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. In particular, tight uncertainty relations satisfied by three observables has been derived, which is shown
. to be better than the ones derived from the strengthened Heisenberg and the generalized Schrédinger
. uncertainty relations, and some existing uncertainty relation for three spin-half operators. Uncertainty
relation of arbitrary number of observables is also derived. As an example, the uncertainty relation

satisfied by the eight Gell-Mann matrices is presented.

Uncertainty relations’ are of profound significance in quantum mechanics and also in quantum information
theory like quantum separability criteria and entanglement detection®™, security analysis of quantum key distri-
bution in quantum cryptography®, and nonlocality®. The Heisenberg-Robertson uncertainty relation'”?® presents
a lower bound on the product of the standard deviations of two observables, and provides a trade-oft relation of
measurement errors of these two observables for any given quantum states. Since then different types of uncer-
tainty relations have been studied. There are many ways to quantify the uncertainty of measurement outcomes.
In refs 1,7-14 the product uncertainty relations for the standard deviations of the distributions of observables
is studied. In refs 15-17 the uncertainty relations related to the sum of varinces or standard deviations have
been investigated. And in refs 18-30 entropic uncertainty relations with majorization technique are explored.
Uncertainty relations are also described in terms of the noise and disturbance®"*?, and according to successive
measurements®*-3%. Let p be a quantum state and A be a quantum mechanical observable. The variance of A
with respect to the state p is defined by (AA)?=(A?) — (A)?, where (A) = tr(Ap) is the mean value of A. From
Heisenberg and Robertson!”, the product form uncertainty relation of two observables A and B is expressed as

2 2.1 2
(AA) (AB)” > Z\([A, Bl n
which is further improved by Schrodinger,
2 > 1 2 1 B 2
(AAP(ABF = (4, B + £ |(1A, BY) — (4)(B)P, @

where {A, B} is the anticommutator of A and B.

However, till now one has no product form uncertainty relations for more than two observables. Since there is
no relations like Schwartz inequality for three or more objects, generally it is difficult to have a nontrivial inequal-
ity satisfied by the quantity (AA)*(AB)?*... (AC)% In ref. 14 Kechrimparis and Weigert obtained a tight product
form uncertainty relation for three canonical observables p, §and 7,

A Ky
ApY A”Af2>[7_],
(Ap)* (Ag)y° (AF)” = 5 3)
where 7 = -2, jand p are the position and momentum respectively,and # = —p — §. As 7> 1 the relation (3) is
stronger than the one obtained directly from the commutation relations [p, §] = [g, ] = [F, p] = % and the
uncertainty relation (1). Here the ‘observable’# = —p — § is not a physical quantity, neither independent in this
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triple. In fact, besides the dual observables like position and momentum, there are also triple physical observables
like spin, isospin (isotopic spin) related to the strong interaction in particle physics, angular momentum that their
components are pairwise noncommutative.

Generally speaking, uncertainty relations are equalities or inequalities satisfied by functions such as polyno-
mials of the variances of a set of observables. In this paper, we investigate the product form uncertainty relations
of multiple observables. We present a new uncertainty relation which gives better characterization of the uncer-
tainty of variances.

Results
Theorem 1 The product form uncertainty of three observables A, B, C satisfies the following relation,

(AAY (ABY(ACY > (AAP|(BC) — (B)(C)]* + (AB)*|(CA) — (C)(A)[
+ (ACY’|(AB) — (A)(B)] — 2Re{({AB) — (A)(B))
x ((BC) — (B)(C))({CA) — (C) (AN}, (4)

where Re{S} stands for the real part of S.

See Methods for the proof of Theorem 1.

The right hand side of (4) contains terms like (BC) and (CA). These terms can be expressed in terms of the
usual form of commutators and anti-commutators. From the Hermitianity of observables and ((AB))* = (BA),
one has (AB) = %(( [A, B]) 4+ ({A, B})). By using these relations formula (4) can be reexpressed as,

(AAY (AB?(ACY > ((A%) — <A>2)[§|<[B, P + |§<{B, c) — <B><C>|2]

B - @) C ADE + 116 an - (© )P

HUC) = (O[S4 BYF + 1514, B) — (4) B)F

- §<<{A, B — 2(A) (B))({1B, C}) — 2(B)(C))

x (({C, A}) — 2(C)(4))

- i(“A’ B}) — 2(A) (B))([B, C1)(IC, Al)

i“’*’ B)({1B, C}) — 2(B)(C))(IC, Al)
1

(([A BI)([B, CI)(({C, A}) — 2(C)(A)). 5)

Formulae (4) or (5) give a general relatlon satisfied by (AA)?, (AB)? and (AC)2. To show the advantages of this
uncertainty inequality, let us consider the case of three Pauli matrices A=o,, B=0,, and C=0,. Our Theorem

says that
(A0 )* (Ao, (Ac) > (1= (0 ) ({0 ) + [(0,) (o))
+ 1 =0, ((0,)F + (o) (o))
+ 1 = (o) (o) P + o) (o)) + 2(0,) o) ()’
“ 20, o, 200 (o) — 200, o). ©
Let the qubit state p to be measured be given in the Bloch representat10n with Bloch vector
T = (rp 1y 13), €. p_—(IJr ~U) where 7 = (o, 2 Oy O2)s Y3 1"1 < 1. Then one has

(Ao, ¥ (AJ ) (Ao, Y=01-= 1 (1 — 1y (1 — r3) And the uncertainty relation (6) has the form

(Aax) (AU},) (Aaz) (I —mn )(1 - rz)(l - r32)

Eriz - er — Z rizrj2 - rlzrzzrf.
i=1 i=1

1<i<j<3 (7)

[\

The difference between the right and left hand side of (7) is (1 — i3=1ri2)2. That is, the equality
holds iff 3, 7 = 1. Therefore, the uncertainty inequality is tight for all pure states. Usually, a lower bound
on the product of variances implies a lower bound on the sum of variances®. Indeed in these cases the
lower bound in (7) also gives a tight lower bound of the sum of variances, since
(A’ + (Ac)) + (Ao) =3-3 1M =2> 3,§/ (Ao ) (Ao (Ao, > 33/L, =2, where £, is the
right hand side of ).

In fact from the Heisenberg and Robertson uncertainty relation, One has (Ao, ) (Acf ) (Ao, )y >
|<[0”20y] [l 7y || [J” ) |. However, this inequality is not tight. In ref. 38 the inequality is made tlght by multi-
plying a constant factor’ T= % on the right hand side, and the tighten uncertainty relation reads,
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8
33 (8)

Let us compare the lower bound of (7) with that of (8). The difference of these two bounds satisfies the follow-
ing inequality,

(Ao )’ (Ao (A, > |rirats)-

3 3
8
2 4 2.2 2,22
gr-—gr— E Y — Nty | — —=|Nrr
iz]z i ilj 17273 3(—3‘123|

i=1 1<i<j<3

8

> E r,-zr-2 S ca —=|rr,r5

2 j 11213 17273
1<i<j<3 3+/3

4
4 2
> 3(ryr,ry)3 — (ryr,rs)” — |rirars] >0

8
3.3
. . . 2 -

for all ryr,rs € [—1, 1], where in the first inequality we have used the fact that || 7| = 333_, r < 1. This illustrates
that the uncertainty relation of three Pauli operators from Theorem 1 is stronger than the tighten uncertainty
relation (8), obtained from the Heisenberg and Robertson uncertainty relation.

From the generalized Schrédinger uncertainty relation (2), one can also get an uncertainty relation for three
observables,

(AA)(ABY(AC)" > [{AB) — (A)(B)||(BC) — (B)(C)||(CA) — (C)(A)]
= [{AB)[|(BC)[[{CA)], ©

where [ (XY)* = |%([X, Y + |%({X, Y}) — (X)(Y)[ for X, Y=A, B, C, and A, B and C are the variance
operators of A, Band C, respectively, defined by O = O — (O)I for any operator O. Comparing directly the right
hand side of (17) with the right hand side of (9), we obtain

(AAP[(BC)[” + (AB)Y’|(CA)]® + (AC)’|(AB)[
— 2Re{(AB)(BC)(CA)} — | (AB) (BC) (CA)|

> 3((AAY (AB)* (ACY| (AB) (BC) (CA) )3
— 2Re{(AB) (BC)(CA)} — | (AB) (BC) (CA) |
> 2|(AB) (BC){CA)| — 2Re{(AB)(BC){CA)} > 0, (10)

where the second inequality is obtained by (9). Hence our uncertainty relation is also stronger than the one
obtained from the generalized Schrédinger uncertainty relation.

As an example, let us take the Bloch vector of the state p to be 7 = é, % cos a, % sin a}. Then we get
(Ao ) (Ao ) (Ac,)* > L, > max {Lg, Lo}, where £;, Ly and L, are the right hand sides of inequalities (7), (8)
and (9), respectively, see Fig. 1.

We have presented a product form uncertainty relation for three observables. Our approach can be also used
to derive product form uncertainty relations for multiple observables. Consider n observables {A;}!"_ ;. Denote
I=1,={1,2, .., n}, L={i}, iy, ..., i} CI with kelements of L k=1,2, ..., n,T, = (kg fkaos oo by} = I\ LetT
be the set consisting of all the subsets of I, and Z , the set consisting of the subsets of I with k elements. Then we
have UI, = I,,U;_, Z, = Z.Wehave
Theorem 2

n
i=

(DAY > 3 (=1 g (),
2 £ (11)

1

where

gl = (=" 3 JT a4l

LeZikel

1 1
+ [—E]Eimim 2 5 Eisia,

1
E _Ei i i
n— k Certtkezeta

. - . = n —
ik pik2€lk ik pe oo in€LMiks by}
n—k—2
L)V 2k L E E
o +. Z 2 fetika faikea " T inaiy
Tepppeees i,€1)

when n — k is even, and
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Figure 1. Uncertainty relations satisfied by observables o, o, and o, with state p parameterized by Bloch
vector {1, 2 cos 6, 2 sin O\: solid line for (Ao,)? (Ao,)*(Ao,)?% dot-dashed line for lower bound in (7),
dashed line for the lower bound in (8), dotted line for lower bound in (9).

gy = (=" * 3 ] a47 > ;Ewmu

LET i€l iy pisze i€l P T k
1 1
_2\|g. . __ - B ..
+ . Z _ [ 2 ) etttz ) Z o n—k—2 i sikrq in
ikpiky2€lk ik 3o in€hIMiks by}
n—k—3
1) 2 1
Tt ) Z _ [_E Eik+1ik+z"' Ein—4in73‘ E ‘_Ein—Zin—lirx
Ik ooin—3€ 1k iyl i

whenn—kisodd, E, , = <Ai A, >(Ai A, )...(Ai A, ><Ai A, >,Ais are the variance operators of A;s.
. P k 1 2 2 3 k— 1' k k . 1 . . 8
For instance, we calculate the product form uncertainty relation for the eight Gell-Mann matrices {\},_,,

010 0 —i 0 1 00 001
M=[100/ \=|i 0 0, \s=|0 -1 0, Ay=]0 0 0
000 000 0 0 0 100
00 —i 000 00 1 L (too
A=100 0, A¢=|001|, \,=]00 —i|, \y=—=[01 0]
i0 0 010 0i 0 Blo o —2 (12)

which are the standard su(3) generators® and obey the commutation relations: [\, A,] = > 2if ™ A, where
the structure constants f* are completely antisymmetric, f123=1, f147 = f165 — 246 _ 345 _ (376 _ 1|

2
F8 = 78 = 3 And each two of them are anticommute i.e. {As A} =0(m=n).
Let us consider a general qutrit state p*,

_I+437-X
r 3 (13)

where 7 € R® is the Bloch vector of p and X is a formal vector given by the Gell-Mann matrices. For pure qutrit
states the Bloch vectors satisfy |7| = 1, and for mixed states|7| < 1. However, not all Bloch vectors with |[7| < 1
correspond to valid qutrit states. For simplicity, we set r,=r;=r;=r,=1r;=0, and r, =acosa, r,=asin acos (3,
re=asinasin G, |a| < 1. In this case p has the form

) 1 JBacosa  +[3asinacos3
p=—=| -f3acosa 1 Af3asinacos 3|
3
BasinacosB f3asinasinf 1 (14)

Then the uncertainty related to the set of observables {/\n}ﬁ:1 has the form,

8 8
IT (ax)* = [g] (1 — 2a* cos® a) (1 — 2a*sin* @ + a*sin' asin® 20). 1)
n=1 15

From (11) we have the lower bound of (15),
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Figure 2. The uncertainty of observables {\,}3_, in state p parameterized by the Bloch vector
%(cos a, 0, 0, sin a cos 3, 0, sin a sin 3, 0, 0) and its lower bound. The upper surface is

A = 3*8_ (AN,)* Thelower surface is 3° x £, where £, is the lower bound (right side hand of the
inequality (16)).

8 8
[T @ax)* > [é] (1 — 245221 — 24%sin* o + a*sin’ asin® 3)

n=1

+ %(—2048 + 71684® — 6144a* + 13594°)

+ %a2(4096 — 61444 + 2385a%)cos 2

+ §a4(—108 + 105a%) cos 4o

- %as (cos6a — 32 cos® asint v cos43)]

8
+ [3} 2a%sin* a(1 — 2a° sin® o + a* sin' o sin® 20).
3 (16)
When a? = 1, the equality (16) holds for all parameters o and (3 corresponding to valid qutrit density matri-
ces. This means that the lower bound (16) is tight for > = L. For > = 1, see the Fig. 2 for the uncertainty relation

of these observables. For explicity, we fix the parameter 3 such that sin25= 1, the uncertainty relation is shown
by Fig. 3.

Conclusion

We have investigated the product form uncertainty relations of variances for n (n > 3) quantum observables.
Tight uncertainty relations satisfied by three observables has been derived explicitly, which is shown to be better
than the ones derived from the strengthened Heisenberg and the generalized Schrédinger uncertainty relations,
and some existing uncertainty relation for three spin-half operators. Moreover, we also presented a product form
uncertainty relation for arbitrary number of observables. As an example, we first time calculated the uncertainty
relation satisfied by the eight Gell-Mann matrices. Our results have been derived from a class of semi-definite
positive matrices. Other approaches may be also applied to get different types of product form uncertainty rela-
tions for multiple quantum observables.

Methods
Proof of Theorem 1 To prove the theorem, we first consider the case that all observables are measured in a pure
state |1)). Let us consider a matrix M defined by
(&) (BA) (CA)
M=|(aB) (B’) (CB)|
(AC) (BC) (C?)

where (XY) = (|XY|¢) for X, Y= A, B, C, respectively. For an arbitrary three dimensional complex vector
X = (x}, X5, x3) € C’, we have

SCIENTIFICREPORTS | 6:31192 | DOI: 10.1038/srep31192 5



www.nature.com/scientificreports/

120

110

100

L L B e e e e B

Figure 3. The uncertainty of observables {\,}3_| in state p parameterized by the Bloch vector
%(«/E cosa, 0,0, + sina, 0, & sin a, 0, 0) and its lower bound. The solid line is A = 3® Hr81:1 (A)\n)z.

The dashed line is 3* x L.

><*I*
=
ol

I

%1 (&%) + [x, (B?) + [x3f (C?) + x{x,(AB) + x,x; (BA)
+ x7x;3(AC) + xx5 (CA) + x5x;3(BC) + x,x5 (CB)
(1] (x,A + x,B + x,C) (x,A + x,B + x,C) [1) > 0.

Then for any given mixed state p with arbitrary pure state decomposition p = 3_; p.|1;) (¢/;], the correspond-
ing matrix M satisfies

X Mx = > b (¥ (v A + x,B + x,C) (v, A + x,B + x,C) [1;) > 0.

Therefore M is semi-definite positive for all variance operators A, B, C and any state p. Hence, we have
det(M) >0, namely,

(AAY(ABY’(ACY > (AA)|(BC)]’ + (AB)*[(CA)[* + (AC)*[(AB)[
— 2Re{(AB)(BC)(CA)}. 17)

By substituting the variance operator X=X — (X)I, X=A, B, C, into the above inequality, we obtain the uncer-
tainty relation (4). This completes the proof.
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