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High power laser-driven ceramic 
phosphor plate for outstanding 
efficient white light conversion in 
application of automotive lighting
Young Hyun Song1,*, Eun Kyung Ji2,*, Byung Woo Jeong3,*, Mong Kwon Jung4,*, Eun Young Kim3 
& Dae Ho Yoon1,2

We report on Y3Al5O12: Ce3+ ceramic phosphor plate (CPP) using nano phosphor for high power laser 
diode (LD) application for white light in automotive lighting. The prepared CPP shows improved 
luminous properties as a function of Ce3+ concentration. The luminous properties of the Y3Al5O12: Ce3+ 
CPP nano phosphor are improved when compared to the Y3Al5O12: Ce3+ CPP with bulk phosphor, and 
hence, the luminous emittance, luminous flux, and conversion efficiency are improved. The Y3Al5O12: 
Ce3+ CPP with an optimal Ce3+ content of 0.5 mol % shows 2733 lm/mm2 value under high power blue 
radiant flux density of 19.1 W/mm2. The results indicate that Y3Al5O12: Ce3+ CPP using nano phosphor 
can serve as a potential material for solid-state laser lighting in automotive applications.

Solid state lighting (SSL) has attracted much interest since the first development of light emitting diodes (LED) 
using blue-emitting InGaN by S. Nakamura in 19951. White LEDs are good candidates as lighting devices capable 
of replacing incandescent and fluorescent lamps due to their outstanding properties, such as long lifetimes, high 
luminance and compactness2–6. Generally, white light can be generated with blue-emitting devices and yellow 
emitting phosphor (Y3Al5O12: Ce3+)7. The high efficiency of Y3Al5O12: Ce3+ phosphor facilitates the better lumi-
nescence performance in white LEDs. However, Y3Al5O12: Ce3+ phosphor in white LEDs exhibits problems asso-
ciated with thermal quenching due to the higher operating current of LEDs8. With the decrease of LED efficiency 
as a function of higher operating current, the temperature of the LEDs increases and this efficiency is lost as heat. 
The increase of temperature in LEDs has significant effects on the Y3Al5O12: Ce3+ phosphor such as a decrease in 
efficiency and a possible shift of emission wavelength. Overall, the system efficiency of LEDs decreases and it is 
difficult to apply Y3Al5O12: Ce3+ phosphor in high power LEDs. In contrast with LEDs, laser diodes (LD) can eas-
ily resolve the issues of LEDs. The output power and external quantum efficiency (EQE) of laser diodes increase 
linearly as a function of operating current, and the colour stability of the laser emission peak is maintained9,10. 
These characteristics make Y3Al5O12: Ce3+ phosphor an attractive excitation source for new high-power LD in 
white light applications. For the generation of white light, the thermal stability of Y3Al5O12: Ce3+ phosphor is 
required in addition to blue LDs. In other words, it is necessary to avoid the use of organic resin with phosphor 
powders such as epoxy and silicone. An alternative to high power LDs in white light applications is to use the 
phosphor in glass and ceramic phosphor plates, similar to remote phosphor11. Phosphor in glass is not suitable for 
application to high power LDs because the luminous flux of the phosphor in glass gradually decreases at >1.0 W/
mm2 due to thermal quenching12. Ceramic phosphor plate (CPP) is combined with a laser diode because it is 
very different from high power blue laser diodes, which provide both optical and thermal stability compared with 
the mixture of organic resin with phosphor. To fabricate the CPP using bulk-type phosphor, solid state reaction 
method is required at high temperature13. This is a relatively simple method to fabricate the CPP but it is not easy 
to control the small grain size (<1 μm) due to the initial size of phosphor. To lower the sintering temperature, it 
is imperative to use the nano-structured Y3Al5O12: Ce3+ phosphor. Previous works have demonstrated synthetic 
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techniques such as co-precipitation, sol-gel, and combustion and spray pyrolysis methods14–17. These have been 
proposed as lower temperature synthesis methods for achieving the nano-structured single phase. Many scientists 
reported the luminous efficacy of Y3Al5O12: Ce3+ CPP in LED applications when using bulk Y3Al5O12: Ce3+ 18–20. 
However, the Y3Al5O12: Ce3+ CPP for white light generation in blue LD applications such as display, lamp, light 
fidelity, and automotive lighting sections have yet to be investigated in detail21,22. In this paper, we report our 
advanced research on Y3Al5O12: Ce3+CPP using nano-structured Y3Al5O12: Ce3+ precursor directly combined 
with blue LDs for white light generation. We substitute the mixture of organic resin with phosphor powder to 
Y3Al5O12: Ce3+ CPP. We also optimize the optical properties of Y3Al5O12: Ce3+ CPP.

Experimental
Preparation of the Nano-structured Y3Al5O12: Ce3+ phosphors. Nano-structured Y3Al5O12: Ce3+ 
phosphors were synthesized using the forced hydrolysis method. First, aluminum nitrate nonahydrate (Sigma-
Aldrich, ≥98% pure), aluminum sulfate octadecahydrate (Sigma-Aldrich, ≥98% pure) and urea (Sigma-Aldrich, 
99.5%) were used to obtain the nano-structured Al(OH)3 particles. These materials were dissolved in deion-
ized water and aged at 98 °C for 4 h. The precipitate was then separated through centrifugation and washed sev-
eral times with both deionized water and ethanol. Next, yttrium nitrate (Sigma-Aldrich, 99.8%), cerium nitrate 
(Sigma-Aldrich, 99%), and urea (Sigma-Aldrich, 99.5%) were used to dissolve the above materials in deionized 
water. The synthesized Al(OH)3 particles were homogeneously dispersed in the mixed solution, which was vig-
orously stirred at 98 °C for 3 h. The precipitate was isolated via centrifugation, washed with both deionized water 
and ethanol, and then dried using a lyophilizer. The resulting powder was annealed at 1200 °C for 4 h under a 
reducing nitrogen atmosphere containing 5% H2 gas. To compare the luminous properties, we synthesized bulk 
type Y3Al5O12: Ce3+ phosphor via solid state reaction method at at 1450 °C for 12 h under same condition.

Fabrication of the Y3Al5O12: Ce3+ CPP. The procedure for fabricating the Y3Al5O12: Ce3+ CPP is shown 
in Fig. 1. The fabrication of Y3Al5O12: Ce3+CPP was carried out by ball milling nano-structured Y3Al5O12: 
Ce3+phosphor and SiO2 as a sintering aid. During this process, ethanol was used as a solvent at a weight ratio of 
powder:ethanol (1:5). All materials were mixed and milled with a ball milling machine using ZrO2 balls with a 
diameter of 5 mm for 24 h. These mixtures were dried at 90 °C for 12 h and compressed into a pellet using uniax-
ially pressed under 20 MPa with a diameter of 10 mm and a thickness of 5 mm. The pellets were fired at 1000 °C 
for 6 h under air atmosphere to remove organic materials and then cold isostatically pressed under 300 MPa for 
30 min. The green bodies were sintered with a graphite-heated vacuum furnace (10−3 Pa) at 1600 °C for 12 h. The 
Y3Al5O12: Ce3+CPP sintered to remove oxygen vacancies was annealed at 1450 °C for 24 h under air atmosphere. 
Finally, all samples were mirror-polished on both surfaces.

Measurements and Characterization. The crystalline phase of the nano-structured Y3Al5O12: 
Ce3+phosphor was identified using powder X-ray diffraction (XRD, D-MAX 2500, Rigaku) with the CuKα target 

Figure 1. The schematic diagram of process for fabrication of nano-structure based Y3Al5O12: Ce3+ ceramic 
phosphor plate. 
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aligned to 10° ≤ 2θ ≤ 80°. The excitation and emission spectra of the nano-structured Y3Al5O12: Ce3+ phosphor 
were analyzed by room-temperature photoluminescence spectrometry (PL, PSI Co., Ltd/Korea), using a 500 W 
xenon discharge lamp as an excitation source. The surface morphology and the compositions of the Y3Al5O12: 
Ce3+CPP was observed by field-emission scanning electron microscopy (FE-SEM, JSM-7600F, JEOL, Japan). The 
luminous emittance, luminous flux and conversion efficiency of Y3Al5O12: Ce3+CPP was measured with double 
integrating spheres (PSI Co., Ltd/Korea) under blue laser excitation (3.5 W LD x 8, 445 nm blue LD) using hand-
made equipment from LG electronics.

Results and Discussion
The crystal structure of Y3Al5O12: Ce3+ CPP was initially analyzed using the powder XRD with a CuKα 
radiation of λ = 1.5406 Å at 10° ≤ 2θ ≤ 80° as shown in Fig. 2a. The XRD patterns of the obtained sample at 
2θ = 18.1°, 27.6°, 29.7°, 33.3°, 36.4°, 41.0°, 46.6°, 55.1° and 57.4° were completely indexed pure Y3Al5O12 
phase (JCPDS No. 33-0040) without any peaks assigned to the CeO2, Y2O3, Al2O3, YAlO3, or Y2Al4O9 phases, 
which indicate a cubic garnet crystal structure with lattice parameter of 1.2008 nm. The excitation and emis-
sion spectra of nano-structured Y3Al5O12: Ce3+ phosphor using a xenon lamp as an excitation source are dis-
played in Fig. 2b. In previous work, the electronic transition of Ce3+ ion constitutes 4f1 in the ground state 
and 4f°5d1 in the excited state23. The ground state is split into a doublet of two excitation bands at 338 and 
450 nm, which was attributed to electronic transition from 2F5/2 to the split excited 5d states band in the ground 
state of the Ce3+ ion24. The ground state is split into a doublet of 2F7/2 and 2F5/2 because of spin–orbit inter-
actions and the excited state is also split from the crystal field, which is affected by the surrounding ligand 
ions25. Ce3+emission involves parity- and spin-allowed 5d → 4f electronic transition and consists of a yellow 
emitting primary band at 537 nm as well as a shoulder on the longer wavelength side, which is ascribed to 
electronic transition from 5d → 2F5/2 and from 5d → 2F7/2 Ce ions, respectively26. Also, in comparison with 
bulk Y3Al5O12: Ce3+ phosphor, the emission wavelength of the nano-structured Y3Al5O12: Ce3+ phosphor 
is shifted to the blue region. This phenomenon is explained as a crystal field strength around Ce3+ ion was 
somewhat reduced27. The luminescence in a nano-structured Y3Al5O12: Ce3+ phosphor is due to the transi-
tion between the energy levels of Ce3+ atoms as the luminescent center. After the sintering process, the sur-
face of Y3Al5O12: Ce3+CPP (1.5 mm X 1.5 mm) was uniformly mirror-polished with a thickness of 100 μm 
to convert the highly bright white colour via electroluminescence (EL) spectra as shown in Fig. 2c. Also, 
the real image of Y3Al5O12: Ce3+ CPP under blue laser pointer (1 W) is indicated in the inset in Fig. 2c.  
The surface imgae of Y3Al5O12: Ce3+ CPP is shown in Fig. 2d. EDX composition analyses revealed the presence 
of oxygen (O), yttrium (Y), and aluminum (Al) elements in Fig. 2e. This result is supported by XRD analysis.

The final goal of this study is to use Y3Al5O12: Ce3+ CPP in 445 nm emitting blue LDs for white light generation in 
automotive lighting. To achieve this goal, it is essential to analyze the luminous properties including the luminous 
emittance, luminous flux, conversion efficiency, emission spectra, CRI, and CCT of the prepared samples under 
blue laser excitation at 445 nm. Figure 3a presents the luminous emittance of the white LD package under blue 
laser excitation at 445 nm. With increasing blue incident power, the luminous emittance of Y3Al5O12: Ce3+ CPP  

Figure 2. Structure, luminescence, and morphology of fabricated nano-structure based Y3Al5O12: Ce3+ 
ceramic phosphor plate. (a) XRD patterns (b) PL excitation and emission spectra (c) Electroluminescence 
spectra (d) SEM image (e) EDX analysis.
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is linearly increased. This is attributed to the increased number of electrons pumped up to the excited state 
of Ce3+ ions as a function of the increased blue incident power. The maximum luminous emittance value for 
Y3Al5O12: Ce3+ CPP is using the nano-structure Y3Al5O12: Ce3+ phosphor obtained at a blue radiant flux density 
of 14.77 W/mm2. This means that the Y3Al5O12: Ce3+ ceramic phosphor plate can be applied as a yellow emitting 
converter in LD applications. However, luminous saturation comes about at high blue radiant flux density due to 
the thermal quenching effect, which implies that the luminance of the Y3Al5O12: Ce3+ CPP cannot be improved 
further.

Figure 3b depicts the conversion efficiency of Y3Al5O12: Ce3+ CPP with increasing blue incident power. When 
the incident power increases, the conversion efficiency decreases gradually. Both the luminous flux and conver-
sion efficiency of Y3Al5O12: Ce3+ CPP using the nano-structure Y3Al5O12: Ce3+ phosphor indicates better lumi-
nous properties than those of bulk Y3Al5O12: Ce3+ phosphor. This is ascribed to the effect of temperature during 
the fabrication of ceramic phosphor plates. Because the sintering process for ceramic phosphor plates is relatively 
culminated, the packing density of CPP using nano-structure Y3Al5O12: Ce3+ phosphor results in more outstand-
ing luminous properties than for bulk Y3Al5O12: Ce3+ in Table 1. In nano-structure Y3Al5O12: Ce3+ phosphors, 
the micro structures of the ceramic phosphor plate are more perfectly formed than bulk Y3Al5O12: Ce3+. The 
densification and grain growth also gradually improved because of higher purity nano precursors, homogeneity, 
low degree of agglomeration, good crystallinity and low temperature sintering. These results shows that CPP 
using the nano-structure Y3Al5O12:Ce3+ phosphors have a finer and more uniform microstructure, as shown in 
Supplementary Information Fig. S1.

Figure 3. Luminous properties of Y3Al5O12: Ce3+ ceramic phosphor plate under a blue laser diode at 
445 nm. (a) emittance properties (b) conversion efficiency, repectively. a.u., arbitrary unit.

Type CCT Ra

Chromaticity 
coordinate

Current (mA) lm/umx y

Bulk YAG: Ce3+ CPP 9938 53.9 0.289 0.271 400 mA 1.285

Nano-structure YAG: Ce3+ CPP 6052 54.2 0.321 0.332 400 mA 2.691

Table 1.  Luminous characteristics of nano-structure based Y3Al5O12: Ce3+ ceramic phosphor plate 
compared with bulk Y3Al5O12: Ce3+ one. *The rated current of the 445 nm blue laser diode. Thickness of each 
phosphor plate: 100 um.
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Figure 4a compares the changes in luminous emittance as a function of Ce3+ concentration under a blue laser 
diode at 445 nm. Luminous emittance increased with increasing amounts of Ce3+, up to about 0.5 mol%, and the 
highest intensity was observed for CPP with 0.5 mol% Ce3+ ions. The value of illuminance is 2733 lm/mm2. On 
the other hand, the illuminance value was degraded by 1 mol% Ce3+ ions. This means that the luminous emittance 
decreases with increasing blue incident power at 14.2 W/mm2. The Supplementary Information in Fig. S2 sug-
gests that Y3Al5O12: Ce3+ can be applied as white conversion materials with high blue incident power density. As 
demonstrated in Fig. 4b, the white conversion efficiency of Y3Al5O12: Ce3+ CPP is improved with increasing blue 
incident power. When the blue incident power is 19.1 W/mm2, the conversion efficiency decreases abruptly from 
218 lm/W to 120 lm/W due to thermal quenching. Figure 4c presents the CIE colour coordinates. The calculated 
CCT value of the nano-structured Y3Al5O12: Ce3+ CPP with 0.5 mol% Ce3+ ions was 5994 K. This is attributed to 
the daylight (5500–6000 K) for adaptive lighting regulation.

We believe that CPP using the nano-structure Y3Al5O12:Ce3+ will act as a candidate for the automotive 
lightings.

Figure 4. Luminous properties of Y3Al5O12: Ce3+ ceramic phosphor plate with increasing the Ce3+ ion  
concentration under a blue laser diode at 445 nm. (a) emittance properties (b) conversion efficiency, 
repectively. a.u., arbitrary unit (c) CIE colour coordinates.
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Conclusion
In summary, we fabricated Y3Al5O12: Ce3+ CPP using nano-structured phosphor under high-power blue radiant 
flux for white generation in automotive lighting. The synthesis technique, crystal structure, and luminous charac-
teristics are investigated. Nano-structure based Y3Al5O12: Ce3+ CPP exhibited an increase in luminous emittance, 
luminous flux and conversion efficiency compared to Y3Al5O12: Ce3+ CPP with bulk phosphor. By applying the 
Y3Al5O12: Ce3+ CPP to blue LD chips, we obtained suitable white light with 2733 lm/mm2, 1424.6 lm, 218 lm/W, 
CRI value of 54.2 and CCT value of 5994 K. We believe that Y3Al5O12: Ce3+ CPP using nano phosphor is one of 
the simplest ways to obtain high luminous properties. Thus, our results suggest that this material can potentially 
serve as remote phosphors in phosphor converted LDs for white light generation.
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