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Bile acid receptor TGR5, NADPH 
Oxidase NOX5-S and CREB 
Mediate Bile Acid-Induced DNA 
Damage In Barrett’s Esophageal 
Adenocarcinoma Cells
Dan Li1 & Weibiao Cao1,2

The mechanisms whereby bile acid reflux may accelerate the progression from Barrett’s esophagus 
(BE) to esophageal adenocarcinoma (EA) are not fully understood. In this study we found that bile 
acid taurodeoxycholic acid (TDCA) significantly increased the tail moment (TM) and histone H2AX 
phosphorylation in FLO-1 EA cells, an increase which was significantly decreased by knockdown 
of TGR5. Overexpression of TGR5 significantly increased TDCA-induced TM increase and H2AX 
phosphorylation. In addition, NADPH oxidase inhibitor diphenylene iodonium significantly inhibited 
the TDCA-induced increase in TM and H2AX phosphorylation. TDCA-induced increase in TM and 
H2AX phosphorylation was significantly decreased by knockdown of NOX5-S and overexpression of 
NOX5-S significantly increased TDCA-induced increase in the tail moment and H2AX phosphorylation. 
Furthermore, TDCA significantly increased cAMP response element binding protein (CREB) 
phosphorylation in FLO-1 cells. Knockdown of CREB significantly decreased TDCA-induced increase in 
NOX5-S mRNA and the tail moment. Conversely, overexpression of CREB significantly increased TDCA-
induced TM increase. We conclude that TDCA-induced DNA damage may depend on the activation of 
TGR5, CREB and NOX5-S. It is possible that in Barrett’s patients bile acids may activate NOX5-S and 
increase reactive oxygen species (ROS) production via activation of TGR5 and CREB. NOX5-S-derived 
ROS may cause DNA damage, thereby contributing to the progression from BE to EA.

The major risk factor for esophageal adenocarcinoma (EA) is gastroesophageal reflux disease (GERD) compli-
cated by Barrett’s esophagus (BE). The mechanisms of the progression from BE to EA are not fully understood. 
Bile acids may contribute to the progression from BE to EA1,2 since (a) animals with surgical diversion of duodenal 
contents into the lower esophagus develops EA3–5; (b) In an in vitro experiment immortalized non-transformed 
esophageal Barrett cells become tumorigenic after repetitive exposure to bile salts in an acid environment over 65 
weeks6. However, mechanisms whereby bile acids promote the development of EA are not known.

Bile acids have been reported to cause DNA damage7, among which double-strand breaks (DSBs) are the most 
harmful form. Persistent DSBs may cause chromosomal abnormalities including translocations and deletions8 
and induce genomic instability, thus contributing to the tumorigenesis. How bile acids cause DNA damage is 
not clear. Bile acid deoxycholic acid (DCA)-induced DNA damage has been reported to be partially dependent 
on inducible nitric oxide synthase (iNOS) and nitric oxide (NO)9 and to be mediated by reactive oxygen species 
(ROS) since pretreatment with N-acetyl-l-cysteine (a ROS scavenger) prevented DNA damage induced by DCA10. 
We have previously shown that the bile acid-induced H2O2 production is mediated by activation of NADPH oxi-
dase (NOX) NOX5-S and a bile acid receptor TGR5 in EA FLO-1 cells11. TGR5 is a G-protein-coupled receptor 
and plays an important role in bile acid-regulated lipid metabolism, energy homeostasis, and glucose metab-
olism12–14. Therefore, we examined the role of TGR5 and NOX5-S in bile acid-induced DNA damage. We find 
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that the bile acid taurodeoxycholic acid-induced DNA damage is mediated by the activation of TGR5, NADPH 
oxidase 5-S (NOX5-S) and the cyclic AMP-response element-binding protein (CREB).

Results
Taurodeoxycholic acid (TDCA)-induced DNA damage in FLO-1 EA cells. To investigate whether 
TDCA causes DNA damage, FLO-1 cells, a human Barrett’s adenocarcinoma cell line derived from human 
Barrett’s esophageal adenocarcinoma, were incubated with 10−11M TDCA for 24 hours. DNA damage was exam-
ined by a Comet Assay. This assay is based on the ability of denatured cleaved DNA fragments to migrate out of 
the cell under the influence of an electric potential, whereas undamaged supercoiled DNA remains within the 
confines of the cell membrane. The DNA damage is quantitated by measuring the tail moment, which is defined 
as the product of the tail length and the fraction of total DNA in the tail (tail moment =  tail length x % of DNA in 
the tail). Figure 1 showed that TDCA treatment significantly increased tail moment from 0.2 ±  0.08 to 3.1 ±  0.3 
(t test, P ＜  0.0001), suggesting that TDCA may cause DNA damage in FLO-1 EA cells. To further confirm this 
result, we examined histone H2AX phosphorylation, which has been shown to be a marker of double stranded 
DNA break15,16. We found that TDCA significantly increased H2AX phosphorylation in FLO-1 cells (Fig. 1C,D), 
indicating that TDCA may cause double stranded DNA break.

Role of TGR5 in TDCA-induced DNA damage. We have previously shown that TGR5 mediates bile 
acid-induced increase in NOX5-S expression. Therefore, we examined the role of TGR5 in TDCA-induced 
DNA damage. We used TGR5 siRNA, which had been shown by us to effectively knock down TGR511, to knock 
down TGR5. Figure 2A showed that knockdown of TGR5 significantly decreased TDCA-induced increase in 
tail moment from 4.1 ±  0.4 to 2.1 ±  0.3 (ANOVA, P ＜  0.0001) in FLO-1 cells. In addition, overexpression of 
TGR5 by transfection of FLO-1 cells with TGR5 plasmid significantly increased TDCA-induced increase in tail 
moment from 2.4 ±  0.3 to 3.3 ±  0.4 (ANOVA, P ＜  0.05, Fig. 2B,C). Similarly, knockdown of TGR5 significantly 
decreased TDCA-induced increase in H2AX phosphorylation (Fig. 3A,B) and overexpression of TGR5 signifi-
cantly enhanced TDCA-induced H2AX phosphorylation (Fig. 3C,D). These data suggest that TGR5 may mediate 
TDCA-induced DNA damage.

Role of NOX5-S in acid-induced DNA damage. We have shown that TDCA increases NOX5-S expres-
sion and H2O2 production in FLO-1 cells and a Barrett’s cell line BAR-T11. Thus we examined the role of NOX5-S 
in TDCA induced DNA damage. Firstly we used NADPH oxidase (NOX) inhibitor diphenyleneiodonium 

Figure 1. Bile acid taurodeoxycholic acid (TDCA) causes DNA damage. (A) Typical images and (B) 
summarized data showed that TDCA treatment (10−11 M, 24 hours) significantly increased tail moment, 
suggesting that TDCA may cause DNA damage in FLO-1 EA cells. Note that the presence of comet “tails” in the 
images indicates DSBs in FLO-1 cells. N =  162 cells of 3 experiments (control) and 208 cells of 3 experiments 
(TDCA group). (C) Typical images and (D) summarized data showed that TDCA treatment (10−11 M, 24 hours) 
significantly increased H2AX phosphorylation (N =  9), suggesting that TDCA may cause double stranded DNA 
break in FLO-1 EA cells. t test, * *P <  0.0001.
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(DPI)17. We found that TDCA-induced increase in tail moment was significantly reduced by DPI from 3.0 ±  0.3 
to 1.0 ±  0.2 (ANOVA, P ＜  0.0001, Fig. 4A,B). In addition, DPI significantly inhibited TDCA-induced increase in 
H2AX phosphorylation (Fig. 4C,D). These data suggest that NADPH oxidases may be involved in TDCA-induced 
DNA damage.

Then we used NOX5 siRNA, which had been shown by us to effectively knock down NOX5-S18, to knock 
down NOX5-S. Figure 5A showed that knockdown of NOX5-S significantly decreased TDCA induced increase 

Figure 2. The role of TGR5 in TDCA-induced DNA damage. (A) Bile acid TDCA significantly increased the 
tail moment. Knockdown of TGR5 significantly decreased the tail moment in response to TDCA treatment 
in FLO-1 cells (N =  134-253 cells of 3 experiments). (B) Representative images of the Comet Assay at 4X 
magnification in FLO-1 cells transfected with pcDNA3.1 or TGR5 plasmid with or without TDCA treatment 
(10−11 M, 24 hours). C) Overexpression of TGR5 significantly increased the tail moment in response to TDCA 
treatment in FLO-1 cells (N =  190–263 cells of 3 experiments). These data suggest that TGR5 may mediate bile 
acid-induced DNA damage. ANOVA * *P <  0.0001, compared with Control siRNA group or pCDNA group; 
#P <  0.0001, compared with Control siRNA group plus TDCA group; ##P <  0.05, compared with Control 
pCDNA group plus TDCA group.
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in tail moment from 3.4 ±  0.6 to 2.1 ±  0.4 (ANOVA, P ＜  0.05) in FLO-1 cells (Fig. 5A), suggesting that NOX5-S 
may be involved in TDCA-induced DNA damage. Furthermore, TDCA significantly increased H2AX phospho-
rylation in FLO-1 cells, an increase which was significantly reduced by knockdown of NOX5-S (Fig. 6A,B). In 
addition, overexpression of NOX5-S by transfection with NOX5-S plasmid significantly increased TDCA induced 
increase in tail moment from 1.3 ±  0.2 to 2.1 ±  0.4 (ANOVA, P ＜  0.05, Fig. 5B,C) in FLO-1 cells. Similarly, over-
expression of NOX5-S significantly increased histone H2AX phosphorylation in response to TDCA treatment 
in FLO-1 cells (Fig. 6C,D). The data suggest that NOX5-S may contribute to TDCA-induced DNA damage in 
FLO-1 cells.

Role of CREB in TDCA-induced DNA damage. We have reported that cyclic AMP response element 
binding protein (CREB) is responsible for acid-induced expression of NOX5-S in SEG1 cells (a possible lung 
carcinoma cell line)19. However, whether CREB mediates bile acid-induced NOX5-S expression and DNA 
damage is not known. We found that TDCA treatment significantly increased phosphorylation of CREB in a 
time-dependent manner in FLO-1 cells (Fig. 7A), indicating that TDCA may activate CREB.

Next we examine the role of CREB in TDCA-induced NOX5-S expression and DNA damage. We used CREB 
siRNA, which had been shown by us to effectively knock down CREB18, to knock down CREB. Knockdown 
of CREB significantly decreased TDCA-induced increase in NOX5-S mRNA levels from 209% to 72% control 
(Fig. 7B), suggesting that CREB may mediate TDCA-induced increase in NOX5-S expression. In addition, 
knockdown of CREB significantly decreased TDCA-induced increase in tail moment from 3.6 ±  0.5 to 1.7 ±  0.3 
(ANOVA, P ＜  0.001, Fig. 8A) in FLO-1 cells. Furthermore, overexpression of CREB by transfection with CREB 
plasmid significantly increased TDCA-induced increase in tail moment from 3.9 ±  0.2 to 5.9 ±  0.8 (ANOVA, 
P ＜  0.001, Fig. 8B) in FLO-1 cells. The data suggest that CREB may be involved in TDCA-induced DNA damage 
in FLO-1 cells.

Discussion
There is increasing evidence that bile acids may contribute to the progression from BE to EA1,2. Bile acids have 
been shown to cause DNA damage7, which is mediated by reactive oxygen species (ROS)10. However, the mecha-
nisms of bile acid-induced DNA damage are not fully understood.

We have previously shown that the NADPH oxidase NOX5-S is present in EA FLO-1 cells and mediates 
the bile acid-induced increase in H2O2 production11. In addition, the bile acid-induced increase in NOX5-S 

Figure 3. The role of TGR5 in TDCA-induced H2AX phosphorylation. (A) Typical images of Western 
blot analysis and (B) summarized data showed that TDCA (10−11 M, 24 hours) significantly increased H2AX 
phosphorylation, an increase which was significantly decreased by knockdown of TGR5 (N =  3). (C) Typical 
images of Western blot analysis and (D) summarized data showed that overexpression of TGR5 enhanced 
TDCA-induced increase in H2AX phosphorylation in FLO-1 cells (N =  3). These data suggest that TGR5 may 
mediate TDCA-induced H2AX phosphorylation. ANOVA, *P <  0.05, * *P <  0.01, compared with Control 
siRNA group or pCDNA group; #P <  0.05, compared with Control siRNA plus TDCA group or pCDNA plus 
TDCA group.
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expression may be mediated by activation of the TGR5 receptor and Gα q protein11. Therefore, we hypothesized 
that bile acid-induced H2O2 production via activation of NOX5-S and TGR5 may contribute to the DNA damage.

We firstly examined the role of bile acid receptor TGR5 in bile acid-induced DNA damage. We found that 
TGR5 may mediate bile acid-induced DNA damage since 1) knockdown of TGR5 significantly decreased 
TDCA-induced increase in tail moment and H2AX phosphorylation in FLO-1 cells; 2) overexpression of TGR5 
significantly increased TDCA-induced increase in tail moment and H2AX phosphorylation.

Next we examined the role of NOX5-S in bile acid-induced DNA damage since we have shown that the 
NADPH oxidase isoform NOX5-S is present in FLO-1 EA cells and may be a source of reactive oxygen spe-
cies11. In addition, bile acid increases NOX5-S expression via activation of the TGR5 receptor and Gα q pro-
tein11. We found that NOX5-S mediates TDCA-induced DNA damage because 1) TDCA-induced increase in 
tail moment was significantly reduced by NADPH oxidase inhibitor DPI; 2) knockdown of NOX5-S significantly 
decreased TDCA induced increase in tail moment in FLO-1 cells; 3) overexpression of NOX5-S by transfection 
with NOX5-S plasmid significantly increased TDCA induced increase in tail moment. To further confirm this 
result, DNA damage was examined by measurement of histone H2AX phosphorylation, which has been shown 
to be a marker of double stranded DNA break15,16. We found that TDCA significantly increased H2AX phos-
phorylation in FLO-1 cells, an increase which was significantly reduced by DPI and knockdown of NOX5-S. In 
addition, overexpression of NOX5-S significantly increased histone H2AX phosphorylation in response to TDCA 

Figure 4. The role of NADPH oxidases in TDCA induced DNA damage. (A) Representative images of the 
Comet Assay at 4X magnification in FLO-1 cells treated with or without TDCA treatment (10−11 M,24 hours) in 
the presence or absence of NADPH oxidase inhibitor diphenyleneiodonium (DPI 10−5 M). (B) TDCA-induced 
increase in tail moment was significantly reduced by DPI (N =  149–208 cells of 3 experiments). (C) Typical 
images of Western blot analysis and (D) summarized data showed that TDCA (10−11 M, 24 hours) significantly 
increased H2AX phosphorylation, an increase which was significantly decreased by DPI (N =  3). These data 
suggest that NADPH oxidases may be involved in TDCA-induced DNA damage. ANOVA * *P <  0.0001, 
compared with control group; #P <  0.0001, *P <  0.05, compared with TDCA group.
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treatment in FLO-1 cells, further confirming our result that NOX5-S may contribute to TDCA-induced DNA 
damage in FLO-1 cells.

In addition, we examined the role of cyclic AMP-response element-binding protein (CREB, a transcription 
factor) in TDCA-induced DNA damage since we have found that CREB is responsible for acid-induced expres-
sion of NOX5-S. CREB is a Ca2+-dependent and ubiquitous transcription factor and binds the consensus CRE 
DNA sequence TGACGTCA (27, 51). The ability of CREB to activate transcription requires its phosphorylation 
on serine 13320. CREB is a 43 kD basic leucine‐zipper transcription factor that regulates gene expression through 
the cAMP‐dependent or independent signal transduction pathways21,22. We have previous identified two CRE 
binding elements TGACGAGA and TGACGCTG in the NOX5-S gene promoter18, confirming the role of CREB 
in the regulation of NOX5-S expression. However, whether bile acid activates CREB is not known. We found 
that TDCA significantly increased CREB phosphorylation in a time-dependent manner, indicating that bile acid 

Figure 5. The role of NOX5-S in TDCA-induced DNA damage. (A) Knockdown of NOX5-S significantly 
decreased the tail moment in response to TDCA treatment in FLO-1 cells (N =  130–171 cells of 3 experiments). 
(B) Representative images of the Comet Assay at 4X magnification in FLO-1 cells transfected with pCMV 
or NOX5-S plasmid with or without TDCA treatment (10−11 M, 24 hours). (C) Overexpression of NOX5-S 
significantly increased the tail moment in response to TDCA treatment in FLO-1 cells (N =  136–172 cells of 
3 experiments). These data suggest that NOX5-S may mediate TDCA-induced DNA damage in FLO-1 cells. 
ANOVA * *P <  0.01, compared with Control siRNA group or pCMV group; #P <  0.05, compared with Control 
siRNA group plus TDCA group or pCMV plus TDCA group.
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Figure 6. The role of NOX5-S in TDCA-induced H2AX phosphorylation. (A) Typical images of Western 
blot analysis and (B) summarized data showed that TDCA significantly increased H2AX phosphorylation, an 
increase which was significantly decreased by knockdown of NOX5-S (N =  3). (C) Typical images of Western 
blot analysis and (D) summarized data showed that overexpression of NOX5-S enhanced TDCA-induced 
increase in H2AX phosphorylation in FLO-1 cells (N =  3). These data suggest that NOX5-S may mediate 
TDCA-induced H2AX phosphorylation. ANOVA, *P <  0.05, compared with Control siRNA group or pCMV 
group; &P <  0.05, compared with Control siRNA plus TDCA group or pCMV plus TDCA group.

Figure 7. The role of CREB in TDCA-induced NOX5-S expression. (A) TDCA treatment (10−11 M) 
significantly increased phosphorylation of CREB in a time-dependent manner in FLO-1 cells, indicating that 
TDCA may activate CREB. B) TDCA significantly increased NOX5-S mRNA levels, an increase which was 
significantly decreased by knockdown of CREB, suggesting that CREB may mediate TDCA-induced increase 
in NOX5-S expression. N =  4, ANOVA *P <  0.05, compared with Control siRNA group; * *P <  0.02, compared 
with Control siRNA plus TDCA group.
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may activate CREB. We also found that CREB may mediate bile acid-induced increase in NOX5-S expression 
because knockdown of CREB significantly decreased TDCA-induced increase in NOX5-S mRNA levels. In addi-
tion, knockdown of CREB significantly decreased TDCA-induced increase in tail moment in FLO-1 cells and 
overexpression of CREB significantly increased TDCA-induced increase in tail moment. These data suggest that 
CREB may be involved in TDCA-induced NOX5-S expression and DNA damage in FLO-1 cells.

In conclusion, bile acid causes DNA damage via activation of TGR5, CREB and NOX5-S in FLO-1 cells. 
Although these data were obtained in an in vitro cell line, which is a limitation of this study, our data imply that 
in Barrett’s esophagus bile acids present in the refluxate activate TGR5 and CREB, thereby upregulating NOX5-S. 
High levels of ROS derived from NOX5-S may cause DNA damage, thereby contributing to the progression from 
BE to EA.

Materials and Methods
Cell Culture and Treatment. The human Barrett’s adenocarcinoma cell line FLO-123 was obtained from 
Dr. David Beer (University of Michigan). The FLO-1 cells were cultured in Dulbecco’s modified Eagle’s medium 
(DMEM) containing 10% fetal bovine serum and antibiotics.

For taurodeoxycholic acid (TDCA) treatment, FLO-1 cells were incubated with 10−11 M TDCA for 24 h. For 
diphenyleneiodonium (DPI) treatment, FLO-1 cells were pretreated with DPI (10−5 M), or culture medium (con-
trol) for 1 h and then treated with or without TDCA (10−11 M) for an additional 24 h. Finally, the culture medium 
and cells were collected for measurements.

Small interfering RNA (siRNA) and plasmid transfection. The protocol for small interfering RNA 
(siRNA) transfection has been described by us in our previous publication24. 60 pmol of siRNA duplex of NOX5, 
TGR5, CREB or control siRNAs formulated into liposomes were added to each well.

The protocol for plasmid transfection was similar to that in our previous publication24. 0.5 μ g of plasmids 
(pCMV-NOX5-S, pCMV, pCDNA3.1-TGR5, pCDNA3.1, RSV-CREB or RSV) formulated into liposomes were 
added to each well. The pCMV-tag5a-NOX5- S plasmid was obtained from Dr. David Lambeth (Emory University 
School of Medicine, Atlanta, GA); CREB expression vector was generously provided to us by Dr. Marc R. Montminy 
(The Salk Institute for Biological Studies, San Diego, CA)20.

Twenty-four hours after transfection with siRNA or plasmid, cells were treated with or without TDCA 10−11 M 
in culture medium (pH 7.2; without phenol red) for 24 h, and then the culture medium and cells were collected 
for measurements.

Reverse transcription-PCR. Total RNA was extracted by Trizol reagent (Thermo Fisher Scientific, 
Waltham, MA) and 1.5 μ g of total RNAs were reversely transcribed by using a SuperScript First-Strand Synthesis 
System for reverse transcription-PCR (Thermo Fisher Scientific, Waltham, MA).

Quantitative real-time PCR. Real-time PCR was performed as we previously described11,24. The primers 
used were as follows: NOX5-S sense (5′-AAGACTCCATCACGGGGCTGCA-3′), NOX5-S antisense (5′-CCT
TCAGCACCTTGGCCAGA-3′), 18S sense (5′-CGGACAGGATTGACAGATTGATAGC-3′), and 18S antisense 
(5′-TGCCAGAGTCTCGTTCGTTATCG-3′). Reactions were carried out in an Applied Biosystems StepOnePlus 
real-time PCR system for one cycle at 94 °C for 5 min; 40 cycles at 94 °C for 30 s, 59 °C for 30 s, and 72 °C for 30 s; 
1 cycle at 94 °C for 1 min; and 1 cycle at 55 °C for 30 s.

Figure 8. The role of CREB in TDCA-induced DNA damage. (A) Knockdown of CREB significantly 
decreased the tail moment in response to TDCA treatment in FLO-1 cells (N =  187–308 cells of 3 experiments). 
(B) Overexpression of CREB significantly increased the tail moment in response to TDCA treatment in FLO-1 
cells (N =  171–369 cells of 3 experiments). These data suggest that CREB may mediate TDCA-induced DNA 
damage in FLO-1 cells. ANOVA * *P <  0.0001, compared with Control siRNA group or pCDNA group;  
##P <  0.001, compared with Control siRNA group plus TDCA group or pCDNA plus TDCA group.
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Western Blot Analysis. Cells were lysed and Western blot analysis were carried out as we previously 
described 18,25. The primary antibodies used were phospho-histone H2AX (Ser139) antibody (1:1000, Cell sig-
naling technology, cat # 2577), H2AX antibody (1:1000, Cell signaling technology, cat # 2595), phospho-CREB 
(Ser133) antibody (1:1000, Cell signaling technology, cat # 9191) and CREB antibody (1:1000, Cell signaling 
technology, cat # 9197).

Comet Assay. The comet assay was done as we previously reported24. For each sample, 100 randomly selected 
cells (50 cells from each of the two duplicate slides) were analyzed. The tail moment was analyzed using TriTek 
CometScore TM software.

Materials. Human TGR5 and CREB siRNA were purchased from Santa Cruz biotechnology Inc., Dallas, 
Texas; human NOX5 siRNA from Ambion Inc. (Austin, TX), and CREB siRNA from Upstate (Charlottesville, 
VA ). DPI, Triton X- 100, phenylmethylsulfonyl fluoride, DMEM, antibiotics, and other reagents were purchased 
from Sigma-Aldrich.

Statistical Analysis. Data is expressed as mean ±  S.E. Statistical differences between two groups were deter-
mined by Student’s t test. Differences among multiple groups were tested using analysis of variance (ANOVA) and 
checked for significance using Fisher’s protected least significant difference test.
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