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Super-focusing of center-covered 
engineered microsphere
Mengxue Wu1, Rui Chen1, Jiahao Soh1, Yue Shen2, Lishi Jiao1, Jianfeng Wu3, Xudong Chen1, 
Rong Ji4 & Minghui Hong1

Engineered microsphere possesses the advantage of strong light manipulation at sub-wavelength scale 
and emerges as a promising candidate to shrink the focal spot size. Here we demonstrated a center-
covered engineered microsphere which can adjust the transverse component of the incident beam 
and achieve a sharp photonic nanojet. Modification of the beam width and working distance of the 
photonic nanojet were achieved by tuning the cover ratio of the engineered microsphere, leading to 
a sharp spot size which exceeded the optical diffraction limit. At a wavelength of 633 nm, a focal spot 
of 245 nm (0.387 λ) was achieved experimentally under plane wave illumination. Strong localized field 
with Bessel-like distribution was demonstrated by employing the linearly polarized beam and a center-
covered mask being engineered on the microsphere.

Micro-lenses, with a size of a few wavelengths, exhibit excellent abilities to confine incident light and generate 
small focal spot which exceeds the optical diffraction limit at around half of the incident wavelength. Among 
which, the most investigated micro-lenses are microspheres and microcylinders. It has been demonstrated early 
in 2000 by Lu and Luk’aynchuk et al.1. Later, Chen et al. studied the field enhancement at the shadow side of a 
microcylinder under plane wave illumination and termed it as “photonic nanojet”2. Excellent optical properties 
of the photonic nanojet, such as non-diffracting, strong localized field intensity and sharp focal spot, have proved 
to be beneficial for various applications: nanoparticle detection, optical nanolithography, and super-resolution 
imaging. Among which, a small beam waist of the focal spot is the most desired property as it characterizes the 
converging ability of the microlens and plays a key role in these applications. It is found that when a nanoparticle 
is located within the focal region of a microsphere, the back-scattering intensity can be greatly enhanced. This 
enhancement is applied for detecting nanoparticles in liquid and nanoparticles at a size of 20 nm can be identi-
fied3,4. Furthermore, it is concluded that the detection sensitivity can be greatly enhanced when the beam width of 
the photonic nanojet is small. On the other hand, the photonic nanojet generated by the microsphere is applied as 
the exposure beam in optical lithography5–10, where the minimum line width of the fabricated patterns is directly 
dominated by the beam width of the photonic nanojet. Therefore, when a sharp photonic nanojet is achieved, the 
pattern size can be reduced correspondingly. Also, in optical super-resolution imaging, the sample interacts with 
the electric field of the photonic nanojet, and generates scattered wave which propagates through the microsphere 
to form the image. When combined with a confocal microscope, resolution of 25 nm in air can be achieved, push-
ing the super-resolution ability of microspheres to a new limit11,12.

Approaches to modify the optical properties of the photonic nanojet, including changing the refractive index 
and diameter of the microspheres, varying the illumination conditions and the shapes of the microspheres, have 
been proposed13–19. Another effective way to tune the photonic nanojet is fabricating micro-structure on the 
spherical surface and modify the contribution of different field components to the total field20. This approach 
introduces freedom in designing the surface structure of the microsphere and manipulating the interaction of the 
microsphere with incident beam. Various functional structures can be fabricated on the microsphere to achieve 
modification of the beam size and working distance of the photonic nanojet. When linear or circular polarization 
was illuminated on center-covered focusing lenses, Bessel beam can be generated21,22. A Bessel-like photonic 
nanojet was reported by designing a core-shell microsphere and illuminated under linearly polarized beam23. 
Another work which simulated a flat PEC filter located above the microsphere proved the modification ability of 
the engineered microsphere24. The difference in our work is that we employed a blanket-like Platinum (Pt) cover 
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on dielectric microsphere surface and prevented the multiple reflection at the gap between the microsphere top 
surface and metal boundary. As the total electric field intensity pattern at the cross-section perpendicular to the 
polarization direction is determined by the transverse field component, we can expect a sharper focal spot when 
the transverse component is modulated to a smaller spot. The designed mask, which blocks the beam propagating 
in the vicinity of the optical axis, is important to the formation of a sharp focal spot.

In this paper, a photonic nanojet with FWHM =  245 nm (0.387 λ, λ =  633 nm) is demonstrated in both simu-
lation and experiment by combining the properties of the linear polarization illumination, center-covered mask, 
and the dielectric microsphere. Compared with conventional ways of modifying the beam shape of the photonic 
nanojet, the highlights of our work are as follows. Firstly, we achieve a sharp photonic nanojet using a linearly 
polarized beam and center-covered mask created on the microsphere. Secondly, unlike conventional large scale 
mask coated on an objective lens, the cover mask we employed is designed and fabricated directly onto the micro-
sphere surface. By decorating the functional micro/nano-structures, the vector properties of the electric field of 
the photonic nanojet of the microspheres can be modulated. Most importantly, the beam width of the photonic 
nanojet breaks the optical diffraction limit. In this work, 3D finite-difference time-domain (Lumerical FDTD) is 
used for the theoretical analysis and the experimental verifications are carried out using a high resolution optical 
microscope under the illumination of linear polarization beam.

Results and Discussion
Figure 1 schematically shows the focusing of an engineered microsphere illuminated by a linearly polarized beam. 
The dielectric microsphere has a diameter of 10 μm and refractive index of 1.5. The incident beam is a plane wave 
with direction indicated by the arrow. The opaque cover on the engineered microsphere surface functions as a 
filter which removes the beams propagating near the optical axis. This layer is fabricated by depositing Platinum 
(Pt) with a thickness of 1 μm onto the surface of the microsphere. The electric field at the focal plane of the engi-
neered microsphere can be decomposed into longitudinal (Ez) and transverse (Ex and Ey) field components. In 
this paper, we study the x-axis polarized plane wave incidence. Therefore, the intensity contribution of the Ey 
field is ignored as it is of two magnitudes smaller in intensity compared to the Ex field. It should be noted that due 
to the asymmetric nature of the linear polarization beam, the intensity pattern of the Ez field is two symmetric 
peaks along the x-axis, which results in elongation along the polarization direction. In this paper, we focus our 
discussion on the yz plane, which characterizes the minimum spot size achievable by the design. Modification 
of the Ex field leads to generation of different photonic nanojets with tunable beam sizes and working distances. 
When the cover mask is introduced at the center of the microsphere, the light rays propagating in the vicinity of 
the optical axis is reflected and therefore only the beams which locate farther from the axis are allowed to enter 
the microsphere and contribute in forming the photonic nanojet. Based on Snell’s law of optical transmission and 
reflection, incident beam propagating farther from the optical axis focuses near the surface of the microsphere 
and vice versa. After focused by the microsphere, these beams formed different angles with the optical axis and 
the intensity of the focal spot is calculated as the integration from the smallest angle to the largest. The contribu-
tion to the total field from the incident rays are different. Consider the beam propagating near to the optical axis, 
after being focused by the microsphere, the angle formed by the transmitted beam and the optical axis is small, 
which is comparable to the result of a focusing lens with low numerical aperture(NA). At a low NA, the focal spot 
possesses a long working distance with a large spot size. For the beam propagating further from the optical axis, 
the focusing phenomenon is similar to the case of a high NA lens. These incident beam converges through the 
microsphere and focuses at a small working distance with a sharp beam waist. Based on the different contribu-
tions of the incident beam to the photonic nanojet, a center-covered mask is designed on the microsphere to allow 
only the beam propagating farther from the optical axis to form the focal spot. In this way, a sharp photonic nano-
jet with small working distance can be achieved. To investigate the effect of the opaque cover on the microsphere, 
the cover ratio is defined as the radius of the deposited Pt divided by the radius of the microsphere (in top view).

=ratio r
r (1)

Pt

microsphere

When the cover ratio changes, the amount of the incident beam entering the microsphere is modified. To 
clarify the effect of different cover ratios, we define the smallest NA introduced by the incident ray propagating 
through the microsphere as NAmin. As the total field intensity is the integral of the beam with different angles to 

Figure 1. Design of the center-covered engineered microsphere for super-focusing of linear polarized 
beam. The incident beam is 633 nm and diameter of the microsphere is 10 μm.
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the optical axis, the minimum NA determines the lower boundary of the integral range. When the NAmin is high, 
contribution from the parasitic beams, which are blocked by the mask, are ignored in the formation of the total 
field. At large cover ratio, only a thin annular shape beam is focused by the engineered microsphere and interfered 
along the optical axis.

To evaluate the performance of the engineered microsphere under the x-axis linearly polarized focused beam, 
simulations are performed with 3D FDTD. Perfect matching layers are selected as boundary conditions with 
non-uniform mesh size of λ/10. Results are collected from the yz plane. The FWHM and working distance (W.D.) 
values of the photonic nanojet are evaluated at the highest intensity point along the optical axis outside the bound-
ary of the engineered microsphere. Simulation results for the linear polarization illumination are shown in Fig. 2. 
The cover ratio of the engineered microsphere is changed from 0 to 0.80. In Fig. 2a, the dependance of FWHM 
on the cover ratio is presented. It can be observed that when the cover ratio increases, the FWHM of the engi-
neered microsphere decreases and achieves a spot size beyond the theoretical diffraction limit of around 0.50 λ. 
Comparing the results, it can be observed that a single microsphere without any decorated cover layer possesses 
a FWHM of 424.11 nm (0.67 λ) under 633 nm illumination wavelength. When the cover ratio increases from 0 
to 0.20, corresponding to the mask cover radius of 0 and 1 μm, a modulation of the FWHM from 424.11 nm to 
321.84 nm is realized. The difference in FWHM is around 102.27 nm and 0.162 λ. At a small cover ratio, the NAmin 
of the engineered microsphere is low, resulting in a focal spot within the optical diffraction limit. When the cover 
ratio changes from 0.30 to 0.50, the Pt layer spreads over a half of the microsphere surface, the FWHM is shown to 
vary from 299.56 nm to 271.37 nm, which changes at 0.045 λ. It can be concluded that the engineered microsphere 
at the cover ratio of 0.30 exhibits the ability to focus the plane wave incident beam to below 0.50 λ. This indicates 
an effective modulation of the photonic nanojet by the engineered microsphere. Further enlarging the cover ratio 
from 0.60 to 0.80, only a thin ring shape of the incident light can enter the microsphere. At this stage, the incident 
beam enters the microsphere at a longer distance away from the origin of the optical axis. Thus, the NAmin of the 
engineered microsphere is high. The decrease of the FWHM value in this region is observed to be from 259.57 nm 
to 208.33 nm, where a sharp photonic nanojet and high sidelobe are observed. The sharpest focal spot achieved is 
0.33 λ, corresponding to the cover ratio of 0.80. Compared the FWHM between 0 and 0.80 cover ratio, obvious 
change from 424.11 nm to 208.33 nm, indicating a strong modification of the beam width of the photonic nano-
jet. Another important property to characterize the photonic nanojet is the working distance, calculated as the 
distance between the shadow side of the microsphere boundary and the highest intensity of the photonic nanojet 
along optical axis. As shown in Fig. 2b, when the cover ratio of the engineered microsphere increases, the W.D. 
decreases, indicating that the photonic nanojet is close to the microsphere surface. When the cover ratio is 0, the 
W.D. is calculated as 777.78 nm. Further increase the cover ratio to 0.40, the W.D. dropped to 583.33 nm, which 
falls within a wavelength of the incident beam. At a higher cover ratio, for example at 0.80, the W.D. is 0 and the 
highest intensity of the photonic nanojet is located at the shadow side of the engineered microsphere boundary. 
This indicates that the engineered microsphere can modify both the beam size and the W.D. of the photonic nano-
jet. As the cover ratio of the engineered microsphere increases, the intensity of the photonic nanojet decreases. 
When the cover ratio is 0, the highest intensity is 315 times higher compared to the incident beam. The Pt cover 
limits the amount of transmitting incident beam through the microsphere and leads to low intensity of the pho-
tonic nanojet. At a cover ratio of 0.50, the intensity drops to 271 times of magnification of incident beam and at 
high cover ratio of 0.80, the intensity becomes 199 times.

To experimentally exam and verify the optical properties of the center-covered engineered microspheres, the 
focusing characterization of the photonic nanojet is performed with a home-built optical microscope imaging 
system, as shown in Fig. 3. The optical path of the whole setup is shown in Fig. 3a. The designed engineered 
microsphere characterized by the scanning electron microscope (SEM) is shown in Fig. 3b, where the micro-
sphere at a diameter of around 10 μm and covered with Pt layer is located within a thin gold membrane. It can 
be seen that the gold membrane holds the waist of the microsphere and provides strong support during the 
focus ion beam (FIB) fabrication and optical microscope characterization. Artificial dark blue color is applied to 

Figure 2. Dependence of focal spot size and working distance of the photonic nanojet on cover ratio.  
(a) Simulated FWHM/λ value for different cover ratios. (b) Simulated working distance for different cover 
ratios.
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indicate the location of the Pt cover layer. During the experiment, a He-Ne 633 nm laser with linear polarization 
is employed as the illumination source. After the beam passes through the half wave plate, polarization direction 
is modulated. The photonic nanojets generated at the shadow side of the microspheres are collected with an 150×  
objective lens (NA =  0.9) and recorded by a high resolution CMOS camera. The detailed characterization process 
is described in Methods section. Using this experimental setup, the photonic nanojet of the engineered micro-
sphere is observed and captured. Figure 4 presents the experimental results of the beam size and the cross-section 
of the photonic nanojet compared to the previous simulation results. As shown in Fig. 4a, engineered micro-
sphere with different cover ratios are placed on the sample stage of the optical microscope in transmission mode. 
Incident beam illuminates onto the engineered surface of the microsphere and photonic nanojet formed at the 
shadow side is collected. The cross-section of the highest intensity plane along the optical axis is captured and 
analyzed. Figure 4a shows the experimental results for measuring the FWHM value at each cover ratio, with the 

Figure 3. Characterization of the center-covered microsphere focusing. (a) Schematic of the experimental 
setup. Abbreviations for optical components: HWP: half-wave plate. OBJ: objective lens. CMOS: 
Complementary metal-oxide semiconductor. (b) Top and side views of a center-covered microsphere located in 
a thin gold membrane. Artificial dark blue color to indicate the location of the Pt cover layer.

Figure 4. Simulation and experimental results of the beam size for center-covered engineered 
microspheres at different cover ratios. (a) Dependence of the beam width of the photonic nanojet on cover 
ratio. (b) Normalized intensity distribution of the cross-section of the photonic nanojet along the optical axis 
captured by the CMOS camera. The cover ratio is labelled under each figure and the length of the frames are 
5 μm.
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simulated results as a comparison. The cover ratio of the fabricated engineered microsphere is changed from  
0 to 0.78, with a linear increase of around 0.13 each step. When the cover ratio is 0, which indicates an original 
microsphere with no artificial structures, a FWHM of 410 nm is measured in the optical system, corresponding to 
a value of 0.647 λ. This value agrees well with the simulation prediction. It can be observed that with the increase 
of cover ratio, the beam size of the photonic nanojet decreases. When an engineered microsphere with large cover 
ratio of 0.603 is applied in the experiment, the FWHM value is measured as 289 nm, which reaches 0.456 λ. This 
indicates that when the cover ratio exceeds 0.603, a super-focusing effect of the engineered microsphere can be 
achieved in experiment. At a higher cover ratio of 0.777, the FWHM of the photonic nanojet can be reduced to 
245 nm, 0.387 λ, and the intensity distribution is close to a Bessel beam generated by a high NA optical system. To 
have a detailed comparison of the focal spot intensity patterns of the engineered microspheres at different cover 
ratios, the cross-section perpendicular to the optical axis is shown in Fig. 4b. The size of all the square frames 
is 5 μm. Three important cover ratios are taken as 0, 0.603, and 0.777, which represent the original microsphere 
without surface engineering, the cover ratio beyond which focal spot size is smaller than 0.5 λ and the largest 
cover ratio fabricated and characterized with the optical system. As it can be seen from Fig. 4b, a microsphere can 
generate a focal spot with no sidelobe and with the increasing of cover ratio, the sidelobe becomes higher and the 
intensity distribution is similar to a Bessel beam. The focal spot size at the center of the optical axis is reduced sig-
nificantly. At high cover ratio, the annular shape incident beam has a large NAmin and the interference at the focal 
spot is similar to the generation of the Bessel beam. The difference in simulation and experiment could be resulted 
from difficulty locating the y-axis from the intensity patterns on CMOS camera (assume the incident beam prop-
agates along the z-axis and the polarization is along x-axis). At a higher cover ratio, the different lengths of the 
electric fields along the x and y directions become more obvious to be identified. It can be concluded that for 
linear polarization illumination, the designed center-covered microsphere can function as a focusing lens which 
generates a sharp focal spot under plane wave illumination. When the cover ratio increases, this phenomenon 
becomes more obvious as the low NAmin contribution to the total field is filtered out. The W.D. of the photonic 
nanojet is close to the surface of the microsphere. However, the boundary of the microsphere is hard to be iden-
tified under the transmission mode of optical microscope. Therefore, the W.D. can not be characterized with our 
current experimental setup.

To have a detailed comparison of the cross-section intensity distribution of the Ex field for different engineered 
microspheres, nine of the them are presented in Fig. 5. In the SEM pictures, a clear boundary between glass and 
Pt can be observed. The smooth edge of the deposited Pt layer minimizes the scattering of the incident beam. A 
thin layer of gold membrane is employed and functions as a holder to control the microsphere position during 
experiment. By varying the cover ratio from 0 to 0.777, the intensity distribution along the cross-section of the 

Figure 5. Cross-section intensity near the focal spot of microspheres (diameter of 10 μm) with different 
cover ratios. The top-view SEM pictures show the coverage of the Pt mask. Numbers labelled under each 
intensity pattern indicate the cover ratio of the Pt mask. The intensity is normalized and the length of the 
bottom frames is 2 μm.
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focal plane is presented, corresponding to each engineered microsphere design. The cross-section in vicinity of 
the focal plane is recorded and the intensity is normalized. In the figures, the label under each curve indicates 
the cover ratio and the scale of x axis is 2 μm. It can be observed that when the cover ratio of the Pt on the micro-
spheres increases gradually, the beam waist of the photonic nanojet is decreased. This clearly shows an effective 
modulation of the beam width of the photonic nanojet. When the cover ratio is higher than 0.531, an increas-
ing sidelobe can be observed. Incident beam with high NAmin interferes around the focal spot and generates a 
Bessel-like distribution of the intensity.

Conclusions
In summary, we design and fabricate the center-covered engineered microspheres with different cover ratios on 
the illumination surface. This cover layer forms a center-blocked filter which selectively transmits the incident 
beam into the microsphere. By varying the cover ratio of the engineered microsphere, modification of the pho-
tonic nanojet is demonstrated. When the non-transparent cover is introduced on the microsphere, the parasitic 
components of the incident beam are filtered out and therefore the contribution of different components to the 
final field are adjusted. At a wavelength of 633 nm, a sharp focal spot of 0.387 λ is achieved experimentally. To 
evaluate this modulation effect, the contribution of the incident beam at different distance from the optical axis to 
the photonic nanojet is analyzed. It is shown that at a larger cover ratio, the NAmin of the engineered microsphere 
is higher than that at a low cover ratio. This leads to a sharper focal spot and shorter working distance of the pho-
tonic nanojet. The modulated photonic nanojet with small beam size generated by a high cover ratio engineered 
microsphere is a promising approach for applications of particle acceleration, optical super-resolution imaging 
and optical lithography.

Methods
Sample fabrication. In this study, the microspheres at a diameter of 10 μm are commercially available from 
Bangs Laboratories, Inc. The fabrication details of the gold membrane can be found in our previous study20. To 
deposit Pt layer on the microsphere surface, FEI DA 300 Focus Ion Beam (FIB) system is employed. Applying 
30 KV and 50 nA of liquid metal Gallium ion sources, around 1 μm thick Pt with different diameters are fabricated 
on the top of microspheres. During the FIB fabrication, the center of the mask pattern is aligned with the optical 
axis of the microsphere.

Characterization. To characterize the photonic nanojet generated by the engineered microsphere, we design 
and build the experimental setup, which is schematically shown in Fig. 3a. A low power He-Ne 633 nm lin-
ear polarized laser (MellesGriot, 25-LHP-925-230) is applied as the incident light source. A half wave plate is 
applied to shape the linear polarization of the beam and an attenuator is employed to tune the laser intensity to 
a desired brightness. To manipulate the engineered microsphere in three dimensions, a thin gold membrane is 
made and functions as a microsphere lens holder. The thickness of the gold membrane is around 5 μm and it can 
be observed that the hole matches the diameter of the microsphere. Thus, a strong support is provided for FIB 
fabrication and optical microscope characterization. During the characterization experiment, a single engineered 
microsphere is placed under the illumination beam. The incident beam is assumed to propagate along positive 
z axis and in parallel with the optical axis of the engineered microsphere. To record the x −  y plane diffraction 
pattern of the photonic nanojets, a high magnification objective lens (Olympus, LMPlan Apo 150× , NA 0.9) and 
a high resolution CMOS camera (Nikon digital SLR camera FX-format CMOS sensor, 4908 ×  3264 pixel) are 
used. Before the characterization, calibration of the pixel size of the CMOS camera are performed. A structure 
which is inspected by SEM is used as a testing sample. By calibrating the lengths in SEM and optical images, the 
size of each pixel of the CMOS camera is obtained. The cross section of the photonic nanojet is captured in the 
vicinity of the focal plane. For each cover ratio, three engineered microspheres are fabricated. The final results are 
summarized based on multiple times of experimental confirmation.
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