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Markov models of the apo-MDM2 
lid region reveal diffuse yet  
two-state binding dynamics  
and receptor poses for 
computational docking
Sudipto Mukherjee*, George A. Pantelopulos*,† & Vincent A. Voelz

MDM2 is a negative regulator of p53 activity and an important target for cancer therapeutics. The 
N-terminal lid region of MDM2 modulates interactions with p53 via competition for its binding cleft, 
exchanging slowly between docked and undocked conformations in the absence of p53. To better 
understand these dynamics, we constructed Markov State Models (MSMs) from large collections of 
unbiased simulation trajectories of apo-MDM2, and find strong evidence for diffuse, yet two-state 
folding and binding of the N-terminal region to the p53 receptor site. The MSM also identifies holo-
like receptor conformations highly suitable for computational docking, despite initiating trajectories 
from closed-cleft receptor structures unsuitable for docking. Fixed-anchor docking studies using a 
test set of high-affinity small molecules and peptides show simulated receptor ensembles achieve 
docking successes comparable to cross-docking studies using crystal structures of receptors bound by 
alternative ligands. For p53, the best-scoring receptor structures have the N-terminal region lid region 
bound in a helical conformation mimicking the bound structure of p53, suggesting lid region association 
induces receptor conformations suitable for binding. These results suggest that MD + MSM approaches 
can sample binding-competent receptor conformations suitable for computational peptidomimetic 
design, and that inclusion of disordered regions may be essential to capturing the correct receptor 
dynamics.

Under normal cellular conditions, the tumor suppressor protein p53 is kept at a low basal level in part due to 
downregulation by MDM2 (mouse double minute 2 homolog), an E3 ubiquitin ligase that recruits p53 for deg-
radation via direct interaction with the p53 transactivation domain (TAD). Since many tumor cells still retain 
wild-type p53, a promising avenue of cancer treatment is to restore p53 activity by blocking the MDM2-p53 
interaction with high-affinity MDM2-binding ligands.

A high-resolution x-ray crystal structure of p53 TAD bound to MDM2 in a helical conformation has been 
available for some time, and has spurred widespread effort towards developing inhibitors that potently disrupt 
p53-MDM2 binding1. In addition to small molecules2,3. peptidomimetics have been designed to mimic the p53 
helix, such as stapled peptides4, beta-peptides5, spiroligomers6, high-affinity D-peptides7–9, arylamides, terphe-
nyls, hydrogen-bond surrogates10 and oligooxopiperazines11, many of which were developed as a result of-or in 
concert with-computational modeling and design3,11–16.

Aside from its therapeutic interest, the p53-MDM2 interaction has served as a valuable model system for 
understanding protein-protein interactions, especially for intrinsically disordered proteins such as the p53 TAD 
that fold upon binding17. Underscoring the importance of this work is recent evidence that residual helicity in 
the p53 TAD directly alters cell signaling in vivo18. Similarly, consideration of intrinsic disorder is important to 
understanding MDM2, as it contains an unstructured N-terminal lid region (residues 1–25) which competes with 
p53 for the binding cleft. In the absence of p53, quantitative NMR spectroscopy has shown transient structuring 
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and binding of the lid region to the p53 cleft on slow (> 10 ms) exchange timescales, consistent with the struc-
turing of a short, well-ordered helix in residues 19–24 (Fig. 1)19. Recent NMR and X-ray co-crystal structures 
have revealed that small-molecule inhibitors can induce structuring of the lid region through specific favorable 
interactions20, suggesting that computational prediction of lid region structure and dynamics could be very useful 
for computational design.

Here, to better understand the structure and dynamics of the N-terminal lid region of apo-MDM2, we per-
form extensive simulation studies to characterize the mechanism of association with the p53 binding cleft, and 
explore the possible role of such computational studies in drug discovery. From many independent trajectories 
of MDM2 starting from the apo state obtained by parallel distributed simulation, we construct a Markov State 
Model (MSM) of N-terminus dynamics that predicts two-state binding to the p53 cleft, in agreement with experi-
mental findings. We then explore the utility of the MSM for in silico drug discovery by performing computational 
docking studies to kinetic metastable states of the MDM2 receptor. Remarkably, our findings suggest that the 
ensemble of metastable receptor conformations identified in the MSM can be used to achieve docking results sim-
ilar to or better than cross-docking studies of crystal structures, and moreover, that inclusion of the N-terminus 
is essential in selecting open-cleft receptor conformations suitable for docking.

Results
Markov State Model (MSM) analysis of simulated apo-MDM2 dynamics predicts two-state 
binding of the lid region to the p53 cleft. MSMs describe conformational dynamics as a network of 
transitions between kinetically metastable states21. To construct an MSM of N-terminal dynamics from simula-
tion data, trajectory snapshots are first assigned to metastable conformational states. To identify these metastable 
states, we first used tICA22,23 to find a low-dimensional subspace reflecting the slowest conformational motions of 
the N-terminal region (residues 1–25) and residues in the binding site. Projections to the two largest components 
(tIC1 and tIC2) were subsequently used for conformational clustering into 2000 metastable microstates, and for 
visualizing the folding/binding landscape.

Next, observed transitions between states are used to infer a transition matrix T(τ), whose elements Tji contain 
the probability of transitioning from state i to state j within time τ. The right (φn) and left (ψn) eigenvectors of the 
transition matrix yield a complete description of state population dynamics, via the chemical master equation, 
dp/dt =  Kp, where T =  exp(τK), whose solution is

∑ ψ ϕ τ= −t tp p( ) (0) exp( / )
(1)n

n n n

Here, p(0) is a vector of initial state populations at time t =  0, and the implied timescales τn =  − τ/1n μn asso-
ciated with each eigenmode n are related to the eigenvalues μn of T. We define the sign structure of each eigenvec-
tor such that ψ 1n  is positive, so that dynamics (starting from a hypothetical uniform distribution) can be 
described as a superposition of positive-amplitude eigenmodes φn, each decaying at time scale τn. The stationary 

Figure 1. Apo and holo structures of MDM2. (left) The apo form of MDM2 (tan) has an unstructured 
N-terminal lid (residues 1–25) that associates with the cleft. The binding of the p53 transactivation domain 
(TAD, red) displaces the lid region from the binding cleft, as seen in the holo crystal structure (blue). 
Quantitative NMR of apo-MDM219 has shown that a portion of the lid region (residues 19–24) slowly converts 
between an unstructured and a structured state. A recent co-crystal structure20 with a small-molecule inhibitor 
(pink) shows a structured form of the lid region.
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eigenvector (i.e. the equilibrium state populations) is φ0, for which τn =  ∞ . The resulting MSM shows a two-state 
mechanism for the lid region binding to the cleft. The sign structure of the slowest relaxation eigenmode φ1 shows 
population flux from unbound to bound states of the lid regions, indicated by two diffuse basins aligned with tIC1, 
the degree of freedom representing the slowest conformational motions (Fig. 2a). Interestingly, compared to the 
tICA landscapes reported for many protein folding systems24–26, the lid landscape is remarkably diffuse, even in 
the secondary eigenmodes (Figures S4 and S5), reflecting the lack of residual structure. Similar landscapes have 
been found in other MSM studies of disordered proteins27,28. Implied timescales computed at lag times ranging 
from 100 ps to 100 ns show a clear gap between the slowest and next-slowest implied timescale, indicative of 
apparent two-state dynamics (Fig. 2b). The slowest implied timescale is close to 1 μs, comparable to the molecular 
on-rate of a peptide at high effective concentration. This timescale is over four orders of magnitude faster than the 
slow (> 10 ms) conformational exchange of residues 19–24 reported by Showalter et al., which suggests that our 
simulation trajectories, each shorter than 1 μs, do not capture rare unstructuring events expected in this region. 
Nevertheless, the simulations show good agreement with experimentally measured chemical shifts in this regions 
for the apo state, which is estimated to have ~90% of the lid population in an associated state.

The next-slowest eigenmode relaxation, φ2, reflects conformational dynamics of the lid region along the tIC2 
component, and it is similarly diffuse (Figure S4). To gain structural insight into these motions, we performed 
secondary structure analysis and Bayes Factor analysis25 of interresidue contacts formed along different quadrants 
of the tICA projection (SI Text, Figures S4 and S5). While the slowest relaxation (along tIC1) corresponds to 
disassociation of the N-terminus from the C-terminus, structuring of the lid region into a helix, and association 
with the binding cleft helix α2, the next-slowest relaxation (along tIC2) largely reflects an increase in average 
self-association of the lid region, with an increase in sheet structure.

Computational docking of known MDM2 ligands to simulated receptor ensembles achieves 
success comparable to crystal structure cross-docking. Virtual screening studies rely heavily on the 
availability of high-resolution crystal structures. Since the MDM2 trajectories were initiated from an apo NMR 
structure (PDB: 1Z1M) with a closed binding cleft unsuitable for computational docking, our work presents an 
excellent opportunity to test how successfully an MD +  MSM approach can be used as a refinement procedure to 
achieve high-quality receptor structures for docking.

To evaluate the quality of simulated receptor structures, we used the DOCK6 algorithm to perform compu-
tational docking of a test set of 10 ligands to the 2000 MSM microstate structures (with the lid region removed). 
Our test set consisted of eight small-molecule ligands and two peptide ligands, all with high-resolution crystal 
structures (Table 1). The small-molecule ligands include, among others, the best-in-class inhibitor nutlin, and 

Figure 2. (A) Projection of the 2000 MSM microstates (filled circles) to tIC1 and tIC2 coordinates. The 
size of each circle is proportional to the equilibrium population, and is colored according to the slowest 
relaxation eigenmode, φ1. Population flux along this mode is from blue to red, representing a transition from 
unbound to bound states of the lid region, which we visualize using five representative structures from each 
basin. (B) Implied timescales versus MSM lag time show a clear gap indicating apparent two-state kinetics. 
(C) Simulation predictions of Cα chemical shift deviations from random coil for the lid region (residues 
17–26, cyan ribbon in panel A) calculated by SHIFTX254 agree with experimental values19.
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similar compounds. The peptide ligands include the native p53 fragment29, and a high-affinity designed inhibitor 
sequence, PMI N8A30. Several modifications were made to standard docking procedures to facilitate the efficient 
docking of peptide sequences, most notably: fixing backbone atoms in their helical conformation via an artificial 
cyclization bond between terminal alpha-carbons, while retaining side chain rotamer search (see Methods).

To establish the baseline accuracy of the DOCK algorithm for this system, ligands were re-docked to their own 
co-crystal structures, and cross-docked to all other receptor structures in the test set (Fig. 3).

In all cases, the best re-docking scores corresponded to a correctly docked pose, which we define as having 
an rmsd of 2.0 Å or less to the crystal pose, thus validating the accuracy of DOCK. Cross-docking results show 
the inherent variability of docking to a target receptor structure, and show that some MDM2 receptor crystal 
structures are more likely to produce false positives or outright failures when non-native ligands are docked. 
Cross-docking is the least successful for small-molecule docking to peptide-bound receptor structures, and vice 
versa. We also cross-docked all the ligands in the test set to the apo-MDM2 receptor structure (PDB:1Z1M, with 
the lid region removed), which confirmed its unsuitability for docking; best-scoring poses for all ligands showed 
rmsd values > 5.4 Å.

By comparison, computational docking to the ensemble of 2000 MSM microstates is much more successful. 
Plots of the DOCK score versus ligand pose rmsd show a funnel-like correlation, indicating that low scores 

Molecule PDB Ligand Rot. bonds Affinity (nM) Reference

1 4j7d Nutlin RO5045331 6 20000 Fry, et al. ACS Med Chem Lett 2013

2 3jzk chromeno-triazolo-pyrimidine 2 1230 Allen, et al. J Med Chem 2009

3 3lbk WK23 3 916 Popowic, et al. Cell Cycle 2010

4 4j3e Nutlin 3a 8 88 Vu, et al. ACS Med Chem Lett 2013

5 4j74 nutlin RO0503918 2 26000 Fry, et al. ACS Med Chem Lett 2013

6 4jve morpholinone 16 8 86 de Turiso, et al. J Med Chem 2013

7 4lwt spiroindolinone RO5027344 4 3900 Zhang, et al. Bioorg Med Chem 2014

8 4lwu spiroindolinone RO5499252 8 5 Zhang, et al. Bioorg Med Chem 2014

9* 1ycr p53 (ETFSDLWKLLPE) 29 440 Kussie, et al. Science 1996

10* 3lnz N8A PMI (TSFAEYWALLSP) 21 0.49 Li et al. JMB 2010

Table 1.  Test set of small-molecule and peptide ligands of MDM2 used for computational docking studies. 
* Peptides.

Figure 3. Self-docking and cross-docking results for a test set of 10 MDM2 ligands (Table 1) with available 
co-crystal structures (listed by PDB ID). Values shown are the rmsd (in Å) of the best-scoring docked ligand 
pose to the crystal ligand pose. Docking successes are shown in blue, scoring failures are shown in green, and 
sampling failures are shown in red.
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indeed predict good ligand poses (Fig. 4). Because of this, a significant enrichment in correct docking predictions 
is achieved. If only the five best-scoring receptor poses were considered (the top 0.25%), half of the ligands would 
be correctly docked; 80% are correctly docked if only the top 20 (1%) receptor poses are considered.

A potential caveat of these results is that the DOCK energy function is designed for the inexpensive evaluation 
of very large screening sets, at the potential cost of accuracy. For the PMI N8A peptide ligand, the lowest-energy 
DOCK score consistently predicts a non-native pose in which the key tryptophan and phenylalanine are placed 
correctly in the binding site, but with non-native sidechain rotamers, turning the PMI helix ~30° in the binding 
cleft. We explored several alternative protocols designed to test whether this was due to our artificial cyclization 
scheme used to fix the backbone, or other search parameters; based on similar results in all cases, we conclude 
that scoring function accuracy is responsible.

Simulation of functional lid motions is key to successful computational docking. Since our 
simulations started from an apo-MDM2 structure with a closed binding cleft not amenable to computational 
docking, we were curious to see how the functional lid motions identified in the MSM might be related to the gen-
eration of docking-competent receptor structures. A projection of the DOCK scores to the tICA landscape reveals 
that a significant clustering of low-scoring poses are found on the far right edge of the landscape, corresponding 
to states where the lid region is associated with the p53-binding cleft (Fig. 5a). This feature is more pronounced 
for the peptide docking results, but can also be seen clearly for the small-docking results (Figure S7). In previous 
work, we performed a number of apo-MDM2 simulations in various force fields, with trajectory lengths up to 
1 μs. The projection of these data onto the tICA landscapes shows that, regardless of the force field chosen, these 
simulations do not sample the full extent of lid motion seen in the MSM (Fig. 5b).

An inspection of the MDM2 receptor structures found on the far right of the tICA landscape, in the region 
of lowest DOCK scores, reveals many receptor conformations with their lid region associating with the MDM2 
binding cleft. Indeed, the lowest-scoring receptor structure in this region for the p53 ligand (Fig. 5a, green star) 
is revealed to have a helical conformation, closely mimicking the bound pose of the p53 transactivation domain 
(Fig. 5c). In the unbound state, residues 11–17 (DGAVTTS) of the lid region have a low propensity to form a 
p53-like helix, forming helical structure when bound in the cleft (Figure S8).

Figure 4. Scatter plots of DOCK scores versus the rmsd of the docked pose for all 2000 MSM receptor 
microstates show correlated funnel-like landscapes. (A) For the p53 ligand, the MSM receptor ensemble is 
more suitable for docking than any of the co-crystal receptor structures with other ligands. (B) The number of 
correct docking predictions found in some number of best-scoring poses (the true positive rate) for our test 
set is comparable to the cross-docking results. (C) Scatter plots for all ligands in our test set, shown with the 10 
best-scoring poses docked to the MSM microstates (blue dots), cross-docking results (yellow stars), and docking 
results to the apo-MDM2 NMR structure (purple star, absences denote DOCK failures).
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Discussion
Comparison against previous experimental and computational results. The MDM2 lid region 
has been extensively studied experimentally and computationally. Here, we find that the results of our MSM are 
highly consistent with the accepted view of the structure and dynamics and of the lid region. NMR spectroscopy 
has determined the existence of two distinct conformational substates of the lid: a 90% population of apo-MDM2 
is “closed”, with the lid region occluding the p53 binding cleft, while the remaining population is “open”19. In the 
holo state, the MDM2 lid is fully displaced by p53, in the “open” conformational state. These two states undergo 
slow (> 10 ms) two-state exchange, with well defined peaks in chemical shifts indicating much faster conforma-
tional rearrangement within each conformational state. Our results agree well with this two-state picture, which 
is particularly remarkable because of the much shorter timescales of the simulation trajectories employed in our 
study. Despite these short (< 1 μs) non-equilibrium timescales, MSM approaches are able to predict two-state 
conformational transitions, albeit on faster timescales. Recent accelerated MD studies of the lid region free energy 
landscape discern similar “open” and “closed” basins, as well as a “semi-open” basin31. As an important check on 
the accuracy of our simulation work, we show that our results quantitatively agree with NMR chemical shifts 
measured for the lid region. Although there are some mismatches in simulated versus experimental values, we 
attribute this to expected systematic inaccuracies of both the force field and the SHIFTX2 algorithm, as well as 
from the fact that truly slow processes (> 10 ms) are not sampled in the simulations.

The MSM predictions are also remarkable for the extent of diffusivity and heterogeneity predicted for the 
“open” and “closed” lid states, which is in line expectations for intrinsically disordered peptides; indeed, previous 
MSMs constructed for disordered, aggregation-prone peptides show a distinct lack of structural intermediates27. 
The induced-fit “fly-casting” mechanism, in which intrinsically disordered peptides (including the p53 TAD 
of MDM217) can fold upon binding, has been proposed as the dominant mechanism by which such peptides 

Figure 5. (A) Projection of the DOCK scores for p53 +  MDM2 to the tICA landscape reveals a significant 
clustering of low-scoring poses corresponding to lid-associated structures. (B) Previous 200-ns and 1-μs 
single-trajectory simulations of apo-MDM2 by Pantelopulos et al.26 projected to the tICA landscape show that 
simulations do not sample the full extent of lid motion seen in the MSM. Simulations were performed in force 
fields AMBER ff14sb (1 μs, blue), ff99sb-ildn-nmr (1 μs, red), ff99sb-ildn (200 ns, cyan), ff99sb (200 ns, yellow), 
ff99sb-ildn-phi (200 ns, orange), ff14sb (200 ns, magenta), CHARMM22*  (1 μs, green), CHARMM36 (200 ns, 
pink). (C) The receptor structure with the lowest DOCK score (green star, panel A) exhibits a lid conformation 
closely mimicking the structure of p53 TAD bound to MDM2.
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recognize their binding targets32. Lid region dynamics and cleft association could be classified similarly, although 
much of the lid remains unfolded. From the projections of computational docking scores to the tICA landscapes, 
it is clear that induction of binding-competent receptor structures is highly coupled to the two-state motion of 
lid association. We also note that previous 200-ns and 1-μs simulations of apo-MDM2 starting from an initial 
closed-cleft NMR structure sample a range of open- and closed-cleft structures, but do not visit receptor struc-
tures highly competent for p53 binding, presumably because in these trajectories the lid region doesn’t sufficiently 
associate with the cleft to induce such structures.

Implications for MSM methods in computational drug design. NMR spectroscopy shows that the 
binding of nutlin-3 to the MDM2 cleft preserves the “closed” state of the lid region19. Recent computational 
studies have examined how bound ligands (and/or post-translational modifications33) modulate the conforma-
tional dynamics of the lid region, with similar findings31. These authors also find that different lid conformations 
are preferred for different ligands, which, along with a growing number of published co-crystal structures with 
structured lid regions2,20, suggests that modeling the structure of the lid and its interaction with small-molecular 
inhibitors could lead to improved computational drug design.

A key question is whether such structural information could be obtained from apo state simulations, inde-
pendent from the modeling of any particular bound ligand. Our computational docking results partially address 
this question by evaluating the quality of MSM-derived receptor structures, which were sampled in simulations 
where the lid region was included, but docked without the lid region. Several previous studies have notably per-
formed computational docking to flexible receptor ensembles34–37, including MSM states derived from large-scale 
receptor simulations38–40. Kohlhoff et al. used the Surflex algorithm to dock ~8000 compounds from the ZINC 
library to MSM states of β2-adrenergic receptor, and found statistically significant enrichment predictions39. 
Our study is the first to compare the success rates of computational docking to MSMs to the “gold standard” 
of crystal structure cross-docking. We find that the top 1% of best-scoring MSM-derived receptor structures 
are highly “dockable” with an 80% true positive rate across our corpus of ligands, comparable to the success of 
cross-docking. These findings underscore the utility of large-scale conformational sampling and analysis made 
possible by Markov State Model approaches. In the future, MSMs are likely to be a valuable component of emerg-
ing molecular simulation-based methods for ensemble-based virtual screening38,41,42, especially for homology 
models43.

Given the known limitations in the accuracy of scoring functions for computational docking, we expect that 
the use of MD +  MSM simulated receptor ensembles will perform even better in conjunction with more accurate 
energy functions, especially as a starting point for more sophisticated methods such as free energy perturbation44, 
for which elucidation of relative binding modes is especially important45.

Finally, we note that many drug targets are cell signaling proteins regulated in some way by intrinsically 
disordered binding partners. Many of these also have intrinsically disordered auto-inhibitory sequences than 
can mimic these natural substrates. For example, p53 binding partner MDMX was recently found to have an 
auto-inhibitory domain that inhibits binding through structural mimicry of the p53-MDMX interaction46, a 
discovery which helps explain the failure of prior small-molecule drug screening efforts that did not utilize the 
full-length target. Similarly, our results suggest that explicit consideration of such disordered regions in simulation  
models may be much more important than currently appreciated, and could lead to greater functional insights 
and more successful computational drug discovery efforts.

Conclusion
Large-scale molecular simulation combined with Markov State Model analysis of simulated apo-MDM2 dynam-
ics predicts diffuse, yet two-state binding of its disordered lid region to the p53 cleft, consistent with experiment. 
Computational docking of known MDM2 ligands to this simulated receptor ensemble achieves success compa-
rable to crystal structure cross-docking, suggesting that virtual screening studies can benefit from Markov State 
Model approaches. These results underscore the importance of the disordered lid region in both understanding 
MDM2 functional motions and in computational drug discovery.

Methods
Molecular Simulation. GROMACS 4.5 was used for all simulation preparation and production47. Twenty-
four initial conformations of the p53-binding region of apo-MDM2 (residues 1–119) were taken from the NMR-
derived structural ensemble (PDB: 1Z1M)48. The AMBER ff99sb-ildn-nmr force field49 was chosen based on 
previous work demonstrating its accuracy and ability to predict initial structuring of the lid region in 1 μs sim-
ulations44. All systems were constructed as periodic cubic boxes solvated with 17268 explicit TIP3P waters and 
0.1 M NaCl. Stochastic (Langevin) dynamics was simulated using a leap-frog integrator with a time step of 2 fs 
and an inverse friction constant of 1 ps. Non-bonded cutoffs of 0.9 nm were used for both real-space Particle-
Mesh Ewald (PME) electrostatic and vdW interactions. Protein and non-protein atoms were temperature- and 
pressure-coupled as separate groups in the Berendsen thermostat, at 300K and 1 atm, using a 1 ps time constant, 
compressibility of 4.5 ×  10−5 bar−1. Prior to production runs, all systems were equilibrated in the isothermal-iso-
baric (NPT) ensemble until the system volume converged to 538.71 nm3. Production runs in the canonical (NVT) 
ensemble were performed on the Folding @ home distributed computing network50, obtaining 175.7 μs of aggre-
gate trajectory data. The distribution of trajectory lengths is roughly exponential, with a maximum trajectory 
length of 945 ns, and average trajectory length of 67.0 ns (Figure S1).

Markov State Model (MSM) construction. MSMBuilder51 was used to construct MSMs from the  
trajectory data. Time-lagged independent component analysis (tICA) was performed using a tICA lag time of one 
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snapshot (100 ps), to find a low-dimensional subspace best capturing the slowest motions of the N-terminus and 
its binding cleft. The subspace consists of linear combinations of the set of 2304 pairwise distances between all Cα 
atoms either in residues 1–24 of MDM2, or within 5 Å of any atom of the p53 helix in the crystal structure of 
holo-MDM2 (PDB: 1YCR). Conformational clustering in this low-dimensional subspace was used to define a set 
of 2000 metastable microstates. The generalized matrix Rayleigh quotient (GMRQ) method52 was used to find 
optimal MSM model parameters. This analysis, which involves a cross-validation procedure wherein the trajec-
tory data is partitioned in testing and training sets, determined that (1) k-centers clustering produced marginally 
better models than k-means, (2) only two tICA components were needed to accurately capture the slowest con-
formational motions, (3) an MSM lag time of 100 ps produced the most accurate MSMs, and (4) the GMRQ score 
(reflecting model quality) plateaus around 2000 microstates (Figure S2). With metastable microstates suitably 
defined, the matrix of transition probabilities τT ji

( ) of transitioning from state i to state j within lag time τ was 
computed using a maximum-likelihood estimator from the observed transition counts51. Coarse-graining of 
MSM microstates into a 150-macrostate model was performed using the BACE algorithm53.

Structural analysis. Analysis of trajectory data was performed using the MDTraj python library. Secondary 
structure populations were computed using the DSSP algorithm, with helical states corresponding to DSSP 
assignments G, H, I, and sheet states corresponded to DSSP assignments B and E. The SHIFTX2 algorithm54 was 
used to predict chemical shift values, using 10x subsampling of trajectory snapshots, for each MSM macrostate. 
To quantify the significance of interresidue contacts formed in specific conformational states, we compute a Bayes 
Factor (BF) contact metric for each residue pair in MDM225. More details about this are given in the Supporting 
Information.

Computational docking with DOCK6. Computational docking was performed using UCSF DOCK  
version 6.755–57. The crystal structure coordinates were downloaded from the PDB and processed using the UCSF 
Chimera dockprep tool57,58. Small molecules were assigned AM1-BCC ligand partial charges with AmberTools 
antechamber59, while peptide ligands were assigned ff14SB charges. Frames taken from each of the 2000 micro-
state clusters were converted into DOCK-compatible MOL2 files. Owing to inconsistencies in hydrogen atom 
naming schemes, each such frame was reassigned optimized instantaneous protonation states using the REDUCE 
tool60. Grids at 0.3 Å-resolution were computed for each of the 2000 MD-derived frames. In order to improve 
sampling, each rigid segment with five or more atoms (e.g. pyrroles or larger) was used as an anchor during small 
molecule docking. A unique feature of the DOCK program is the anchor and grow algorithm55. A rigid section of 
the molecule, often a large aromatic scaffold (anchor) is first oriented in the binding site. The remaining torsions 
are then grown one-by-one, clustering and pruning unfavorable conformations at every step until a final set of 
viable fully grown conformers remain. This breadth-first search approach takes exponential computational time, 
which severely limits docking of larger molecules. DOCK 5 was only tested on a set of molecules with seven or 
fewer rotatable bonds61. For DOCK 6.2 onwards, the addition of a fast internal energy score, coupled with aggres-
sive pruning and rmsd symmetry, allowed reasonable performance with larger molecules (65.5% success on 8–15 
torsions and 48% with > 15 torsions)55. Earlier work55 demonstrated that despite these gains, docking success 
drops linearly with the number of rotatable bonds, while runtime increases exponentially62,63.

DOCK considers closed cycles in molecules to be rigid when sampling torsions. However, the simplex mini-
mizer still relaxes local backbone conformations within these cycles. Thus, for peptide ligands, we introduced an 
artificial bond between the N- and C-termini to rigidify the backbone for the purposes of docking. This amelio-
rates the need to fold alpha helical ligands ab initio with the limited molecular mechanics scoring function van 
der Waals and electrostatics with a distance dependent dielectric) in DOCK. In the case of the p53 TAD fragment, 
this reduces 66 torsions to 29 torsions after rigidifying the backbone. DOCK thus considers the backbone to be 
an anchor, with each sidechain torsion grown in situ for each receptor microstate. Cases where the receptor con-
formation does not (1) accommodate the backbone, or (2) allow all the sidechains to complete growth, forces the 
docked ligand out of the binding site, resulting in a poor interaction score.

References
1. Zhao, Y., Aguilar, A., Bernard, D. & Wang, S. Small-molecule inhibitors of the mdm2–p53 protein–protein interaction (mdm2 

inhibitors) in clinical trials for cancer treatment. J. Med. Chem. 58, 1038–1052 (2015).
2. Estrada-Ortiz, N., Neochoritis, C. G. & Dömling, A. How to design a successful p53-mdm2/x interaction inhibitor: A thorough 

overview based on crystal structures. Chem. Med. Chem. (2015).
3. Rew, Y. et al. Structure-based design of novel inhibitors of the mdm2-p53 interaction. J. Med. Chem. 55, 4936–4954 (2012).
4. Baek, S. et al. Structure of the stapled p53 peptide bound to mdm2. J. Am. Chem. Soc. 134, 103–106 (2012).
5. Kritzer, J. A., Lear, J. D., Hodsdon, M. E. & Schepartz, A. Helical β-peptide inhibitors of the p53-hdm2 interaction. J. Am. Chem. Soc. 

126, 9468–9469 (2004).
6. Brown, Z. Z. et al. A spiroligomer α-helix mimic that binds hdm2, penetrates human cells and stabilizes hdm2 in cell culture. PLoS 

One 7, e45948 (2012).
7. Liu, M. et al. A left-handed solution to peptide inhibition of the p53-mdm2 interaction. Angew. Chem. Int. Ed. 49, 3649–3652 

(2010).
8. Pazgier, M. et al. Structural basis for high-affinity peptide inhibition of p53 interactions with mdm2 and mdmx. Proc. Natl. Acad. Sci. 

USA 106, 4665–4670 (2009).
9. Zhan, C. et al. An ultrahigh affinity d-peptide antagonist of mdm2. J. Med. Chem. 55, 6237–6241 (2012).

10. Henchey, L. K., Jochim, A. L. & Arora, P. S. Contemporary strategies for the stabilization of peptides in the α-helical conformation. 
Curr. Opin. Chem. Biol. 12, 692–697 (2008).

11. Lao, B. B. et al. Rational design of topographical helix mimics as potent inhibitors of protein-protein interactions. J. Am. Chem. Soc. 
136, 7877–7888 (2014).

12. Michel, J., Harker, E. A., Tirado-Rives, J., Jorgensen, W. L. & Schepartz, A. In silico improvement of β 3-peptide inhibitors of  
p53• hdm2 and p53• hdmx. J. Am. Chem. Soc. 131, 6356–6357 (2009).



www.nature.com/scientificreports/

9Scientific RepoRts | 6:31631 | DOI: 10.1038/srep31631

13. Fuller, J. C., Jackson, R. M., Edwards, T. A., Wilson, A. J. & Shirts, M. R. Modeling of arylamide helix mimetics in the p53 peptide 
binding site of hdm2 suggests parallel and anti-parallel conformations are both stable. PLoS One 7, e43253 (2012).

14. Fuller, J. C., Jackson, R. M. & Shirts, M. R. Configurational preferences of arylamide α-helix mimetics via alchemical free energy 
calculations of relative binding affinities. J. Phys. Chem. B 116, 10856–10869 (2012).

15. ElSawy, K. M., Lane, D. P., Verma, C. S. & Caves, L. S. D. Recognition dynamics of p53 and mdm2: Implications for peptide design. 
J. Phys. Chem. B 120, 320–328 (2016).

16. Guo, Z., Streu, K., Krilov, G. & Mohanty, U. Probing the origin of structural stability of single and double stapled p53 peptide analogs 
bound to mdm2. Chem. Biol. Drug Des. 83, 631–642 (2014).

17. Wright, P. E. & Dyson, H. J. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16, 18–29 
(2015).

18. Borcherds, W. et al. Disorder and residual helicity alter p53-mdm2 binding affinity and signaling in cells. Nat. Chem. Biol. 1–5 
(2014).

19. Showalter, S. A., Bruschweiler-Li, L., Johnson, E., Zhang, F. & Brüschweiler, R. Quantitative lid dynamics of mdm2 reveals 
differential ligand binding modes of the p53-binding cleft. J. Am. Chem. Soc. 130, 6472–6478 (2008).

20. Bista, M. et al. Transient protein states in designing inhibitors of the mdm2-p53 interaction. Structure 21, 2143–2151 (2013).
21. Chodera, J. D. & Noé, F. Markov state models of biomolecular conformational dynamics. Curr. Opin. Struct. Biol. 25, 135–144 

(2014).
22. Schwantes, C. R. & Pande, V. S. Improvements in markov state model construction reveal many non-native interactions in the 

folding of ntl9. J. Chem. Theor. Comput. 9, 2000–2009 (2013).
23. Perez-Hernandez, G., Paul, F., Giorgino, T., De Fabritiis, G. & Noé, F. Identification of slow molecular order parameters for markov 

model construction. J. Chem. Phys. 139, 015102 (2013).
24. Razavi, A. M. & Voelz, V. A. Kinetic network models of tryptophan mutations in β-hairpins reveal the importance of non-native 

interactions. J. Chem. Theor. Comput. 11, 2801–2812 (2015).
25. Zhou, G. & Voelz, V. A. Using kinetic network models to probe non-native salt-bridge effects on α-helix folding. J. Phys. Chem. B 

120, 926–935 (2016).
26. Boninsegna, L., Gobbo, G., Noé, F. & Clementi, C. Investigating molecular kinetics by variationally optimized diffusion maps.  

J. Chem. Theor. Comput. 11, 5947–5960 (2015).
27. Lin, Y.-S., Bowman, G. R., Beauchamp, K. A. & Pande, V. S. Investigating how peptide length and a pathogenic mutation modify the 

structural ensemble of amyloid beta monomer. Biophys. J. 102, 315–324 (2012).
28. Qiao, Q., Bowman, G. R. & Huang, X. Dynamics of an intrinsically disordered protein reveal metastable conformations that 

potentially seed aggregation. J. Am. Chem. Soc. 135, 16092–16101 (2013).
29. Kussie, P. H. et al. Structure of the mdm2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 

948–953 (1996).
30. Li, C. et al. Systematic mutational analysis of peptide inhibition of the p53–mdm2/mdmx interactions. J. Mol. Biol. 398, 200–213 

(2010).
31. Bueren-Calabuig, J. A. & Michel, J. Elucidation of ligand-dependent modulation of disorder-order transitions in the oncoprotein 

mdm2. PLoS Comput. Biol. 11, e1004282 (2015).
32. Sugase, K., Dyson, H. J. & Wright, P. E. Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447, 

1021–1025 (2007).
33. Bueren-Calabuig, J. A. & Michel, J. Impact of ser17 phosphorylation on the conformational dynamics of the oncoprotein mdm2. 

Biochemistry 55, 2500–2509 (2016).
34. Amaro, R. E. & Li, W. W. Emerging Methods for Ensemble-Based Virtual Screening. Curr. Top. Med. Chem. 10, 3–13 (2010).
35. Feixas, F., Lindert, S., Sinko, W. & McCammon, J. A. Exploring the role of receptor flexibility in structure-based drug discovery. 

Biophys. Chem. 186, 31–45 (2014).
36. Fischer, M., Coleman, R. G., Fraser, J. S. & Shoichet, B. K. Incorporation of protein flexibility and conformational energy penalties 

in docking screens to improve ligand discovery. Nat. Chem. 6, 575–583 (2014).
37. Wagner, J. R., Lee, C. T., Durrant, J. D., Malmstrom, R. D., Feher, V. A. & Amaro, R. E. Emerging Computational Methods for the 

Rational Discovery of Allosteric Drugs. Chem. Rev. 116, 6370–6390 (2016).
38. Shukla, D., Hernández, C. X., Weber, J. K. & Pande, V. S. Markov state models provide insights into dynamic modulation of protein 

function. Acc. Chem. Res. 48, 414–422 (2015).
39. Kohlhoff, K. J., Shukla, D., Lawrenz, M., Bowman, G. R., Konerding, D. E., Belov, D., Altman, R. B. & Pande, V. S. Cloud-based 

simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways. Nat. Chem. 6, 15–21 (2014).
40. Bowman, G. R., Bolin, E. R., Kathryn, M. H., Maguire, B. C. & Marqusee, S. Discovery of multiple hidden allosteric sites by 

combining Markov state models and experiments. Proc. Natl. Acad. Sci. USA 112, 2734–2739 (2015).
41. Cheng, L. S. et al. Ensemble-based virtual screening reveals potential novel antiviral compounds for avian influenza neuraminidase. 

J. Med. Chem. 51, 3878–3894 (2008).
42. Malmstrom, R. D., Lee, C. T., Van Wart, A. T. & Amaro, R. E. Application of molecular-dynamics based markov state models to 

functional proteins. J. Chem. Theor. Comput. 10, 2648–2657 (2014).
43. Choi, J., Choi, K.-E., Park, S. J., Kim, S. Y. & Jee, J.-G. Ensemble-based virtual screening led to the discovery of new classes of potent 

tyrosinase inhibitors. J. Chem. Inf. Model. 56, 354–367 (2016).
44. Pantelopulos, G. A., Mukherjee, S. & Voelz, V. A. Microsecond simulations of mdm2 and its complex with p53 yield insight into 

force field accuracy and conformational dynamics. Proteins: Struct., Funct., Bioinf. 83, 1665–1676 (2015).
45. Mobley, D. L. & Klimovich, P. V. Perspective: Alchemical free energy calculations for drug discovery. J. Chem. Phys. 137, 230901 

(2012).
46. Chen, L. et al. Autoinhibition of mdmx by intramolecular p53 mimicry. Proc. Natl. Acad. Sci. USA 112, 4624–4629 (2015).
47. Pronk, S. et al. Gromacs 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29, 

845–854 (2013).
48. Uhrinova, S. et al. Structure of free mdm2 n-terminal domain reveals conformational adjustments that accompany p53-binding.  

J. Mol. Biol. 350, 587–598 (2005).
49. Li, D.-W. & Brüschweiler, R. Nmr-based protein potentials. Angew. Chem., Int. Ed. 49, 6778–6780 (2010).
50. Shirts, M. & Pande, V. S. Screen savers of the world, unite! Science 290, 1903–1904 (2000).
51. Beauchamp, K. A. et al. Msmbuilder2: Modeling conformational dynamics on the picosecond to millisecond scale. J. Chem. Theor. 

Comput. 7, 3412–3419 (2011).
52. McGibbon, R. T. & Pande, V. S. Variational cross-validation of slow dynamical modes in molecular kinetics. J. Chem. Phys. 142, 

124105 (2015).
53. Bowman, G. R. Improved coarse-graining of markov state models via explicit consideration of statistical uncertainty. J. Chem. Phys. 

137, 134111 (2012).
54. Han, B., Liu, Y., Ginzinger, S. W. & Wishart, D. S. Shiftx2: significantly improved protein chemical shift prediction. J. Biomol. NMR 

50, 43–57 (2011).
55. Allen, W. J. et al. Dock 6: Impact of new features and current docking performance. J. Comp. Chem. 36, 1132–1156 (2015).



www.nature.com/scientificreports/

1 0Scientific RepoRts | 6:31631 | DOI: 10.1038/srep31631

56. Brozell, S. R. et al. Evaluation of dock 6 as a pose generation and database enrichment tool. J. Comput.-Aided Mol. Des. 26, 749–773 
(2012).

57. Lang, P. T. et al. Dock 6: combining techniques to model rna-small molecule complexes. RNA 15, 1219–1230 (2009).
58. Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comp. Chem. 25, 1605–1612 

(2004).
59. Case, C. et al. Amber 14. University of California, San Francisco (2015).
60. Word, J. M., Lovell, S. C., Richardson, J. S. & Richardson, D. C. Asparagine and glutamine: using hydrogen atom contacts in the 

choice of side-chain amide orientation. J. Mol. Biol. 285, 1735–1747 (1999).
61. Moustakas, D. T. et al. Development and validation of a modular, extensible docking program: Dock 5. J. Comput.-Aided Mol. Des. 

20, 601–619 (2006).
62. Nüske, F., Keller, B. G., Perez-Hernandez, G., Mey, A. S. J. S. & Noé, F. Variational Approach to Molecular Kinetics. J. Chem. Theor. 

Comput. 10, 1739–1752 (2014).
63. Noé, F. & Clementi, C. Kinetic Distance and Kinetic Maps from Molecular Dynamics Simulation. J. Chem. Theor. Comput. 11, 

5002–5011 (2015).

Acknowledgements
This research was supported in part by the National Science Foundation through major research instrumentation 
grant number CNS-09-58854, and MCB-1412508. G.A.P. is supported by a National Science Foundation 
Graduate Research Fellowship under Grant DGE-1545957 and the Temple University Diamond Research 
Scholars Program.

Author Contributions
V.A.V. conceived the experiments, G.A.P. and S.M. conducted the experiments. All authors analyzed the results 
and reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Mukherjee, S. et al. Markov models of the apo-MDM2 lid region reveal diffuse yet 
two-state binding dynamics and receptor poses for computational docking. Sci. Rep. 6, 31631; doi: 10.1038/
srep31631 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Markov models of the apo-MDM2 lid region reveal diffuse yet two-state binding dynamics and receptor poses for computational docking
	Introduction
	Results
	Markov State Model (MSM) analysis of simulated apo-MDM2 dynamics predicts two-state binding of the lid region to the p53 cleft
	Computational docking of known MDM2 ligands to simulated receptor ensembles achieves success comparable to crystal structure cross-docking
	Simulation of functional lid motions is key to successful computational docking

	Discussion
	Comparison against previous experimental and computational results
	Implications for MSM methods in computational drug design

	Conclusion
	Methods
	Molecular Simulation
	Markov State Model (MSM) construction
	Structural analysis
	Computational docking with DOCK6

	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                Markov models of the apo-MDM2 lid region reveal diffuse yet two-state binding dynamics and receptor poses for computational docking
            
         
          
             
                srep ,  (2016). doi:10.1038/srep31631
            
         
          
             
                Sudipto Mukherjee
                George A. Pantelopulos
                Vincent A. Voelz
            
         
          doi:10.1038/srep31631
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep31631
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep31631
            
         
      
       
          
          
          
             
                doi:10.1038/srep31631
            
         
          
             
                srep ,  (2016). doi:10.1038/srep31631
            
         
          
          
      
       
       
          True
      
   




