tumour 
suppressor and a core regulator of EMT in breast cancer23,24. Additionally, the sequences of miR-1251 and miR-
135A2 are located within the transcript of RMST. By targeting HOXA10, miR-135a promotes breast cancer cell 
migration and invasion25.

Functional prediction of lncRNAs based on the identity of their co-expressed protein-coding 
genes.  We further explored the functional roles of ERAR lncRNA genes by constructing a two-color CNC 
network based on an expression profile determined using a re-annotated Affymetrix Human Genome U133 
Plus2 array data, as previously described16,17. The final CNC network contained 11,008 protein-coding genes 
and 1,116 lncRNA genes. Among these nodes, 414,946 coding–coding edges, 25,631 coding–noncoding edges, 
and 572 noncoding–noncoding edges were formed with a Pearson correlation coefficient >​0.93 (Table S5, 
Figure S2). Next, a hub-based method was used to predict the function of these lncRNA genes. In this method, 
a single lncRNA gene is the hub of sub-network. lncRNA genes that were significantly co-expressed with ten or 
more protein-coding genes and showed at least one significantly enriched GOBP term were further examined 
(Figs 3a,b and S2, Table S6). Then, significantly enriched GOBP terms of neighbouring protein coding genes were 
assigned to the hub lncRNA gene as its predicted function. We parsed the topology of the whole co-expression 
network into separated hub-bused subnetworks and identified 15 ERAR lncRNA genes that met the above crite-
ria (corrected P value >​ 0.93) (Figure S2, Table S6). These genes were significantly (cumulative hypergeometric 
P-values16,26 <​0.01) associated with mitosis, gene expression, RNA metabolic processes, signal transduction, and 
protein transport (Fig. 3c, Table S6).
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Prognostic value of ERAR lncRNA genes.  ER signalling status significantly correlates with prognosis 
for ER+​ breast cancer patients, especially those who are sensitive to anti-estrogen therapy27. We next investigated 
whether ERAR lncRNA genes were of clinical importance by conducting Kaplan–Meier survival analysis on 
164 ER+​ breast cancer patients. We first employed the Random Forest-Recursive Feature Elimination (RF-RFE) 
algorithm introduced by Granitto et al.28 using the caret package in R and filtered the most predictive five features 
(as they maximize the accuracy to 0.76) for further analysis (Figure S1). The 164 ER+​ breast cancer patients 
were then divided into two groups using the k-means clustering method based on the expression profiles of the 
five selected ERAR lncRNAs. Finally, Kaplan–Meier curves of the two groups were plotted, and significance was 
estimated using the log-rank t-test (Fig. 4). ER+​ breast cancer patients were classified as either high- or low-risk 
for endocrine-resistant and distant metastasis based on the expression profile of the five ERAR lncRNA genes. In 
another 140 ER+​ breast cancer patients validation cohort, patients can also be classified into good and poor prog-
nosis groups by its expression profile (Figure S3). In particular, patients with high expression of C1orf132 and 
low expression of CTC-260E6.6, LOC100288637, RP11-48B3.4, and EP300-AS1 enjoyed a favourable prognosis.

Figure 1.  Identification of estrogen receptor alpha agitation related genes. (a,b) Protein-coding genes (a) and 
Long noncoding genes (b) that are significantly differentially expressed in the E2 vs. ethanol and E2&ICI vs. E2 
were regarded as ERAR genes. (c,d) Expression profile of 473 ERAR protein-coding genes and 33 ERAR lncRNA 
genes, ethanol-treated (grey), E2 treated (blue) and E2&ICI-treated (pink) groups.
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Discussion
The ER signalling pathway plays a critical role in mammalian physiological processes. Clinical and experimental 
studies have shown that dysregulation of ER expression and/or its associated signalling pathway is strongly asso-
ciated with breast cancer development, progression, transition, and endocrine resistance29,30. However, few stud-
ies have examined ER-targeted lncRNA genes and their functions10. We used an array-based method to identify 
ERAR lncRNA genes and employed an array-based gene co-expression method to explore the potential functions 
of these lncRNA genes. Kaplan–Meier survival analysis revealed that the expression pattern of several ERAR 
lncRNA genes could classify ER+​ breast cancer patients into high- or low-risk endocrine-resistant and distant 
metastasis groups.

Microarrays have been widely used to assess gene expression abundance. Even though expression lev-
els of lncRNA genes are generally lower than those of protein coding genes, multiple studies have employed 
microarray-based techniques to assess expression of lncRNA genes31–33. The capacity for microarrays to detect 
gene expression signals is affected by various factors, and biases are generated depending on the platform used 
and the source of data34. Presently, we selected ER positive datasets with prognostic information on the same 
microarray platform from the same laboratory or medical centre in an attempt to reduce bias to an extent.

High-throughput sequencing methods are powerful tools for studying whole-genome transcripts, including 
the transcripts of both protein-coding and non-coding genes. Nevertheless, the costs associated with these tech-
niques may prevent their application to large-scale sampling. Instead, microarrays are a relatively economical 
alternative means to assess long non-coding transcript expression. Arguably, detailed analysis of human genome 
transcripts revealed that microarray probes map perfectly to non-coding transcripts32,35. This could potentially 
ease to determine the expression profiles of both protein-coding and non-coding genes simultaneously.

Currently, the NONCODE database lists 167,150 human lncRNAs transcript from 101,700 lncRNA genes36. 
However, only limited numbers of lncRNA genes were involved into analysis in re-annotated microarray. In our 
re-annotation microarray only nearly 3 percent of total known lncRNAs genes were annotated. This may be a 
limitation of our study. In the further analysis, RNA-Seq should be performed to identify ERAR lncRNA and its 
co-expressed genes. Nevertheless, the use of hub co-expression network analysis may overcome this limitation to 
some degree. This is because the hub-based method defines a single lncRNA as the hub of a co-expression net-
work, and functional enrichment of neighbouring genes is assigned to the hub lncRNA gene.

Antisense lncRNAs are long non-coding transcripts from the antisense strand of protein-coding genes. They can 
serve as positive or negative modulators of paired protein-coding genes37,38. We identified six antisense lncRNAs,  
with PTPRG-AS1 and EP300-AS1 being two of the most interesting. PTPRG, the paired protein-coding gene of 
PTPRG-AS1, is a tumour suppressor gene frequently down-regulated in human breast cancer. In vitro studies 
using MCF-7 cells have shown that PTPRG is significantly down-regulated by E2, and high expression of PTPRG 
can repress cell growth20. Additionally, a recent study demonstrated that PTPRG-AS1 is significantly differen-
tially expressed between ER+​ and ER−​ breast cancers, and is closely associated with tumour grade and clinical  
outcomes15. EP300-AS1, the antisense transcript of the protein-coding gene EP300, was significantly up-regulated 
in our poor prognosis group. EP300 encodes p300 protein, which plays a critical role in cell division and the  
cell cycle18,19. Inhibition of p300 can suppress the growth and invasion of breast cancer18,21. Moreover, CBP/p300 
can activate HOTAIR transcription by binding to its promoter region7. Further studies should explore the inter-
action between these antisense non-coding transcripts and their paired sense protein-coding transcripts.

Although most miRNAs are co-expressed from the introns of their host gene mRNAs39, Dhir et al. revealed that 
multiple miRNAs are derived from lncRNAs (lnc-pri-miRNAs)22. For example lncRNA H19 is the precursor of 
miR-67540. MiR-29b is a member of the miR-29 family which is generated from both chromosome 7q32.3 (miR-291)  
and chromosome 1q32.2 (miR-292). Presently, we identified the sequence of miR-29b2 (a main member of 

Figure 2.  Genomic context of PTPRG-AS1 (a) and C1orf132 (b). The sequences of miR-29b and miR-29c 
located within C1orf132 lncRNA.
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miR-29b41) within C1orf132. MiR-29b is a tumour suppressor and a core regulator of EMT. Additionally, repres-
sion of miR-29b enhances tumour invasion and metastasis in breast cancer23,24. We found that C1orf132 was 
significantly down-regulated in the poor prognosis group. Furthermore, Zhao et al. have reported that miR-29b 

Figure 3.  Predicting the function of lncRNAs based on the two color co-expression network. (a,b) Predicting 
of the function of C1orf132 based on the Hub network. (c) Frequency of the predicted functions of 15 ERAR 
lncRNA genes.

Figure 4.  Kaplan-Meier survival curves for resistance-free survival (a) and distance metastasis-free survival. 
(b) between two groups that were clustered based on five lncRNA expression patterns.
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serves as a critical modulator of the NF-κ​B–miR-29b–p53 pathway and is significantly down-regulated in ER+​ 
breast cancer41. Consistently, we found that expression of C1orf132 significantly correlated with levels of UBE2N, 
TNFSF10, and BST2—which are all enriched in the Iκ​B kinase/NF-κ​B cascade GOBP term in the hub network 
analysis. These findings suggest that the C1orf132 lncRNA may serve as a precursor of miR-29b2 and regulate the 
NF-κ​B signalling pathway to ultimately play a critical regulatory role in breast cancer. Further experiments will 
be necessary to identify the regulator role of C1orf132 breast cancer.

Feature selection, also known as variable selection, is the process of selecting a small subset of relevant fea-
tures for further analysis with the minimum possible generalization error. We employed the popular RF-RFE 
algorithm28 to automatically select the most relevant of the 33 ERAR lncRNA genes identified for further Kaplan–
Meier survival analysis. In this analysis, individual genes mean individual predictive power of resistance-free 
survival and distant metastasis-free survival are only 0.5724 ±​ 0.10146 and 0.6178 ±​ 0.08422, respectively. 
While, C1orf132, CTC-260E6.6, LOC100288637, RP11-48B3.4, and EP300-AS1 were the top five predictive 
lncRNA genes, with maximum accuracies of 0.763 and 0.764 for predicting resistance-free survival and distant 
metastasis-free survival, respectively (Figure S1). Kaplan–Meier survival analysis of both cohorts revealed that 
these five ERAR lncRNA genes do have clinical relevance. However, because of the limited number of total lncR-
NAs able to be detected by the microarray chip, only 33 total ERAR lncRNA genes were identified. These genes 
may therefore represent only a small subset of total ERAR lncRNA genes. Nevertheless, our results demonstrate 
the importance of ERAR lncRNA genes and provide valuable information for further exploration of the func-
tional role of ERAR lncRNA genes in human breast cancer.

Dataset preparation.  The raw datasets (CEL format) used in this study can be downloaded from the Gene 
Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo). The datasets from GSE35428 (E2, E2 +​ ICI, 
ethanol treated group) were used to identify ERAR lncRNA genes. The GSE46924 were employed to construct 
gene co-expression network. Both GSE35428 and GSE46924 were contributed by the same laboratory. Datasets 
GSE9195 and partial of GSE6532 (only GPL570 platform) were used to validate the clinical value of these ERAR 
lncRNA genes. Both GSE9195 and GSE6532 (GPL570 platform) were contributed by the same Guys Hospital 
(GUYT), London, United Kingdom. All 164 patients were diagnosed with ER +​ breast cancer and received 
tamoxifen therapy (Table S7). Another 140 ER +​ breast cancer patients with detailed clinical information from 
GSE31448 were used to further test the prognosis value of five ERAR lncRNA genes.

Array probe annotation and differential expression analysis.  A re-annotated chip-description-file 
(CDF) of Affymetrix HG-U133 plus 2.0 microarrays was provided by the ncFANs v2 website (http://www.bioinfo.
org/ncfans/download.php). Using this file, the expression levels (log2-transformed) of both 17,282 protein-coding 
genes and 2,812 lncRNA genes could be calculated at the same time. The microarray analysis was performed with 
the Affy and limma Bioconductor packages42,43 after probe-level data were normalized via the Robust Multichip 
Average (RMA) method. Significant differentially expressed genes were detected by one-way ANOVA, FDR was 
corrected by Benjamini-Hochberg method. Only genes showing a fold change >​2.0 and Benjamini-Hochberg 
adjust P value <​ 0.01 were regarded as Significant differentially expressed genes.

Gene Ontology enrichment analysis of protein-coding genes.  Differentially expressed protein-coding 
genes were submitted to the Database for Annotation, Visualization and Integrated Discovery (DAVID), v6.744, to 
perform Gene Ontology enrichment and visualized with the Enrichment Map plug-in in Cytoscape45.

Co-expression network construction.  The expression profile including both coding and non-coding 
genes was used to construct the coding-non-coding gene co-expression network. Based on the expressional 
variance of each gene (both coding and non-coding genes), the top 75 percent (a default parameter of ncF-
NAs)16,17 were selected for further analysis. The Pearson correlation coefficient (Pcc) was employed to estimate the 
co-expression relationship of each gene pair. In ncFANs v2, “Correlation cut off value” is a user-defined cut-off. 
We have tried the cut off value from 0.95 to 0.93 to obtain more predict function of ERAR lncRNA gene. The 
P-value of each Pcc was estimated using Fisher’s asymptotic test and adjusted with the Bonferroni multiple test 
correction. Only gene pairs with a p ≤​ 0.01 and a Pcc value in the top or bottom 0.05 percentile for each gene 
were regarded as co-expressed gene pairs16,17 The hub method provided by ncFANs v2 was used to predict the 
function of co-expressed lncRNAs. Briefly, single lncRNA is the hub co-expression network. LncRNAs that sig-
nificantly co-expressed with ten or more protein-coding genes and showed at least one significantly enriched 
GOBP term were further examined. Significant enriched (cumulative hypergeometric P-value17,26 <​0.01) gene 
ontology biological process (GOBP) of its neighboring protein coding genes were assigned to the lncRNA genes 
as its predicted function.

Analysis of the clinical importance of ERAR lncRNAs.  First, the expression profiles of 33 ERAR 
lncRNA genes in 164 ER +​ breast cancer patients were extracted. Next, we used the Random Forest-Recursive 
Feature Elimination (RF-RFE) algorithm introduced by Granitto et al.28 in R caret package to select the most 
important features (lncRNAs). Then, based on the expression profiles of the selected lncRNAs, k-means clustering 
was performed to divide the 164 ER +​ breast cancer patients into 2 groups. Finally, Kaplan-Meier survival curves 
were plotted with the R package survival, and the P value between the two curves was estimated with log-rank 
tests. In another 140 ER +​ breast cancer patients cohort, the same k-means cluster and Kaplan-Meier survival 
analysis were performed based on the expression profile of five lncRNA genes.

http://www.ncbi.nlm.nih.gov/geo
http://www.bioinfo.org/ncfans/download.php
http://www.bioinfo.org/ncfans/download.php
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